首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于以太网的粮仓温度监测系统设计   总被引:2,自引:0,他引:2  
粮食储藏时的温度参数直接影响着储藏效果,准确检测出粮仓内部各位置的温度是实现对其理想控制的基础.为实现对多点温度数据的自动监测,设计了以PC机为核心的多路数据采集和处理系统.该系统采用单一采集中心和多个智能采集节点的分布式结构,节点与中心采用基于TCP协议的以太网进行通信,采集中心通过运行在Matlab环境下编制的监测程序不断收集、处理和显示各智能节点传回的温度数据,提高了数据采集的效率和稳定性.  相似文献   

2.
温室环境信息实时监测与控制系统的设计   总被引:1,自引:1,他引:0  
在LabVIEW的基础上,以STC89C52单片机为核心控制器,设计了一套温室环境实时监控系统,采用高精度数字温湿度传感器AM2315对温室大棚多点温湿度参数进行实时采集、传输。通过LabVIEW2010编写的上位机数据处理软件对数据进行接收、处理、存储,绘制温湿度平均曲线图,并实时显示温室内外温湿度、卷帘高度与通风口大小等参数;同时,实现了积温功能,且可根据植物种类的不同设置积温上下限。该系统具有硬件结构简单、成本低、使用方便、维护简单、工作稳定等优点。实验表明:系统可以在1s内对温室内最多15个节点和室外3个节点的数据进行循环采集和处理,并可根据设定的参数和温室内外的环境状况对通风口大小和卷帘高度进行自动控制,有效代替人工方法,稳定地用于温室大棚环境参数的自动化控制。  相似文献   

3.
针对传统温室大棚灌溉智能化和自动化水平低的问题,采用无线传感器网络WSN技术设计了智能温室大棚自动定点喷灌系统。系统主要由监控中心上位机、多个温湿度监测和电磁阀控制节点、密封储水罐压力监测节点、充压机和水泵控制节点组成。通过温湿度传感器获取土壤表层的温度和湿度数据,并经过ZigBee网络将该节点ID和数据打包实时发送至监控中心上位机,一旦监测到的湿度低于设置的阈值时,会控制对应该区域的电磁阀开启进行喷灌,同时控制充压机保持储水罐内的压力为恒定值。试验表明,该系统能准确获取土壤表面的温湿度数据,实现了整个温室大棚的定点喷灌和密闭储水罐的自动补水功能。  相似文献   

4.
SD卡在温室温湿度采集器中的应用   总被引:1,自引:0,他引:1  
研究了一种基于ARM微控制器和μC/OS-Ⅱ的SD卡数据采集系统.SD卡与ARM间通过SD总线进行数据通讯.同时,介绍了SD卡以及LPC2368芯片中SD接口的结构和工作原理,本温室的数据采集系统是由L PC2368控制SD卡座实现.通过实例验证可知,该数据采集系统能够初步解决温室温湿度数据采集过程中数据存储量大、存储设备不易与PC机接口的问题,并通过实例说明其在温室温湿度采集器上的应用.  相似文献   

5.
为解决现有无线检测系统无法精准有效反映温室内立体空间的环境变化情况,以及传感器节点定位误差大、硬件成本高等问题,设计了一种基于UWB(Ultra wide band)定位的智能温室三维温湿度检测系统。系统通过一款自主设计的集成UWB定位模块的STM32F系统板对各传感器节点进行定位,并搭载AHT25型高精度传感器对环境数据进行采集。UWB主基站使用4G网络通信模块将各传感器数据及位置信息发送到上位机,并在Web端根据HTML5技术实现温室三维温湿度场可视化,完成温室三维温湿度远程检测。系统定位测试试验证明,各传感器节点精度主要集中在10~30 cm范围内,部分节点测量位置误差大于50 cm,各节点最大丢包率为2.5%,平均丢包率为1.9%,满足温室测量基本需求,对检测温室热工缺陷区域以及研究植物生长适宜环境有重要意义。  相似文献   

6.
以Freescale 公司的无线单片机 MC13213为核心控制器,设计了基于ZigBee 技术的土壤风蚀数据采集处理系统,可实现风速、环境温湿度、大气压力和土壤风蚀量等数据的无线实时采集,并结合LabVIEW 8.6编写数据处理软件对数据进行处理。试验表明,环境数据的传输速率最高可达150kbps,有效传输距离在190m以内;系统可以对32个数据采集节点进行扫描,并对各个节点的数据进行无线传输,可以稳定地用于野外风蚀环境数据的采集和处理。  相似文献   

7.
基于STM32的智能温室无线监控系统设计   总被引:1,自引:0,他引:1  
智能温室无线监控系统采用嵌入式技术,由温湿度模块、无线传输模块、电源模块及自动控制系统组成,以期农业与自动控制系统结合,采集温室的光照度、温湿度,实现串口软件实时监控并存储采集到的数据。该系统的应用营造了一个有利于温室作物生长的环境,提高了蔬菜产量、品质,且节省了大量的劳动力资源。  相似文献   

8.
基于CC1100的温室温湿度监测系统   总被引:4,自引:1,他引:3  
针对传统温室温湿度监测系统的弊端,介绍了一种基于CC1100的温室温湿度监测系统的设计方案.系统采用数字式温湿度传感器SHT10进行数据采集,利用无线传输芯片CC1100实现数据短距离无线收发,满足温室温湿度监测的实时性和可靠性要求.实验证明,温室温湿度监测系统成本低,功耗低,体积小,传输可靠,具有很好的应用前景.  相似文献   

9.
基于LabVIEW的温室环境远程监控系统的研究   总被引:7,自引:0,他引:7  
基于虚拟仪器开发平台LabVIEW,进行了温室环境远程监控系统的研究。该系统使用非NI公司生产的普通数据采集卡,利用LabVIEW的CIN节点对数据采集卡进行驱动,并采用DataSocket通信技术进行数据的实时、远程采集,实现了对温室环境的远程监控。  相似文献   

10.
大数据背景下的智能化农业设施系统设计   总被引:2,自引:0,他引:2  
针对目前农业设施管理和环境监测能力不足、农业生产相关数据积累不够、农业生产智能化程度不高等问题,以农业温室大棚为对象,应用物联网技术,设计一个能够实时采集温室大棚的温度、湿度、土壤温湿度、光照等环境信息,并通过WIFI技术接入互联网云端控制平台或移动客户端进行数据通信,实现环境数据的实时采集、显示、存储和共享,并对采集到的数据进行分析与判断、自动调控喷灌电机和加热设备的智能化温室大棚系统。实验表明,系统具有安装简单、界面友好、实用性强、易扩展等特点,Android客户端及微信公众号实现系统的远程移动管理,良好的数据接口有助于大数据采集与分析,能够适应智能农业的大数据应用需求。  相似文献   

11.
王进  王笑 《农业工程》2019,9(8):38-40
针对大棚温湿度对蔬菜安全生产有着非常重要的影响,提出了一种基于51单片机的大棚温湿度监测系统的硬件、软件设计及系统测试。该温湿度监测系统采用STC89C52单片机对温湿度传感器实时采集的数据进行处理,利用光耦温湿度继电器控制大棚内的温湿度,温湿度的当前信息可以在1602液晶屏准确显示,并且能够接受手机端送来的指令,完成与手机端的信息交换。实现了对温湿度的自动监控和控制,有效地提升了温室大棚监控的自动化管理水平。   相似文献   

12.
温室温度和湿度的多变量模糊控制技术   总被引:18,自引:1,他引:18  
介绍了一种基于MCS-51单片处理机的模糊控制温室温度的湿度技术,设计了模糊控制系统,并阐述了模糊控制系统的原理、方法以及硬件的组成。对整个控制过程进行了仿真试验,试验结果证明采用该模糊控制技术在控制温室的湿度和湿度时,系统响应快、超调量小、动作准确,过程平稳。  相似文献   

13.
温湿度是太阳能干燥过程中的一项重要的指标,本系统将信息采集、信息传输、信息处理等多种信息技术相互融合,将温湿度监测和ARM控制理论相结合,提出了一种切实可行的干燥环境监测系统。该系统利用PC机上的RS2 3 2串行口实现数据通讯,使用LabVIEW虚拟仪器软件完成上位机串行通讯程序和前面板程序的编写,实现干燥系统温湿度的实时采集、显示和储存。实验证明,此系统取得良好的测试效果。  相似文献   

14.
介绍一种基于LabVIEW的分布式农业大棚,在大棚不同区域设置终端节点,负责光照度、空气温湿度、CO2浓度和土壤湿度数据的采集和上传,同时接收集中器转发的指令,根据指令控制不同区域喷淋头、加热器、排风扇和遮阳板的动作,实现对各区域不同作物生长环境的分布精准调节。通过多点分布式监控,为大棚分区种植的每种作物提供最适合的生长环境,以满足职业院校农业类专业学生的实践需求。   相似文献   

15.
在现代温室生产中,对温湿度因子的精确监测和稳定控制是实现高效生产的关键。设计了一种基于无线单片机CC1110和模糊控制算法的温室温湿度无线智能监控系统。阐述了该系统的组成及其在温室生产中的应用,介绍了软硬件设计和模糊控制算法设计过程。对整个控制过程进行仿真试验,结果显示温湿度变化超调量较小,控制过程平稳,可以满足控制要求。   相似文献   

16.
魏挺 《农业工程》2018,8(6):51-54
针对当前农业大棚蔬菜种植的信息化和自动化需求,利用物联网技术,提出一种基于无线传感器的大棚蔬菜温湿度采集系统。为实现蔬菜大棚温湿度采集功能,分别从硬件和软件的角度对系统进行构建。在硬件方面,结合蔬菜大棚中传感器节点较多的问题,采用温湿度传感器节点与无线射频模块结合的方式,完成蔬菜大棚中温湿度的自动采集和数据发送;在软件方面,利用IAR集成开发环境对上机位软件进行开发。通过对部分功能的测试,验证开发方案在农业蔬菜大棚中应用的可行性,为现代农业的发展和推广提供了借鉴。   相似文献   

17.
针对大多数温室监控软件需要在固定的计算机终端前完成工作,使用范围固定,灵活性、实时性低等问题,研究开发了基于Android系统的移动温室监控APP,使得温室作业人员在移动设备上能够查看数据,根据监控数据采取相应措施,避免了人工管理温室无法实时掌握温室环境情况的问题。通过对温湿度和其他环境因子调控设施的远程调控,实现了节省人力、网络化和集约化的远程管理,构建适宜作物生长、繁育的良好生态环境。   相似文献   

18.
基于我国水资源短缺和超量使用化肥的严重现状,为达到科学用水施肥的目的,通过采集土壤温湿度、空气温湿度、光照辐射量等信息,并结合作物生长信息,经作物种植专家系统分析后,决策所需灌溉水肥量,利用电磁阀、管道、纳米微孔管和作物根层负压等来自动调解控制植物根部的水肥补给,实现作物根层微灌的自动化,优化植物的生长环境,提高水肥利用率。针对我国现阶段农业偏远、易变、分散的特点,提出了基于ZigBee的无线传感器技术、ARM嵌入式技术、Internet网络及现代信息管理发布系统的温室现场信息采集监控系统设计方案。   相似文献   

19.
董曼 《农业工程》2016,6(3):21-26
研究并设计了一种基于VB的温室温湿度实时监测上位机系统。该系统能实现对现场采集的温湿度数据进行实时监测,并针对不同的作物,当环境温湿度参数越限时,启动声音报警,以便管理员介入进行自动或手动调控。提供温室作物最佳的温湿度生长环境,提高温室的自动化程度和生产效率。该系统应用软件工程的设计思想,以Microsoft Visual Basic 6.0为开发环境,Microsoft Access为后台数据库,采用模块化的设计方法,利用面向对象、数据库等技术完成系统数据的实时显示、信息和数据的存储、历史数据查询、统计分析、打印和异常报警等功能,实现了上位机系统的监测任务。介绍了系统的总体设计和各功能模块的设计,说明了该系统的主要功能,并给出了系统的运行界面和部分代码,在系统和数据库安全方面也采取了一定措施。   相似文献   

20.
基于通信技术实现了牡丹温室中3个重要参数(温度、湿度、光照)的测量与控制。该系统整体采用主从结构:上位机(PC机)系统和下位机(单片机)系统。在上位机系统中,用VB 6.0开发了冬季牡丹培育过程的专家系统,查询和修改方便;下位机系统包括单片机、传感器和控制执行机构。该系统已在菏泽调试成功,较大幅度地提高了牡丹培育的质量,增加了经济效益,具有较高的实用性和推广价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号