首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine whether administration of inactivated virus or modified-live virus (MLV) vaccines to feral cats at the time of neutering induces protective serum antiviral antibody titers. DESIGN: Prospective study. ANIMALS: 61 feral cats included in a trap-neuter-return program in Florida. PROCEDURES: Each cat received vaccines against feline panleukopenia virus (FPV), feline herpes virus (FHV), feline calicivirus (FCV), FeLV, and rabies virus (RV). Immediately on completion of surgery, vaccines that contained inactivated RV and FeLV antigens and either MLV or inactivated FPV, FHV, and FCV antigens were administered. Titers of antiviral antibodies (except those against FeLV) were assessed in serum samples obtained immediately prior to surgery and approximately 10 weeks later. RESULTS: Prior to vaccination, some of the cats had protective serum antibody titers against FPV (33%), FHV (21%), FCV (64%), and RV (3%). Following vaccination, the overall proportion of cats with protective serum antiviral antibody titers increased (FPV [90%], FHV [56%], FCV [93%], and RV [98%]). With the exception of the FHV vaccine, there were no differences in the proportions of cats protected with inactivated virus versus MLV vaccines. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that exposure to FPV, FHV, and FCV is common among feral cats and that a high proportion of cats are susceptible to RV infection. Feral cats appeared to have an excellent immune response following vaccination at the time of neutering. Incorporation of vaccination into trap-neuter-return programs is likely to protect the health of individual cats and possibly reduce the disease burden in the community.  相似文献   

2.
The optimal vaccination protocol to induce immunity in kittens with maternal antibodies is unknown. The objective of this study was to determine the effects of maternally-derived antibody (MDA) on serologic responses to vaccination in kittens. Vaccination with a modified live virus (MLV) product was more effective than an inactivated (IA) product at inducing protective antibody titers (PAT) against feline panleukopenia virus (FPV). IA vaccination against feline herpesvirus-1 (FHV) and feline calicivirus (FCV) was more effective in the presence of low MDA than high MDA. Among kittens with low MDA, MLV vaccination against FCV was more effective than IA vaccination. A total of 15%, 44% and 4% of kittens had insufficient titers against FPV, FHV and FCV, respectively, at 17 weeks of age. Serologic response to vaccination of kittens varies based on vaccination type and MDA level. In most situations, MLV vaccination should be utilized and protocols continued beyond 14 weeks of age to optimize response by all kittens.  相似文献   

3.
OBJECTIVE: To evaluate duration of immunity in cats vaccinated with an inactivated vaccine of feline panleukopenia virus (FPV), feline herpesvirus (FHV), and feline calicivirus (FCV). ANIMALS: 17 cats. PROCEDURE: Immunity of 9 vaccinated and 8 unvaccinated cats (of an original 15 vaccinated and 17 unvaccinated cats) was challenged 7.5 years after vaccination. Specific-pathogen-free (SPF) cats were vaccinated at 8 and 12 weeks old and housed in isolation facilities. Offspring of vaccinated cats served as unvaccinated contact control cats. Virus neutralization tests were used to determine antibody titers yearly. Clinical responses were recorded, and titers were determined weekly after viral challenge. RESULTS: Control cats remained free of antibodies against FPV, FHV, and FCV and did not have infection before viral challenge. Vaccinated cats had high FPV titers throughout the study and solid protection against virulent FPV 7.5 years after vaccination. Vaccinated cats were seropositive against FHV and FCV for 3 to 4 years after vaccination, with gradually declining titers. Vaccinated cats were protected partially against viral challenge with virulent FHV. Relative efficacy of the vaccine, on the basis of reduction of clinical signs of disease, was 52%. Results were similar after FCV challenge, with relative efficacy of 63%. Vaccination did not prevent local mild infection or shedding of FHV or FCV. CONCLUSIONS: Duration of immunity after vaccination with an inactivated, adjuvanted vaccine was > 7 years. Protection against FPV was better than for FHV and FCV. CLINICAL IMPLICATIONS: Persistence of antibody titers against all 3 viruses for > 3 years supports recommendations that cats may be revaccinated against FPV-FHV-FCV at 3-year intervals.  相似文献   

4.
The induction of a quick onset of immunity against feline parvovirus (FPV), feline herpesvirus (FHV) and feline calicivirus (FCV) is critical both in young kittens after the decline of maternal antibodies and in cats at high risk of exposure. The onset of immunity for the core components was evaluated in 8–9 week old specific pathogen free kittens by challenge 1 week after vaccination with a combined modified live (FPV, FHV) and inactivated (FCV) vaccine. The protection obtained 1 week after vaccination was compared to that obtained when the challenge was performed 3–4 weeks after vaccination. The protocol consisted of a single injection for vaccination against FPV and two injections 4 weeks apart for FHV and FCV.At 1 week after vaccination, the kittens showed no FPV-induced clinical signs or leukopenia following challenge, and after FCV and FHV challenges the clinical score was significantly lower in vaccinated animals than in controls. Interestingly, the relative efficacy of the vaccination was comparable whether the animals were challenged 1 week or 3–4 weeks after vaccination, indicating that the onset of protection occurred within 7 days of vaccination. Following the 1-week challenge, excretion of FPV, FHV and FCV was significantly reduced in vaccinated cats compared to control kittens, confirming the onset of immunity within 7 days of vaccination.  相似文献   

5.
OBJECTIVE: To determine the frequency and duration of feline panleukopenia virus (FPV) vaccine-induced interference with fecal parvovirus diagnostic testing in cats. DESIGN: Prospective controlled study. ANIMALS: Sixty-four 8- to 10-week-old specific-pathogen-free kittens. PROCEDURES: Kittens were inoculated once with 1 of 8 commercial multivalent vaccines containing modified-live virus (MLV) or inactivated FPV by the SC or intranasal routes. Feces were tested for parvovirus antigen immediately prior to vaccination, then daily for 14 days with 3 tests designed for detection of canine parvovirus. Serum anti-FPV antibody titers were determined by use of hemagglutination inhibition prior to vaccination and 14 days later. RESULTS: All fecal parvovirus test results were negative prior to vaccination. After vaccination, 1 kitten had positive test results with test 1, 4 kittens had positive results with test 2, and 13 kittens had positive results with test 3. Only 1 kitten had positive results with all 3 tests, and only 2 of those tests were subjectively considered to have strongly positive results. At 14 days after vaccination, 31% of kittens receiving inactivated vaccines had protective FPV titers, whereas 85% of kittens receiving MLV vaccines had protective titers. CONCLUSIONS AND CLINICAL RELEVANCE: Animal shelter veterinarians should select fecal tests for parvovirus detection that have high sensitivity for FPV and low frequency of vaccine-related test interference. Positive parvovirus test results should be interpreted in light of clinical signs, vaccination history, and results of confirmatory testing. Despite the possibility of test interference, the benefit provided by universal MLV FPV vaccination of cats in high-risk environments such as shelters outweighs the impact on diagnostic test accuracy.  相似文献   

6.
7.
OBJECTIVE: To determine whether vaccinated cats either remained seropositive or responded serologically to revaccination against 3 key viral antigens after extended periods since their last vaccination. DESIGN: Serologic survey. ANIMALS: 272 healthy client-owned cats. PROCEDURE: Cats were > or = 2 years old and vaccinated for feline panleukopenia virus (FPV), feline calicivirus (FCV), and feline herpesvirus (FHV). On day 0, cats were revaccinated with a vaccine from the same line of vaccines as they had historically received. Antibody titers were measured in sera collected on day 0 (prevaccination titer) and 5 to 7 days later (postvaccination titer). Cats were considered to have responded serologically if they had a day-0 hemagglutination inhibition titer to FPV > or = 1:40, serum neutralization (SN) titer to FCV > or = 1:32, SN titer to FHV > or = 1:16, or > or = 4-fold increase in antibody titer after revaccination. RESULTS: The percentage of cats that had titers at or above the threshold values or responded to revaccination with a > or = 4-fold increase in titer was 96.7% for FPV, 97.8% for FCV, and 88.2% for FHV. CONCLUSIONS AND CLINICAL RELEVANCE: In most cats, vaccination induced a response that lasted up to and beyond 48 months for all 3 antigens. Although not equivalent to challenge-of-immunity studies as a demonstration of efficacy, results suggest that revaccination with the vaccine used in our study provides adequate protection even when given less frequently than the traditional 1-year interval. The study provides valuable information for clinicians to determine appropriate revaccination intervals.  相似文献   

8.
Serum antibody titers are a useful measurement of protection against infection (feline panleukopenia virus [FPV]) or clinical disease (feline herpesvirus-1 [FHV] and feline calicivirus [FCV]), and their determination has been recommended as part of disease outbreak management in animal shelters. The objective of this study was to determine the sensitivity, specificity, and inter-observer and inter-assay agreement of two semi-quantitative point-of-care assays for the detection of protective antibody titers (PAT) against FPV, FHV and FCV in shelter cats. Low sensitivity for FPV antibodies (28%) rendered a canine point-of-care assay inappropriate for use in cats. The feline point-of-care assay also had low sensitivity (49%) and low negative predictive value (74%) for FPV PAT detection, but was highly accurate in the assessment of FHV and FCV PAT. Improvements in accuracy and repeatability of FPV PAT determination could make this tool a valuable component of a disease outbreak response in animal shelters.  相似文献   

9.
Forty-two seronegative cats received an initial vaccination at 8 weeks of age and a booster vaccination at 12 weeks. All cats were kept in strict isolation for 3 years after the second vaccination and then were challenged with feline calicivirus (FCV) or sequentially challenged with feline rhinotracheitis virus (FRV) followed by feline panleukopenia virus (FPV). For each viral challenge, a separate group of 10 age-matched, nonvaccinated control cats was also challenged. Vaccinated cats showed a statistically significant reduction in virulent FRV-associated clinical signs (P = .015), 100% protection against oral ulcerations associated with FCV infection (P < .001), and 100% protection against disease associated with virulent FPV challenge (P < .005). These results demonstrated that the vaccine provided protection against virulent FRV, FCV, and FPV challenge in cats 8 weeks of age or older for a minimum of 3 years following second vaccination.  相似文献   

10.
The mean age recommended by veterinary practices for neutering kittens is 22.6 weeks, with only 28 per cent of veterinarians considering it appropriate to neuter 12- to 16-week-old kittens. Multivariable logistic regression was used to identify variables associated with veterinarians' opinion that 12 to 16 weeks is an appropriate age at which to neuter kittens. Significant risk factors included time since graduation, perception of the problem of there being too many unwanted domestic cats and their practice's policy on the recommended neutering age. Veterinarians who thought that neutering eight- to 11-week-old rescue kittens before homing was justified and veterinarians who had neutered 12- to 16-week-old domestic kittens within the previous year were more likely to consider that neutering 12- to 16-week-old kittens was appropriate. Veterinarians who thought that surgical complications, anaesthetic complications and lower urinary tract disease were, or might be, more likely to occur in kittens neutered at 12 to 16 weeks than in those neutered at six months of age, were significantly less likely to think that neutering 12- to 16-week-old kittens was appropriate.  相似文献   

11.
Two groups of feline panleukopenia virus (FPV), feline calicivirus (FCV), and feline herpesvirus-1 (FHV-1) seronegative cats (five cats per group) were administered one of two modified live feline viral rhinotracheitis, calicivirus, and panleukopenia virus (FVRCP) vaccines and the serological responses to each agent were followed over 28 days. While all cats developed detectable FPV and FCV antibody titers; only two cats developed detectable FHV-1 antibody titers using the criteria described by the testing laboratory. For FPV and FHV-1, there were no differences in seroconversion rates between the cats that were administered the intranasal (IN) FVRCP vaccine and the cats that were administered the parenteral FVRCP vaccine on any day post-inoculation. For FCV, the cats that were administered the IN FVRCP vaccine were more likely to seroconvert on days 10 and 14 when compared to cats that were administered the parenteral FVRCP vaccine.  相似文献   

12.
OBJECTIVE: To determine whether detection of virus-specific serum antibodies correlates with resistance to challenge with virulent feline herpesvirus 1 (FHV-1), feline calicivirus (FCV), and feline parvovirus (FPV) in cats and to determine percentages of client-owned cats with serum antibodies to FHV-1, FCV, and FPV. DESIGN: Prospective experimental study. ANIMALS: 72 laboratory-reared cats and 276 client-owned cats. PROCEDURES: Laboratory-reared cats were vaccinated against FHV-1, FCV, and FPV, using 1 of 3 commercial vaccines, or maintained as unvaccinated controls. Between 9 and 36 months after vaccination, cats were challenged with virulent virus. Recombinant-antigen ELISA for detection of FHV-1-, FCV-, and FPV-specific antibodies were developed, and results were compared with results of hemagglutination inhibition (FPV) and virus neutralization (FHV-1 and FCV) assays and with resistance to viral challenge. RESULTS: For vaccinated laboratory-reared cats, predictive values of positive results were 100% for the FPV and FCV ELISA and 90% for the FHV-1 ELISA. Results of the FHV-1, FCV, and FPV ELISA were positive for 195 (70.7%), 255 (92.4%), and 189 (68.5%), respectively, of the 276 client-owned cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that for cats that have been vaccinated, detection of FHV-1-, FCV-, and FPV-specific antibodies is predictive of whether cats are susceptible to disease, regardless of vaccine type or vaccination interval. Because most client-owned cats had detectable serum antibodies suggestive of resistance to infection, use of arbitrary booster vaccination intervals is likely to lead to unnecessary vaccination of some cats.  相似文献   

13.
A new program to address the feral cat population on Prince Edward Island was undertaken during the spring and summer of 2001. Feral cats from specific geographic areas were trapped, sedated, and tested for feline leukemia virus and feline immunodeficiency virus. Healthy cats were neutered, dewermed, vaccinated, tattooed, and released to their area of origin. A total of 185 cats and kittens were trapped and tested during a 14-week period; 158 cats and kittens as young as 6 weeks of age were neutered and released. Twenty-three adult cats were positive for feline leukemia virus, feline immunodeficiency virus, or both, and were euthanized.  相似文献   

14.
Two groups of feline panleukopenia (FPV), feline calicivirus (FCV) and feline herpesvirus 1 (FHV-1) seronegative kittens (six cats per group) were administered one of two feline viral rhinotracheitis, calcivirus and panleukopenia (FVRCP) vaccines subcutaneously (one inactivated and one modified live) and the serological responses to each agent were followed over 49 days (days 0, 2, 5, 7, 10, 14, 21, 28, 35, 42, 49). While the kittens administered the modified live FPV vaccine were more likely to seroconvert on day 7 after the first inoculation than kittens administered the inactivated vaccine, all kittens had seroconverted by day 14. In contrast, FHV-1 serological responses were more rapid following administration of the inactivated FVRCP vaccine when compared with the modified live FVRCP vaccine. There were no statistical differences between the serological response rates between the two FVRCP vaccines in regard to FCV.  相似文献   

15.
Nine unrelated 12-week-old naive domestic ferrets (Mustela putorius furo) were used to evaluate the serologic responses to commercial canine distemper virus (CDV) and rabies virus (RV) vaccines. Five of the ferrets (group 1) were inoculated 3 times at 2-week intervals with a multivalent modified-live virus vaccine of canine cell-line origin, containing CDV and an inactivated RV vaccine. Four of the ferrets (group 2) were inoculated once with the multivalent modified-live virus vaccine containing CDV and were not inoculated with the RV vaccine. Both group-1 and group-2 ferrets seroconverted to the CDV component of the vaccine. Group-1 ferrets also seroconverted after RV vaccination and maintained serum antibody titers to both CDV and RV for at least 7 months. Domestic ferret sera were found to have IgG epitopes similar to sera of domestic dogs and cats. Domestic ferret sera did not contain antibodies to feline coronavirus or FeLV antigens.  相似文献   

16.
A serosurvey of feline herpesvirus type 1 (FHV-1), feline calicivirus (FCV), and feline parvovirus (FPV) in cats from Ho Chi Minh City area in southern Vietnam was conducted in December 1998, and we compared the results with our previous results in northern Vietnam (Hanoi area). The positive rate of FHV and FCV in domestic cats were 44% and 74%, respectively. They were rather higher than those in Hanoi area, while the seropositivity of FPV (44%) was similar to that in Hanoi area. In leopard cats, the positive rate of FPV was high (3/4) and it indicated that FPV was prevailing in leopard cats in Vietnam.  相似文献   

17.
A commercial feline leukemia virus (FeLV) vaccine was evaluated in a natural exposure system. All kittens were negative for FeLV antigen on two enzyme-linked immunosorbent assay (ELISA) tests and one indirect immunofluorescence antibody (IFA) test before vaccination or exposure. Twenty-three kittens were vaccinated subcutaneously at nine and 12 weeks of age. The vaccinated kittens and 14 unvaccinated littermates were housed in an infected environment starting at 14 weeks. The kittens were exposed for 24 weeks by living in a large room with one feline leukemia virus-positive, asymptomatic adult cat for each five kittens. Sixty-four percent of the unvaccinated kittens and 70% of the vaccinated kittens became infected as determined by ELISA. Forty-three percent of unvaccinated kittens and 39% of vaccinated kittens died. There was no difference between the infection and mortality of vaccinated kittens that developed antibodies to anti-FeLV glycoprotein 70-envelope antigen and those that did not. Consideration should be given to evaluation of feline leukemia virus vaccines using "street" virus in a natural exposure system.  相似文献   

18.
The Oklahoma Department of Wildlife Conservation acquired 20 American river otters (Lutra canadensis) between 1984 and 1985 for reintroduction into Oklahoma waterways. In 1985, 10 otters were evaluated for serum antibody titers after vaccination with canine distemper virus, canine adenovirus type 2, canine parvovirus (CPV), feline panleukopenia virus (FPV), feline rhinotracheitis virus (FRV), and feline calicivirus. Prevaccination serum-virus neutralization (SVN) antibody to feline rhinotracheitis virus was found in 2 otters and to feline calicivirus in 1 otter. Using an indirect fluorescent antibody (IFA) assay, prevaccination antibody to CPV and FPV was found in 2 otters. A significant increase in SVN antibody titers was found after vaccination of otters with canine adenovirus type 2 (6 of 8 animals) and feline calicivirus (1 of 8 animals). One of 8 otters developed significant antibody titers to CPV and FPV, as measured by IFA assay. Otters did not develop SVN antibody titers to canine distemper virus after vaccination. Antigens of feline leukemia virus, using ELISA, or antibodies to feline infectious peritonitis, using IFA assay, were not found in the 20 otters.  相似文献   

19.
The purpose of this study was to determine the origin and subsequent spread of feline calicivirus (FCV), feline herpesvirus (FHV), and feline enteric coronavirus (FECV) in cats relinquished to shelters. FCV was isolated from the oral fauces of 11% of healthy cats upon entry, and isolation rates were highest for kittens (33%). FHV shedding was very low (4%) at the time of entry and occurred mainly in juveniles. FECV shedding was also common among newly relinquished cats (33%), especially older kittens and juveniles (90%). The subsequent spread of all three viruses was rapid and efficient in the shelter environment. Fifteen percent of cats were shedding FCV, 52% FHV, and 60% FECV after 1 week. More detailed studies were done with FECV shedding, which could be accurately quantitated. The amounts of FECV shed by infected cats ranged from 10(2)to 10(16)particles/swab of feces. FECV shedding was several logs higher in young kittens with primary infection than adult cats with primary infections. The mean levels of FECV shedding among adults were the same for primary and chronic infections. Although shelters were not the primary source of these viruses for many relinquished cats, factors intrinsic to the shelter environment were critical in amplifying shedding and spread to susceptible individuals. Extrinsic factors were especially important for the spread of FHV and FECV. FHV shedding rates increased from 4% to 50% in 1 week's time. The speed and magnitude of the increase in FHV shedding suggested that there was reactivation of latent infections as well as acquisition of new infections. FECV shedding increased 10 to 1,000,000 fold in 1 week among cats that were already infected at entry, and more than one-half of initially negative cats were shedding FECV a week later. Feline calicivirus infection was the least likely to spread in the shelter. The infection rate only increased from 11 to 15% in 1 week.  相似文献   

20.
Isolation rates of feline herpesvirus (FHV) and feline calicivirus (FCV) from oropharyngeal swabs, taken from 6866 cats in 1980 to 1989 were studied retrospectively. FCV was isolated from 1364 (19.9 per cent) and FHV from 285 (4.2 per cent). The ratio of FCV:FHV isolations varied from 1.3:1 to 15:1 in individual years with an overall ratio of 4.8:1. Isolation of both viruses was fairly uniform for each year and there was no breed or sex disposition to either virus. Of 872 cats shedding FCV and 213 cats shedding FHV, of known age, 447 (51.3 per cent) with FCV and 140 (65.7 per cent) with FHV were under one year old, compared to only 35.3 per cent of the whole population sampled. For the years 1985 to 1989, more information was obtained about the cases. Of 4626 cats tested, 1180 (25.5 per cent) had acute upper respiratory tract disease (URTD) of which 348 (29.5 per cent) were shedding FCV and 162 (13.7 per cent) FHV. A further 597 had chronic URTD and of these, 102 (17.1 per cent) were shedding FCV and 18 (3 per cent) FHV. In 120 cases of suspected vaccine reaction/breakdown, FCV was isolated from 34 (28.3 per cent) and FHV from only two (1.7 per cent). FHV was not isolated from any of 412 cases presenting with chronic gingivitis/stomatitis alone; 181 (43.9 per cent) were shedding FCV and when cats with other signs in addition to chronic gingivitis were included, this proportion increased to 70.4 per cent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号