首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
To elucidate the role of gonadotropin-releasing hormone (GnRH) in gonadal maturation in wild female Japanese flounder Paralichthys olivaceus, we monitored changes in the levels of seabream GnRH (sbGnRH) in the olfactory bulb, telencephalon, hypothalamus, and pituitary during ovarian development together with changes in plasma levels of testosterone (T), estradiol-17β (E2), and 17α, 20β-dihydroxy-4-pregnen-3-one (DHP). Fish were caught offshore of the northern mainland of Japan in the Pacific Ocean at 3- to 4-week intervals between April and September by gill net. The netted fish were categorized into six groups based on ovarian stages: previtellogenic (April–early May), early yolk (April–late May), late yolk (late May–June), early spawning (June–August), late spawning (September), and termination (September) stages. The gonadosomatic index significantly increased from the previtellogenic to early spawning stages and decreased thereafter. In the olfactory bulb, no significant differences were observed in sbGnRH levels among the developmental stages. In contrast, sbGnRH levels in the telencephalon and hypothalamus were very high in the previtellogenic stage, lower in the early spawning stage, and relatively high in latter stages. sbGnRH levels in the pituitary were high in the previtellogenic stage and low in the early spawning stage. In addition, the relatively high levels of pituitary sbGnRH were found together with high plasma T, E2, and DHP levels in fish in the late yolk stage. These results indicate that sbGnRH in the telencephalon, hypothalamus, and pituitary is involved in ovarian maturation and that sbGnRH may play an important role in the initiation of ovarian recrudescence in wild Japanese flounder.  相似文献   

2.
Serum thyroid hormone concentrations were measured during the seven stages of metamorphosis (1–7) of the southern hemisphere lamprey, Geotria australis. The respective mean concentrations ± SEM of serum thyroxine (T4) and triiodothyronine (T3) fell from 31.73 ± 4.09 and 5.06 ± 0.70 nM in large ammocoetes sampled in February, at the time when metamorphosis was initiated, to 4.54 ± 0.36 and 1.03 ± 0.12 nM at stage 5. Although there was a small, but significant, recovery of serum T4 concentrations during stages 6 and 7, no such corresponding statistically significant rise occurred in serum T3 concentrations. Serum thyroid hormone concentrations in ammocoetes sampled during the period when metamorphosis was taking place, exhibited a marked seasonal increase between February and May–June (late autumn/early winter); serum T3 and T4 concentrations peaked in May–June and were, respectively, > 2 fold and > 8 fold higher than those recorded for samples in late February (mid summer). By mid-July the serum T4 and T3 levels had declined from the peak values. Ammocoetes taken from streams at 16°C in June and acclimated to aquaria water at 25°C or 6°C had significantly lower serum T3 and T4 concentrations at the higher temperature, and also a lower serum T4, but not T3 concentration, at the lower temperature. Treatment of separate groups of ammocoetes with either propylthiouracil or T3 for 70 days significantly depressed and raised respectively, the serum thyroid hormone and hepatic T3 concentrations and caused significant changes in the body weight, but did not induce the onset of metamorphosis.  相似文献   

3.
4.
Whole-animal thyroxine (T4) and 3,5,3′-triiodothyronine (T3) levels were measured in larval and juvenile striped bass, Morone saxatilis, reared for 10 days at one of three levels of salinity (equivalent to fresh water (FW), one-third seawater (1/3 SW), and seawater (SW) and two temperatures (15°C and 20°C). The striped bass were pre-metamorphic larvae, metamorphic larvae or juveniles. The short-term effects of seawater on plasma T4 levels of juvenile striped bass were also measured. Higher salinities increased T4 levels in premetamorphic larvae. In metamorphic larvae, SW and 1/3 SW increased T4 levels and SW increased T3 levels at 20°C. This response was eliminated in those at 15°C. Whole-animal thyroid hormone content was unaffected by salinity or temperature in juvenile striped bass, although significant fluctuations in plasma T4 levels occurred in those transferred to 1/3 SW and SW. The thyroid axis of striped bass responds to salinity and temperature as early as in the pre-metamorphic stage. Thyroid hormones may mediate the beneficial effects of salinity on larval striped bass growth and survival.  相似文献   

5.
Total organism content of L-thyroxine (T4) and triiodo-L-thyronine (T3) were measured in the early developmental stages of a stock of Lake Ontario coho salmon from the egg to the yolk absorption stage. Whole organism T4 levels were constant between the egg and pre-hatch embryo stages, but fell progressively during yolk absorption. T3 levels were low from egg to eye-pigment appearance, but then increased prior to hatch and fell again during the post-hatch yolk absorption period. When expressed as ng/tissue, T4 content of the body compartment rose progressively between days 67 and 87 post-fertilization, whilst T4 content of the yolk compartment fell progressively during the same period; the pattern was not evident for tissue T3 content. When expressed as ng/g dry weight of tissue, the inverse relationship was found for T4, and T3 content of the body and yolk compartments decreased progressively and increased progressively, respectively during the same period, suggesting that thyroid hormones were selectively retained in the yolk compartment. Intensely “immunostained” (using anti-human β-TSH antibody) thyrotropic cells were present in small numbers in the pars distalis of the embryonic pituitary at the eye-pigment appearance stage, and the numbers increased markedly until the pre-hatch period. Administration of either bovine thyrotropic hormone (bTSH) or ovine growth hormone (oGH) had no effect on thyroid hormone content of larvae challenged during the yolk absorption period, suggesting that the thyroid tissue was not responsive to exogenous bTSH challenge at this time, and that oGH-sensitive 5′-monodeiodination was either not present or at levels that were too low to cause an elevation in total T3 content, or that the substrate levels were insufficient to permit a measureable increase in whole body T3 content.  相似文献   

6.
The goldfish pituitary contains two classes of gonadotropin-releasing hormone (GnRH) binding sites, a high affinity/low capacity site and a low affinity/high capacity site (Habibiet al. 1987a), whereas the catfish pituitary contains a single class of high affinity GnRH binding sites (De Leeuwet al. 1988a). Seasonal variations in pituitary GnRH receptor binding parameters, and the effect of castration on pituitary GnRH receptor binding were investigated in goldfish and catfish, respectively. In goldfish, GnRH receptors undergo seasonal variation with the highest pituitary content of both high and low affinity sites occurring during the late stages of gonadal recrudescence. The observed changes in pituitary GnRH receptor content correlate closely with responsiveness to a GnRH agonistin vivo in terms of serum gonadotropin (GTH) levels. In catfish, castration results in a two-fold increase in pituitary GnRH receptor content, which can be reversed by concomitant treatment with androstenedione, but not by the non-aromatizable androgen 11β-hydroxyandrostenedione; changes observed in GnRH receptor content correlate with variations in serum GTH levels and responsiveness to a GnRH agonist. In summary, the present study provides a clear evidence for seasonal variation in pituitary GnRH receptor activity in goldfish, and demonstrates a gonadal feedback mechanism regulating GnRH receptor activity in the catfish pituitary.  相似文献   

7.
Changes in gonadal and plasma concentrations of thyroid hormones were examined at various stages of maturation in chum salmon (Oncorhynchus keta) caught in the Bering Sea and the Bay of Alaska. Plasma concentrations of thyroxine (T4) were less than 5 ng ml−1, and those of 3,5,3′-triiodo-L-thyroxine (T3) were less than 2 ng ml−1 I in both males and females, regardless of the degree of sexual maturity or the gonadosomatic index (GSI). There was no clear relationships between circulating thyroid hormone levels and tissue levels. The ovarian T4 concentrations were undetectable (less than 0.2 ng g−1) or less than 2 ng g−1 when GSI was lower than 1%, but increased thereafter and reached a plateau of 8–10 ng g−1 when GSI became 2%. The ovarian T3 concentrations were about 5 ng g−1 when GSI was 1%, increased to a maximum level (20 ng g−1) when GSI was about 2%, and decreased to a constant level of 10 ng g−1 thereafter. The T4 and T3 content in single oocyte increased proportionally to the oocyte volume, indicating a constant incorporation of the hormones into the oocyte. The T4 concentrations in the testis were 1 ng g−1 or less regardless of the GS1. On the other hand, the T3 concentrations were highest (15 ng g−1) when the GSI was less than 1%, decreased thereafter when spermatocytes appeared in the testis, and became about 5 ng g−1 I in testes containing spermatozoa, raising the possibility of a role for T3 during early gamete and/or gonad maturation of testes.  相似文献   

8.
Four separate 8-week feeding trials were conducted to assess the effects of supplementing semipurified diets with either triiodothyronine (T3) or thyroxine (T4) at 0, 2, 10, and 50 mg/kg on growth and body composition of juvenile red drum (Sciaenops ocellatus) held in artificial brackish water (6‰) and artificial seawater (32‰). At both levels of salinity, increasing doses of T3 resulted in fish with reduced weight gain, feed efficiency, condition factor (weight × 100/length3), and muscle ratio (muscle weight × 100/body weight), as well as a lighter body color. Significant (p < 0.05) effects of T3 on the proximate composition of whole body, liver, and muscle were variable, generally reflecting decreased lipid and protein storage in liver and muscle, respectively. The two highest doses of T3 given to seawater adapted fish increased survival. Dietary T4 supplementation had no distinctive effects on appearance, growth or proximate body composition. These results indicate that whereas T3 may function to regulate protein and lipid metabolism in red drum, dietary supplementation with T3 leads to a hyperthyroidism-induced catabolic state. The elevated endogenous thyroid hormone levels found in fish fed optimal diets may thus adequately supply tissue needs during juvenile growth.  相似文献   

9.
The acute and chronic effects of excess iodide (KI or NaI) were studied on thyroid function of rainbow trout at 11±1°C. No Wolff-Chaikoff effect, characteristic of mammals, was observed and instead plasma L-thyroxine (T4) levels increased 6 hr after a single iodide injection. Plasma 3,5,3′-triiodo-L-thyronine (T3) did not change and by 24 hr plasma T4 returned to normal. This iodide-induced elevation in plasma T4 was probably not due to toxic effects demonstrated at higher NaI or KI doses. A single iodide injection also decreased the plasma iodide distribution space, decreased the fractional rate of plasma iodide loss and completely blocked thyroidal uptake of radioiodide. Injections of iodide over a 22-day period elevated plasma iodide 200X with no mortality and no influence on plasma T4 or T3. It is concluded that: (i) apart from the transient 6h increase in plasma T4, trout thyroid function, as judged by plasma hormone levels, is insensitive to considerable iodide excess, (ii) non-invasive iodide suppression of thyroidal radioiodide recycling may be useful in kinetic studies of125I-labeled thyroid hormones, and (iii) fundamental differences in intrathyroidal iodine metabolism appear to exist between mammals and fish.  相似文献   

10.
Flounder metamorphosis: its regulation by various hormones   总被引:1,自引:0,他引:1  
Metamorphosis in the flounder has often been compared with the transition of tadpoles into frogs. The dorsal fin rays of the Japanese flounder (Paralichthys olivaceus) elongate during prometamorphosis when thyroid hormone levels are low, and are resorbed during metamorphic climax when thyroid hormone levels are high. Using an in vitro system for the culture of the flounder fin rays, we have examined how various hormones affect the resorption process. Both thyroxine (T4) and triiodothyronine (T3) directly stimulated fin ray shortening, T3 being more potent than T4. Other hormones, such as prolactin, cortisol and sex steroids, did not directly affect the resorption process but modified the tissue's response to thyroid hormones. Similar observations were obtained from in vivo studies. We also monitored the changes in the whole body concentrations of various hormones during early development and metamorphosis, and related these with the thyroid hormone profiles in order to get a better picture of their interactions. The gaps in the present status of research on the role of thyroid hormones during metamorphosis in the Japanese flounder are also discussed.  相似文献   

11.
Blood and ovarian samples were collected at intervals of 4h prior to spawning time from medaka (Oryzias latipes) that were maturationally synchronized with artificial photoperiod (14h light: 10h dark). Plasma estradiol-17β (E2) levels increased rapidly from 16h before spawning and peaked at 8h before spawning. Follicle-enclosed oocytes (ovarian follicles) at different stages of development were isolated from the ovaries and used to study the in vitro effects of thyroid hormone (triiodothyronine; T3) on pregnant mare serum gonadotropin (GTH)-induced E2 production. GTH at a concentration of 100 IU/ml stimulated E2 production by ovarian follicles collected between 32 and 16h before spawning. At 32h before spawning, T3 (5 ng/ml) administered along with GTH (100 IU/ml) resulted in a 3.5 fold increase in E2 production, compared with GTH administered alone. These results suggest that T3 can act on ovarian follicles directly to modulate GTH-stimulated E2 production in the medaka.  相似文献   

12.
The 5′-monodeiodinase (5′-MDA) activity was measured in liver slices that were incubated for 3 hours with epinephrine (E) or norepinephrine (NE) in order to examine the influence of these catecholamine hormones on the regulation of hepatic monodeiodination of thyroxine (T4) in rainbow trout. Both E and NE induced a dose-dependent increase in 5′-MDA activity and in addition, E stimulated the release of T3 into the medium. In liver slices taken from trout that had been treated with the β-adrenoceptor inhibitor propranolol, the response to both E and NE was attenuated. The findings provide evidence of an action of these catecholamine hormones on the peripheral regulation of T3 production, and suggest that the control operatesvia the β-adrenoceptors. Corresponding author.  相似文献   

13.
Changes in serum thyroxine (T4), estradiol-17β (E2) and testosterone (T) levels during the parr-smolt transformation (smoltification) were investigated in the masu salmon (Oncorhynchus masou) in 1985 and 1987. T4 showed a peak in levels at the early stage of smoltification and E2 and T levels peaked almost at the same time. There were no significant differences between the concentrations of serum hormones in female and males. During smoltification, germ cells in the peri-nucleolus and spermatogonia stage were present in the ovary and testis, respectively. These results suggest that E2 and T may be involved in smoltification in the masu salmon.  相似文献   

14.
Extrathyroidal T4 5′-monodeiodination, demonstrated in several teleost species, generates T3 which binds more effectively than T4 to putative nuclear receptors and is probably the active thyroid hormone. T4 to T3 conversion is sensitive to the physiological state and provides a pivotal regulatory link between the environment and thyroid hormone action. T3 generation is enhanced in anabolic states (positive energy balance or conditions favoring somatic growth; food intake or treatment with androgens or growth hormone) and is suppressed in catabolic states (negative energy balance or conditions not favoring somatic growth; starvation, stress, or high estradiol levels associated with vitellogenesis). In fish, as in mammals, thyroidal status may be finely tuned to energy balance and through T3 production regulate energy-demanding processes, which in fish include somatic growth, development and early gonadal maturation.  相似文献   

15.
A 6-week feeding trial was conducted to investigate the effects of short-term feed deprivation on inducing compensatory growth and changes in thyroid hormone levels of channel catfish. Feeding treatments consisted of the following four regimes of 2-week duration: satiate feeding (control), no feed for 3 days then feeding to apparent satiation for the next 11 days, no feed for 5 days then feeding to apparent satiation for 9 days, and no feed for 7 days then feeding to apparent satiation for 7 days. These regimes were repeated three times over the 6-week trial in which 25 channel catfish fingerlings, initially averaging 15 g each, were stocked into each of 12, 38-l glass aquaria supplied with supplemental aeration and flow-through water. Depriving fish of feed had a pronounced effect in that fish lost weight in as little as 3 days. Returning the fish to a satiate feeding regime caused a resumption of growth, equal to control growth only in the case of the 3-day deprived treatment, but all periods of feed deprivation failed to induce a period of catch-up growth adequate to compensate for previously lost weight. Feed efficiency also was not improved by the periods of feed deprivation, and restricting feed in excess of 3 days lowered feed efficiency. Fish condition indices were not altered at the termination of the trial. Muscle lipid, muscle protein and liver protein also were not different among feeding regimes. Liver lipid was elevated in fish deprived of feed for more than 3 days every 2 weeks. Plasma thyroxine (T4) and triiodothyronine (T3) were equally depressed by 3 days from the onset of feed deprivation. Both hormones rose significantly within 24 h of realimentation, with the greatest increase observed in animals subjected to the briefest feed deprivation. These results support a role for thyroid hormones in the promotion of growth in channel catfish. Whereas feed deprivation appears to rapidly reduce activity of the hypothalamo-pituitary-thyroid axis, the high correlation observed between T4 and T3 in all treatments suggests that peripheral deiodinating systems are capable of rapidly generating T3 from T4 upon realimentation. More rapid recovery of thyroid hormone production following realimentation may minimize the effects of feed deprivation on growth and feed efficiency of fish subjected to the 3-day deprivation treatment when compared to longer periods.  相似文献   

16.
Effect of experimentally induced thyroxine overdose on the testis and seminal vesicles was studied in the air-breathing catfish, Clarias gariepinus during the preparatory and the pre-spawning phase. The present study revealed a marked reduction in testosterone level in serum, testis and seminal vesicles (SV). Histological examination showed a considerable reduction in the number of spermatozoa/spermatids in the seminiferous tubular lumen as well as depletion of fluid in the loculi of SV. SDS-PAGE analysis of SV fluid proteins demonstrated a significant decrease in the level of a ~27 kDa protein in thyroxine treated fishes. Evidences are presented here to indicate that thyroid hormone plays a role in regulating testis and SV function in catfish. T.N. Jacob and J.P. Pandey contributed equally  相似文献   

17.
Developmental profiles of thyroxin (T4), triiodothyronine (T3) and radioactive iodide uptake were established for eggs and T4 and T3 profiles were established for larvae (whole-body, yolk-only and body-only) of coho and chinook salmon. T4 and T3 were consistently present in all samples. In eggs, hormone levels remained fairly constant in all cohorst for at least the first three weeks of incubation, but then fluctuated in both directions in some sample groups. Large increases in T4 (from 9 ng/g to 245 ng/g) were seen in 1985 chinook eggs 28 days after fertilization. Radioactive iodide uptake (which was used as a possible indicator of thyroxinogenesis) increased at least 10-fold in both 1986 coho and chinook eggs from 23–30 days after fertilization. T4 (62 ng/g) and T3 (393 ng/g) were found in the bodies of 28-day-old 1986 chinook embryos. In whole larvae, hormone levels varied depending upon the cohort studied. In general, initial body-only concentrations of both T4 and T3 decreased as body weight increased, but before yolksac resorption was completed, both thyroid hormone content and concentration increased (except for chinook T3). T4 and T3 content in larval yolk stayed constant as yolksac size decreased, resulting in increased thyroid hormone concentration in the yolksac. All of these data suggest that the initial source of thyroid hormones in coho and chinook salmon eggs is maternal, but that by approximately 3–4 weeks after fertilization, the developing embryos begin to produce their own thyroid hormones. After hatching, increases in tissue T4 and T3 concentration coupled with constant T4 and T3 content in diminishing yolksacs suggest that larvae also produce their own thyroid hormones; yolksac content then may reflect both the original maternal hormones and the larva-producted hormones.  相似文献   

18.
Commercial production of hybrid catfish (female channel catfish Ictalurus punctatus × male blue catfish Ictalurus furcatus) is reliant on interdependent biological, environmental, and technical procedures. This study addresses one of these critical components – the evaluation of channel catfish ovarian development based on sonographic analysis. The objectives were to: (1) develop a channel catfish ovarian ultrasonography index, (2) test the effect of the spawning trials on fertilization estimates of fish assessed using the ultrasonography index, and (3) evaluate the expected (hypothesized) and observed outcome of the ultrasonography assessments. Seven ovarian morphology classifications were developed based on ultrasonography of 915 channel catfish (N = 915 images), and 210 females were selected for spawning. The predictions based on the classifications prior to hormone injection showed a significant effect (P < 0.002) on the observed outcomes (viable or nonviable eggs). The probability of correct classification was 0.86–0.89 for Categories 3 (developing), 4 (advanced), and 5 (mature), and 0.93–1.0 for Categories 1 (undeveloped), 2 (underdeveloped), 6 (spawned), and 7 (atretic). The ultrasonography index covered the full range of ovarian dynamics (i.e., recrudescence through spawning). It provided an unobtrusive, direct method of ovarian assessment to work toward improving the efficiency of broodstock selection.  相似文献   

19.
The effects of aromatizable 17α-methyltestosterone (MT) and non-aromatizable 17α-methyldihydrotestosterone (MDHT) on sex inversion in red-spotted grouper, Epinephelus akaara, were investigated. Fish were implanted with MT, MDHT and MT+AI (aromatase inhibitor, AI) respectively for one month. The results showed that the three treated groups turned into transitional stage with intersex gonads, which contained atretic oocytes and spermatogenic germ cells at all stages of spermatogenesis. The controls did not change sex. The gonads of more than half MT-implanted fish were in early transitional stages of sex inversion, whereas those of more than half MDHT and MT+AI-implanted fish were in late transitional stages of sex inversion. No difference in serum estradiol-17β (E2) levels between the controls and the treated groups were observed, whereas 11-ketotestosterone (11-KT) and testosterone (T) levels increased in all treated groups. Significantly lower gonadosomatic index (GSI) and gonadal aromatase activity were observed in the treated groups, which were in accordance with the lower mRNA expression of P450aromA. However, P450aromB mRNA expression increased in the MT group, while it did not change in the MDHT group. These results suggest that the sex inversion of red-spotted grouper by MT and MDHT implantation might be due to the suppression of P450aromA gene expression, and resulting in both the decrease of the ovarian estrogen –secretion, as well as the increase in the 11-KT levels. Furthermore, the main reason for MT being less effective than MDHT might be due to partial aromatization of MT to estrogen.  相似文献   

20.
The hemoglobin-β gene of channel catfish, Ictalurus punctatus, was cloned and sequenced. Total RNA from head kidneys was isolated, reverse transcribed and amplified. The sequence of the channel catfish hemoglobin-β gene consists of 600 nucleotides. Analysis of the nucleotide sequence reveals one open reading frame and 5′- as well as 3′-untranslated regions. The open reading frame of the sequence potentially encodes 148 amino acids with a calculated molecular mass of 16.3 kDa. The pI and charge at pH 7.0 of the deduced hemoglobin-β protein were 7.28 and 0.47, respectively. Overall, 22 amino acid residues were conserved throughout the sequences, including His64 and His93, the sites for heme-binding. Unlike the counterpart of other common cultured fish such as Salmo salar, Oncorhynchus nerka, Oncorhynchus mykiss, Cyprinus carpio and Ctenopharyngodon idella, the hemoglobin-β of channel catfish did not have cysteine. The amino acid sequence of channel catfish hemoglobin-β shows 84% homology with that of Silurus asotus (both are in the order Siluriformes). However, comparison with those of other fish species shows homology ranging from 53 to 68%. Structural analysis by the 3D-PSSM program displays that channel catfish hemoglobin-β has eight α-helices, A–H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号