首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以纳米纤维素纤丝(NCFs)为原料,在四氯化锡的催化下与1,4-丁二醇二缩水甘油醚(BDGE)发生交联反应制备了多孔的纳米纤维素气凝胶,采用扫描电镜、傅里叶变换红外光谱仪、X射线衍射仪、热重分析仪、X射线光电子能谱和全自动比表面积及物理吸附分析仪,对制备的纳米纤维素气凝胶的微观形貌、化学结构、晶型结构、热稳定性、表面元素及比表面积进行了表征,考察了纳米纤维素气凝胶的密度、溶剂吸收、形状恢复以及重复使用性能。结果表明:NCFs与BDGE发生了交联反应,制备的纳米纤维素气凝胶具有连续的多孔网络结构,其仍保持原来的纤维素I型结构,初始分解温度在300℃以上,m(BDGE)∶m(NCFs)为2∶1时,制备的气凝胶密度为0.020 2 mg/cm3,比表面积为25.6 m2/g,吸水倍数为36.5 g/g。气凝胶在水中5 s能迅速恢复其原来形状,在DMSO中20 s能恢复形状的90%,气凝胶重复使用5次,吸水倍数仍高达30.4 g/g。  相似文献   

2.
以竹粉为原料制备纳米纤维素基体材料,以聚乙烯醇(PVA)为增强相,在酸性环境下采用冷冻干燥法制得PVA/CNFs(纳米纤维素)复合气凝胶;采用三甲基氯硅烷(TMCS)对其进行疏水改性处理,随后将其浸渍到还原氧化石墨烯(r GO)悬浮液中,最终制得疏水型r GO/PVA/CNFs复合气凝胶;通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、拉曼光谱(Raman)、接触角(CA)和吸油性能测试,对所制气凝胶的微观形貌、化学结构、疏水性能及吸油性能进行表征。结果表明:制得的复合气凝胶密度为6.78 mg/cm3,具有均匀的三维网状多孔结构,且孔洞结构表面均被石墨烯片层覆盖;经过TMCS疏水处理后,在气凝胶表面形成疏水层结构。FT-IR和Raman分析表明,TMCS疏水改性处理并未改变PVA/CNFs复合气凝胶的化学结构。经疏水处理后气凝胶与水的接触角为138°左右,吸油倍率为78 g/g左右,且吸附过程迅速,饱油后也能悬浮于溶液表面,便于回收再利用。  相似文献   

3.
采用同轴静电纺丝技术,将酸水解获得的纤维素纳米晶体(cellulose nanocrystals,CNCs)添加到聚甲基丙烯酸甲酯(PMMA)/二甲基甲酰胺(DMF)溶液中作为壳层电纺液,聚丙烯腈(PAN)/DMF溶液为核层电纺液,成功制备出核-壳结构的纳米复合纤维。探讨了CNCs添加量对电纺液的电导率和黏度的影响及同轴复合纤维的微观形貌、直径分布、结晶特性、热学性能和疏水性能的影响。结果表明:CNCs添加后电纺液的电导率和黏度有明显提高,所制备的同轴纳米纤维具有较好的核-壳结构,其直径随CNCs加载量的增加而减小,且分布更加集中;添加高结晶度的CNCs后,复合纤维的结晶性得到明显提高;在热学性能方面,CNCs增强的同轴纳米材料最大热分解温度为402.7℃,远高于单纺PMMA和单纺PAN纤维以及未添加CNCs的同轴PMMA/PAN纳米材料;添加亲水性CNCs后,水接触角值由130.0°降低至116.7°,复合纤维的疏水性能明显下降。  相似文献   

4.
纤维素气凝胶被誉为继有机气凝胶和无机气凝胶之后的新一代气凝胶,是新生的第三代材料,在吸附材料等领域具有广阔的应用前景。笔者先以微晶纤维素(MCC)为原料经硫酸水解法制得纳米纤维素(NCC),再通过无机盐溶液物理凝胶成型法、叔丁醇置换和液氮冷冻干燥制备球形纤维素气凝胶。利用场发射扫描电子显微镜(SEM)、万能力学试验机、热重分析仪、全自动比表面积及孔隙分析仪对所制备的纳米纤维素气凝胶的力学性能、微观形貌、比表面积、孔径分布及热稳定性进行表征分析。结果表明,液氮冷冻干燥法制备的球形纳米纤维素气凝胶主要为疏松多孔的三维层状结构同时存在少量三维网络结构,其比表面积在104.07~164.97 cm~2/g之间,孔径主要分布在10~25 nm内;纳米纤维素气凝胶的力学性能、压缩强度、密度随着纳米纤维素质量分数的增加而变大;纳米纤维素气凝胶的热稳定性与微晶纤维素和纳米纤维素相似。  相似文献   

5.
通过混合不同类型的纳米纤维素制备混合气凝胶,分析其性能特征。将桉木纸浆经化学预处理,结合机械研磨法制备得到纤维素纳米纤丝(cellulose nanofibril,CNF),桉木微晶纤维素(MCC)经硫酸水解法制备得到纤维素纳米晶体(cellulose nanocrystal,CNC),通过透射电镜与X射线衍射仪观测发现二者具有不同的长径比和结晶度。利用悬浮滴定、叔丁醇置换、冷冻干燥等方法制备球形CNF气凝胶和CNF/CNC混合气凝胶,采用扫描电镜、傅里叶红外光谱仪、比表面积分析仪、万能力学试验机对气凝胶的微观形貌、化学官能团、比表面积、平均孔径及压缩性能进行表征,结果表明:CNF气凝胶内部呈现三维网络结构,片状与纤丝状交织,比表面积为91.07m~2/g,平均孔径为14.81 nm,受压缩到80%应变时,压缩强度为0.125 MPa;添加不同比例的CNC制备CNF/CNC混合气凝胶,当CNC添加量为25%时,气凝胶内部纤丝结构取代片状结构,孔隙更加均匀,比表面积升至143.09m~2/g,压缩强度增至0.2 MPa,化学官能团和晶型结构未发生明显变化。当CNC添加量过大(50%)时,则会造成各项性能的减弱。  相似文献   

6.
综述了近年来半纤维素基功能材料包括半纤维素膜、水凝胶、吸附材料、医用材料和催化剂载体的研究进展,并对其未来应用前景进行了展望。半纤维素膜可以作为包装材料和食品包覆膜,但要解决其强度和韧性低的问题;半纤维素水凝胶可以采用物理和化学交联的方法制备,在医药和环境等领域具有较好的应用前景,但要解决化学交联水凝胶生物相容性较差及物理交联水凝胶强度不够等问题;此外,半纤维素还可以作为吸附材料用于废水和空气净化,作为医用材料用于药物缓释和抗菌,作为催化剂载体用于化学合成,将来还有望在光电材料、组织工程材料等领域得到应用。  相似文献   

7.
以聚乙烯醇/硼酸盐(PB)凝胶体系作为导电水凝胶(ECHs)基本骨架,在纤维素纳米纤丝(cellulose nanofibers,CNFs)上原位聚合吡咯单体(Py)得到CNF-PPy复合物,再将其分散到PB基体当中,制得高可塑性和一定自修复特性的纳米复合导电水凝胶(PB-CNF-PPy)。对胶体化学官能团、微观形貌、晶型结构、流变特性和导电性等性能的测试分析发现:原位聚合过程保持了PPy的共轭结构及其导电性,胶体表面呈蜂窝多孔状,孔隙直径为(4.62±0.05)μm。凝胶平均含水率和密度分别为90.61%和1.13 g/cm3;随着CNF和PPy含量的提高,胶体黏弹性、力学强度和导电性都明显增强。当CNF为2.0%、PPy为0.5%时,存储模量G'可达5.5 k Pa,约为纯PB凝胶的70倍,能承受的最大应力约为CNF 1.0%、PPy 0.5%时的8~9倍,电导率可达3.38×10-2S/m。  相似文献   

8.
采用静电纺丝技术制备了聚己内酯(PCL)纤维支架,并将酸水解制得的纤维素纳米晶体(CNCs)作为增强体,制备了不同CNCs加载量的CNCs/PCL复合纤维支架,以提高PCL纤维支架的力学性能,并探讨了CNCs对PCL纤维支架细胞相容性的影响。结果表明:最佳增强条件是m(CNCs)/m(PCL)为5.25%,在该条件下制备的复合纤维支架(CNCs-5.25/PCL)最大应力和断裂伸长与纯PCL纤维支架相比分别提高了291%和320%。复合纤维支架上成功培养了成人胰腺导管癌细胞(Panc-1)和肝细胞(HL7702);对成人胰腺导管癌细胞在PCL及CNCs/PCL复合纤维支架上的增殖速率进行的单因素方差分析表明,CNCs没有增大PCL复合纤维支架的细胞毒性。CNCs可以作为静电纺PCL纤维支架的增强材料,制备具有良好力学性能和细胞相容性的纳米复合纤维支架,为CNCs在组织工程中的应用提供了理论依据。  相似文献   

9.
纤维素气凝胶因具有强亲水性和低油水选择性,且目前纤维素气凝胶表面的疏水化处理过程较冗长,限制了其在油水分离领域的应用。为了解决上述问题,笔者以硫酸水解微晶纤维素制备得到的纳米纤维素(CNC)为原料,利用甲基三甲氧基硅烷(MTMS)在水相中对其进行硅烷化改性,通过冷冻干燥得到了硅烷化纤维素复合气凝胶。结果表明:所制备的纤维素复合气凝胶具有轻质、多孔特性,随着MTMS添加量的增加,密度逐渐升高(≤0.012 0 g/cm^3),孔隙率略有下降; MTMS的加入对纤维素复合气凝胶的微观形貌影响不大,其骨架结构以二维片层形貌为主,聚甲基硅氧烷均匀地包覆在纤维素片层表面; MTMS的加入使纤维素复合气凝胶的热稳定性明显提高,且未改变纤维素气凝胶的晶型结构,但导致其结晶度逐渐下降。纤维素复合气凝胶的表面接触角随着MTMS添加量的增加而升高,最高达到153.7°,表现出优异的超亲油/超疏水性能。作为吸油材料,超疏水纤维素复合气凝胶不仅可以吸附多种油类和有机溶剂(吸附容量达到52~121 g/g),而且表现出很好的循环使用性能。  相似文献   

10.
纳米纤维素作为纤维素基纳米材料的代表,不但保留了天然纤维素的性质,同时赋予纳米粒子以高强度、高结晶性、高比表面积、高抗张强度等特性,能够明显改善材料的光、电、磁等性能,在复合材料、精细化工、医药载体、药物缓释等领域具有广阔的应用前景。进一步对纳米纤维素的结构进行调控,在纳米尺度操控纤维素超分子聚集体,进行结构设计并组装出稳定的功能性纤维素基纳米材料,即可以纤维素为原料构建具有优异性能的生物质材料,这也正是目前生物质材料和纤维素科学领域的研究热点。概括了目前纳米纤维素的主要制备方法:机械法、化学法和生物法,并对各种制备方法的优缺点进行了讨论,同时综述了纳米纤维素的应用状况,指出了纳米纤维素的制备及应用方面需要解决的主要问题及今后的发展方向。  相似文献   

11.
以纳米纤维素为原料,采用"CaCl_2溶液促进物理凝胶法"制备水凝胶,选用叔丁醇溶液为置换溶剂并采用"多步法"完成溶剂置换,最后通过冷冻干燥法制备纳米纤维素气凝胶。通过扫描电子显微镜(SEM)、全自动比表面积与孔隙度分析仪和热重分析仪(TG)对所制备的纳米纤维素气凝胶进行微观形貌、比表面积、孔径分布及热稳定性进行表征分析。结果表明:叔丁醇冷冻干燥法制备的纳米纤维素气凝胶是具有层状的以中孔和大孔为主的多孔材料,其比表面积可达174.3 m2/g,收缩率仅为7.86%,平均孔径约为18.4 nm。随着纤维素质量分数的增加,纳米纤维素气凝胶的吸附量和比表面积增大,孔隙度增加,收缩率逐渐减小;纳米纤维素气凝胶具有与微晶纤维素和纳米纤维素相似的热稳定特性。CaCl_2溶液通过改变原始溶胶体系的电荷分布而使粒子更易相互靠近聚集形成凝胶,落入其中的纳米纤维素颗粒会保持其落入瞬间的完整状态。  相似文献   

12.
农林生物质材料基水凝胶的研究进展   总被引:1,自引:0,他引:1  
综述了以纤维素、半纤维素、木质素、淀粉为原料制备水凝胶的研究进展,探讨了它们通过氢键、静电力及化学键合等结合方式如何制备水凝胶三维网络结构,以及这些水凝胶在生物医药、组织工程和污水处理等领域的应用前景。  相似文献   

13.
将纤维素溶解在氢氧化钠/尿素/水溶液中,与新戊二醇二缩水甘油醚(NGDE)发生交联反应,经过离心水洗纯化后冷冻干燥,制备了纤维素多孔材料。采用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TGA)和扫描电镜(SEM),对制备的纤维素多孔吸附材料的化学结构、晶型结构、热稳定性及微观形貌进行表征。研究了NGDE的用量和水凝胶质量分数对纤维素多孔材料的密度及吸水性能的影响。结果表明,4 g纤维素溶于100 g NaOH/尿素/水(质量比为7∶12∶81)溶液中制得纤维素溶液,在NGDE的用量18 m L,水凝胶质量分数为1.5%时,制备的纤维素多孔材料的密度为15.7 mg/cm3,吸水倍数达37倍,对此条件下制备的纤维素多孔材料进行结构分析,表明纤维素多孔材料具有连续的网状孔结构,纤维素的晶型由纤维素Ⅰ型转变为非晶态结构,初始热分解温度在250℃以上,热稳定性好。  相似文献   

14.
作为一种新型轻质多孔的功能性气凝胶,生物质纤维素基碳气凝胶具有独特的各向同性三维网络层级结构,该结构使生物质纤维素基碳气凝胶兼具气凝胶的高比表面积、高孔隙率、低密度以及碳材料的耐热性、导电性和生物质材料的可降解性、生物相容性,是近年来纳米功能性材料领域的研究热点之一。生物质纤维素基碳气凝胶原材料来源广泛,包括木材、竹材、果蔬等植物及其加工物、海洋生物和细菌等。基于原料形态不同,本研究将生物质纤维素基碳气凝胶的制备方法归结为凝胶炭化法和生物质直接炭化法,并详细介绍2种方法的制备工艺。基于生物质纤维素基碳气凝胶独特的层级孔状结构,本研究概述碳气凝胶的轻质多孔、疏水性、稳定性和导电性以及生物质纤维素基碳气凝的金属掺杂和杂原子掺杂改性,这些优异的材料特性使其在隔热、电化学、吸附等领域有着广泛应用,并有望渗透到药物缓释、抗菌材料、组织工程和电磁屏蔽等更多的前瞻性新兴材料领域。围绕生物质纤维素基碳气凝胶的功能化制备、性能表征和应用,创新性的研究理论和研究方法正在不断涌现,本研究在深入分析研究现状的基础上,展望生物质纤维素基碳气凝胶未来的研究方向和发展前景。生物质纤维素基碳气凝胶作为一种新型绿色材料,以其独特的热学、电学、光学及力学性能,可为生物质的高值化、功能化应用提供更多的研究思路,具有更加广泛的应用前景。  相似文献   

15.
将AA(丙烯酸)和AM(丙烯酰胺)单体通过自由基聚合及物理交联构建PAAAM(聚丙烯酸-聚丙烯酰胺)水凝胶的基本骨架,再将TEMPO(2,2,6,6-四甲基哌啶-1-氧基)纳米纤维素-石墨烯(TOCN-GN)纳米导电复合物作为纳米增强相均匀分散到水凝胶基体中,通过Fe~(3+)物理交联水凝胶中的羧基形成离子配位键,建立更加紧密的交联网络,合成双重物理交联TOCN-GN/PAAAM复合水凝胶。TOCNs起到了纳米增强和协助分散GN的双重作用,而GN在提高力学性能的同时,也赋予水凝胶优异的导电性能。通过对复合水凝胶的化学结构、微观形貌、力学强度和导电性能等分析发现:当TOCNs的质量分数为2.0%,GN的质量分数为0.7%,Fe~(3+)浓度为0.10 mol/L时,导电水凝胶的综合性能最佳,如良好的抗压强度(2.15 MPa)、可拉伸性(当断裂伸长率为568.4%时,拉伸应力到达132.0 kPa)、优异的自恢复性能和抗疲劳能力(60 min内恢复效率高达92.1%)。由于GN和Fe~(3+)的存在,TOCNs可协助GN形成良好的导电通路,电导率可达2.49 S/m。此类复合导电水凝胶有望在可穿戴传感设备领域得以应用。  相似文献   

16.
以水溶性的甲基纤维素和磁性Fe_3O_4纳米粒子为原料,经过共混、环氧氯丙烷交联及冷冻干燥等过程制备了磁性纤维素气凝胶,并进一步以十六烷基三甲氧基硅烷(HDTMS)为改性剂,通过化学气相沉积法对气凝胶进行改性,得到超疏水磁性纤维素气凝胶材料。采用扫描电镜(SEM)、红外光谱(FT-IR)和光学接触角测量仪对气凝胶的结构性能进行表征分析,结果表明所制备的气凝胶具有三维贯通的多孔网络结构,表面改性没有改变气凝胶的微观结构;经HDTMS修饰后的磁性纤维素气凝胶具有超疏水和超亲油性能(水接触角为150.4°,油接触角为0°)。气凝胶展现出良好的油/水选择性和较高的油吸附能力,对多种油品和有机溶剂的吸附量达到45~98 g/g;吸油后的气凝胶可通过磁铁快速回收。气凝胶具有可多次循环使用的性能,循环使用30次后吸附能力仍然保持在80%以上,可以通过简单的力学挤压把吸附的油挤出来,使得废油的回收利用过程变得简单,同时也有利于节约吸附材料,降低油水分离成本。  相似文献   

17.
我国具有丰富的木质纤维生物质资源,半纤维素作为可再生木质纤维生物质资源的重要组成之一,具有极大的综合利用潜力。文章综述了近年来木质纤维生物质半纤维素基功能材料包括半纤维素膜、水凝胶、吸附材料、医用材料和催化剂载体的研究进展,并对其未来应用前景进行了展望。半纤维素膜可以作为包装材料和食品包覆膜,但要解决其强度和韧性低的问题;半纤维素水凝胶可以采用物理和化学交联的方法制备,在医药和环境等领域具有较好的应用前景,但要解决化学交联水凝胶生物相容性不好及物理交联水凝胶强度不够等问题;此外,半纤维素还可以作为吸附材料用于废水和空气净化,作为医用材料用于药物缓释和抗菌,作为催化剂载体用于化学合成,将来还有望在光电材料、组织工程材料等领域得到应用。  相似文献   

18.
以1,2,3,4-丁烷四羧酸(BTCA)为交联剂,制备木浆纤维(WPF)/纤维素纳米晶体(CNC)交联气凝胶,探讨交联剂用量对气凝胶的微观形貌、化学结构、晶型结构、孔隙结构的影响规律。结果表明:气凝胶由WPF/CNC相互交织形成三维网络结构,且在WPF周围环绕CNC形成纳米纤维;BTCA交联对气凝胶的结构影响显著,用量增加可致气凝胶的结晶度、比表面积和孔容减小。  相似文献   

19.
化学修饰可改善木质纤维素和聚合物基质的相容性且使其具有特定功能。点击化学作为化学修饰的一种重要方法,是由2001年诺贝尔化学奖获得者Sharpless首次提出的,主要包括铜催化叠氮-炔基环加成反应(CuAAC)、环张力催化叠氮-炔基环加成反应(SPAAC)、巯基-烯/炔点击反应(Thiol-Ene/Yne)和狄尔斯-阿尔德尔环加成反应(Diels-Alder)等反应类型。相比传统接枝修饰方法,点击化学具有反应条件温和、环境污染小、副反应少、分离提纯简单、产量和效率高等优点,在木质纤维素的化学修饰方面已有相关应用。在点击反应方法方面,CuAAC反应是一种最普遍的点击反应类型,也是对木质纤维素化学修饰应用最多的一类反应;但CuAAC反应后催化剂很难移除,在一定程度上限定了反应后产品的用途,将Cu(I)通过共价键结合在纳米纤维素气凝胶的表面能使点击反应中的铜有效回收。相比CuAAC反应,Thiol-Ene/Yne反应不需要有毒的铜作为催化剂。点击化学在纤维素的研究方面,将纤维素自身或与聚合物进行点击反应能制备水凝胶和片状纳米纤维素凝胶;此外,荧光标记的纤维素材料能证明点击反应的发生,通过2种点击反应能制备多色荧光标记的纳米纤维素材料。点击化学在半纤维素和木质素的研究方面,木聚糖通过与聚乳酸进行点击反应形成共聚物,能降低玻璃化转变温度,提高热分解温度。通过CuAAC反应能形成苯三唑连接高产率的邻位木糖苷和木二糖苷。木质素和聚苯乙烯通过点击反应能制备一种热塑性聚合物。此外,通过生物正交点击化学能描述活体植物细胞壁的木质化过程。点击化学在木质纤维素上的应用还没有深入研究,扩大点击化学在木质纤维素上的应用范围仍然需要进一步探索。由于点击反应的条件比较温和,很多反应都能在室温下进行,非常有利于在生物医用材料领域的研究,并且纤维素和半纤维素等多糖又具有良好的生物相容性,为纤维素和半纤维素在生物领域的应用创造了有利条件。此外,由于铜催化的毒性作用,无铜催化的点击反应可能会作为一个重要发展方向,像环张力催化叠氮-炔基环加成反应、Diels-Alder反应和Thiol-Ene/Yne反应。  相似文献   

20.
以纤维素为基体制备的功能复合材料,可赋予纤维素光、电、磁以及催化等性能,在制浆造纸、精细化工、组织工程、生物医药等领域具有广阔的应用前景。纤维素基生物医用复合材料是纤维素功能复合材料的典型代表,它结合了生物质材料和生物材料的优点,在骨修复替代、组织工程、药物缓释、基因载体以及蛋白质吸附等领域具有潜在的应用价值,是当前生物质领域的研究热点。综述了目前制备复合材料常用的3种方法,即水热(溶剂热)法、微波辅助法和超声波法,并对这几种方法的特点进行了分析;同时对纤维素功能复合材料发展现状进行了概述,系统介绍了纤维素/羟基磷灰石、纤维素/碳酸钙以及纤维素/银等生物医用复合材料的研究进展。最后,结合笔者自身的研究经历,探讨了纤维素基生物医用复合材料开发过程中存在的问题以及今后的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号