首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
  • 1. Maintaining ecological processes that underpin the functioning of marine ecosystems requires planning and management of marine resources at an appropriate spatial scale.
  • 2. The Great Barrier Reef World Heritage Area (GBR) is the world's largest World Heritage Area (approximately 348 000 km2) and second largest marine protected area. It is difficult to inform the planning and management of marine ecosystems at that scale because of the high cost associated with collecting data. To address this and to inform the management of coastal (approximately 15 m below mean sea level) habitats at the scale of the GBR, this study determined the presence and distribution of seagrass by generating a Geographic Information System (GIS)‐based habitat suitability model.
  • 3. A Bayesian belief network was used to quantify the relationship (dependencies) between seagrass and eight environmental drivers: relative wave exposure, bathymetry, spatial extent of flood plumes, season, substrate, region, tidal range and sea surface temperature. The analysis showed at the scale of the entire coastal GBR that the main drivers of seagrass presence were tidal range and relative wave exposure. Outputs of the model include probabilistic GIS‐surfaces of seagrass habitat suitability in two seasons and at a planning unit of cell size 2 km×2 km.
  • 4. The habitat suitability maps developed in this study extend along the entire GBR coast, and can inform the management of coastal seagrasses at an ecosystem scale. The predictive modelling approach addresses the problems associated with delineating habitats at the scale appropriate for the management of ecosystems and the cost of collecting field data. Copyright © 2010 John Wiley & Sons, Ltd.
  相似文献   

2.
  • 1. The relentless increase in both human activities and exploitation of marine resources is a threat to marine habitats and species.
  • 2. For marine systems, several protection initiatives have been outlined over the past decade to significantly reduce the current rate of biodiversity loss at global, regional, and national levels, and to establish representative networks of marine protected areas with the aim of protecting 10–30% of marine habitats.
  • 3. Reliable estimates of the total area occupied by each habitat are crucial to set adequate protection initiatives. Habitat mapping requires a sound habitat classification. Many classification schemes have been developed in different areas of the world, sometimes based on questionable criteria.
  • 4. A critical analysis of the most recent marine habitat classification list produced for the Mediterranean Sea from the Regional Activity Centre for Specially Protected Areas (RAC/SPA) showed that (i) 39% of habitats and associated species considered in the list are scarcely covered by scientific knowledge from Web‐based resources; (ii) 62% of the species/genera included in the list are primary producers; (iii) quantitative information about the geographical distribution of selected habitats and associated species is scant; and (iv) when available, information is largely unbalanced and biased towards the shallow western Mediterranean Sea.
  • 5. Improved inventories of marine habitats are needed to support accurate and consistent mapping activities. The combination of large‐scale mapping and sound habitat classifications will allow better estimates of biodiversity distribution, to reverse regional/global habitat loss rates through the achievement of conservation targets and deadlines that, for the moment, are systematically not met. Copyright © 2011 John Wiley & Sons, Ltd.
  相似文献   

3.
  1. Patterns and changes in the distribution of coastal marine mammals can serve as indicators of environmental change that fill critical information gaps in coastal and marine environments. Coastal habitats are particularly vulnerable to the effects of near-term sea-level rise.
  2. In California, Pacific harbour seals (Phoca vitulina richardii) are a natural indicator species of coastal change because of their reliance on terrestrial habitats, abundance, distribution, and site fidelity. Pacific harbour seals are marine top predators that are easily observed while hauled out at terrestrial sites, which are essential for resting, pupping, and moulting.
  3. Although increasing inundation from recent sea-level rise and storm-driven flooding has changed the Californian coastline, little is known about the effect of future sea-level rise and increased storm frequency and strength on harbour seal haulout site availability and quality in California.
  4. Harbour seal habitat was modelled at two sandbar-built estuaries under a series of likely sea-level rise and storm scenarios. The model outputs suggest that, over time, habitat at both estuaries decreased with increasing sea level, and storm-enhanced water levels contributed significantly to habitat flooding. These changes reflect pressures on coastal habitats that have an impact on human and natural systems.
  相似文献   

4.
  1. Effective management of marine resources requires an understanding of the spatial distribution of biologically important communities.
  2. The north‐western Gulf of Mexico contains diverse marine ecosystems at a large range of depths and geographic settings. To better understand the distribution of these marine habitats across large geographic areas under consideration for marine sanctuary status, presence‐only predictive modelling was used.
  3. Results confirmed that local geographic characteristics can accurately predict the probability of occurrence for marine habitat types, and include a novel technique for assigning a single, most likely habitat in areas where multiple habitats are predicted.
  4. The highest resolution bathymetric data (10 m) available for the region was used to develop raster layers that represent characteristics that have been shown to influence species occurrence in other settings.
  5. A georeferenced historical photo record collected via remotely operated vehicle was classified according to six commonly found mesophotic habitats across the 18 reefs and banks under consideration for Flower Garden Banks National Marine Sanctuary boundary expansion.
  6. Using maximum entropy modelling, the influence of local geographic characteristics on the presence of these habitats was measured and a spatial probability distribution was developed for each habitat type across the study area.
  相似文献   

5.
  1. A spatial approach to coastal management, such as marine protected areas, is being increasingly used to address biodiversity and fishery declines resulting from habitat loss, degradation, and overfishing. This approach is especially applicable in regions and fisheries that are data poor, and which often lack regulations and adequate capacity for enforcement. In data-poor situations, species that have economic, cultural, and charismatic value can provide leverage for ecosystem protection.
  2. In this study, acoustic telemetry was used to confirm a pre-spawning aggregation site, acting as critical information for protection of essential habitat for bonefish. Additionally, data sharing with an acoustic telemetry study on smalltooth sawfish (Pristis pectinata) documented linkages between the pre-spawning aggregation site and bonefish home ranges ≥70 km distant, thus providing an estimate of the catchment area.
  3. These data provided post hoc support for a marine national park designated in 2002, and demonstrate that the park is of the appropriate spatial scale.
  相似文献   

6.
  • 1. If marine environments are to be systematically protected from the adverse effects of human activities, then identification of the types of marine habitats and the communities they contain, and delineation of their boundaries utilizing a consistent classification is required. Human impacts on defined communities can then be assessed, the ‘health’ of these communities can be monitored, and marine protected areas can be designated as appropriate.
  • 2. Schemes to classify habitats at local and regional scales, according to their geophysical properties, may identify different factors as determinants, and/or use them in different sequences in a hierarchical classification. We examined the reasons for these differences in local and regional applications of a global concept, and argue that a common set of factors could be applied in a defined and defensible sequence to produce a common hierarchy of habitat types among geographic regions.
  • 3. We show how simple mapping and GIS techniques, based on readily available data, can lead to the identification of representative habitat types over broad geographic regions. We applied a geophysical framework first to the entire Canadian coastline and second to the Scotian Shelf of Atlantic Canada to establish broad scale marine natural regions and ‘seascapes’, respectively. This ecosystem level approach — which defines representative habitat types — is a fundamental prerequisite for many purposes. It can form the basis for further analyses including: definition of community types from habitat — community relationships; evaluation of the potential roles of focal species in marine conservation; evaluation of candidate marine protected areas; definition of unaffected reference areas against which the effects of human activities can be gauged; guidance for water quality monitoring studies; management of marine resources.
Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
  1. Although it is well established that human activities are linked to the loss of seagrasses worldwide, the influence of anthropogenic disturbances on the habitat fragmentation of seagrass meadows is less understood. This information is essential to identify how humans are modifying seascapes and what disturbances pose the greatest risk to seagrasses, which is pertinent given the rapid urbanization occurring in coastal areas.
  2. This study examined how the habitat fragmentation of an endangered seagrass Posidonia australis varied in relation to several anthropogenic disturbances (i.e. human population, marine infrastructure, terrestrial run-off and catchment land-usage) within 10 estuaries across 620 km of coastline in New South Wales, Australia.
  3. When comparing between estuaries, the fragmentation of P. australis meadows was significantly greater in estuaries adjacent to highly populated metropolitan centres – generally in the Greater Sydney region. At sites within estuaries, the density of boat moorings was the most important predictor of habitat fragmentation, but there was also evidence of higher fragmentation with increased numbers of jetties and oyster aquaculture leases.
  4. These results suggest that the fragmentation of seagrass meadows will become more pervasive as the human population continues to grow and estuarine development increases. Strategies to mitigate anthropogenic disturbances on seagrass meadow fragmentation could include prohibiting the construction of boat moorings and other artificial structures in areas where seagrasses are present or promoting environmentally friendly designs for marine infrastructure. This knowledge will support ongoing management actions attempting to balance coastal development and the conservation of seagrasses.
  相似文献   

8.
9.
10.
An Erratum has been published for this article in Aquatic Conservation: Marine and Freshwater Ecosystems 12(2), 2002 577
  • 1. This research extends techniques of predictive mapping from their application in terrestrial environments to marine landscapes by investigating the relationship between seagrass and hydrodynamics in Core Sound, North Carolina, USA.
  • 2. An empirically derived logistic multiple regression model and a Boolean logic suitability model were used to produce several predictive map products, including: susceptibility of seagrasses to storms, probability of seagrass cover, and suitability of areas for restoration of seagrasses. A visual comparison between these maps and conventional seagrass polygon maps allows for a discussion of ‘field’ versus ‘object’ mapping, and the ramifications for management based on different cartographic techniques.
  • 3. The predictive method used here showed that only a small portion (19%) of the seagrass bed in the study area would be expected to have a high probability of seagrass coverage. The majority of the seagrass habitat in the study area was predicted to have less than 50% probability of seagrass cover. In addition, 16% of the nearly 2000 ha of seagrass within the study area were predicted to be highly susceptible to acute storm events. Moreover, using a conservative set of site selection criteria, only 7% of the study area encompassed by seagrass habitat was predicted to have a high probability of successful restoration if injured.
  • 4. This method provides for an inexpensive way to scale‐up from high‐resolution data to a coarser scale that is often required for conservation and management.
Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
  1. The largest changes in the circulation of the South-eastern Pacific resulting from global warming are associated with the southward shift and intensification of the anticyclone and with coastal surface warming. Coastal upwelling is projected to be increase off central Chile, due to an increase in equatorward winds, although increased oceanic stratification and associated enhanced nearshore turbulence will yield an onshore deepening/flattening of the thermocline.
  2. The overall increase in south-easterly trade winds of the South-eastern Pacific in a warmer climate are likely to increase the connectivity pattern between Juan Fernandez and Desventuradas islands, and along the Sala y Gomez ridge, through increasing wind-driven mean ocean currents.
  3. Deoxygenation associated with the warmer temperatures and changes in ventilation are likely to modify marine habitat and the respiratory barriers of species in the seamounts located in the vicinity of the limits of the minimum oxygen zone.
  4. In the South-eastern Pacific, the prevailing 2D understanding of the responses of marine life to climate change needs to be expanded to 3D approaches, integrating the vertical habitat compression of marine organisms as a result of ocean warming and deoxygenation, as climate velocities for temperature and oxygen have contrasting vertical and horizontal patterns.
  5. There is a need for regional biogeochemical-coupled modelling studies dedicated to the Chilean islands in order to provide an integrated view of the impact of anthropogenic stressors (e.g. deoxygenation, increased stratification, and climate shift) at the scale required for addressing socio-ecological interactions.
  6. A refined understanding of the large-scale biogeography and spatial dynamics of marine populations through experimentation with high-resolution regional ocean models is a prerequisite for scaling-up regional management planning and optimizing the conservation of interconnected marine ecosystems across large scales.
  相似文献   

12.
13.
  1. ensuring that marine systems are not overwhelmed within the new national jurisdiction, and maintaining and enhancing marine capacity;
  2. increased resourcing, supported by comprehensive and systematic economic valuations of ecosystem goods and services and natural capital;
  3. upgraded enforcement of existing environmental laws and regulations, combined with further refinement and development, especially around cumulative impact management;
  4. a particular focus on major reduction in water pollution in all forms;
  5. integration of marine management between Hong Kong SAR and surrounding Guangdong Province; and
  6. enhanced community engagement, participation and education.
  7. Finally, much greater, collaborative engagement by the international community with Chinese marine management and conservation would bring major, and very mutual, benefits.
  相似文献   

14.
  1. Atlantic salmon populations have declined in recent decades. Many of the threats to the species during its freshwater and coastal residency periods are known, and management approaches are available to mitigate them. The global scale of climate change and altered ocean ecosystems make these threats more difficult to address.
  2. Managers need to be aware that promoting strong, healthy, and resilient wild populations migrating from rivers is the optimal approach currently to reduce the impacts of changing ecosystems and low marine survival. We argue that a fundamental strategy should be to ensure that the highest number of wild smolts in the best condition leave from rivers and coastal areas to the ocean. There is great scope for water quality, river regulation, migration barriers, and physical river habitat improvements.
  3. Maintenance of genetic integrity and diversity of wild populations by eliminating interbreeding with escaped farmed salmon, eliminating poorly planned stocking, and reducing impacts that reduce population sizes to dangerously low levels will support the ability of Atlantic salmon to adapt to changing environments. Reducing the impacts from aquaculture and other human activities in coastal areas can greatly increase marine survival in affected areas.
  4. As most of the threats to wild salmon are the result of human activities, a focus on human dimensions and improved communication, from scientific and management perspectives, needs to be increasingly emphasized. When political and social will are coupled with adequate resources, managers often have the tools to mitigate many of the threats to wild salmon.
  相似文献   

15.
16.
  1. Protecting critical habitats of the Indo‐Pacific humpback dolphin, Sousa chinensis, is a hot topic of discussion for marine biodiversity conservation in China and many Southeast Asian countries. In practice, sound habitat protection action (HPA) planning often suffers from information gaps in macroscopic habitat configurations and changes in the habitat conditions of humpback dolphins.
  2. Recent publications in the journal Aquatic Conservation: Marine and Freshwater Ecosystems (AQC) have served to advance humpback dolphin conservation in Chinese waters by resolving such habitat configurations and indicating significant changes in distribution patterns and habitat characteristics under intense coastal anthropogenic activity.
  3. We highlight an integrative research framework to investigate habitat configuration and long‐term habitat changes when planning a holistic HPA programme for humpback dolphins. When constructing habitat configuration baselines, field surveys should be designed and conducted in a systematic manner to ensure survey efforts cover diverse environments equally, in either a spatially stratified or gridded pattern, to minimize potential spatial sampling biases. Long‐term habitat changes can be revealed by comparing satellite images from different decades. Changes in habitat preferences and habitat characteristics can be explored through questionnaire surveys on local ecological knowledge, associating historical occurrences with coastline features and projecting historical habitat configuration by species distribution modelling exercises.
  4. A lack of good communication and sharing of information between research and management sectors can still be an obstacle to the implementation of sound conservation practices, however, even though there is robust scientific evidence to fill knowledge gaps in distribution and habitat baselines. We have addressed the need to establish a mechanism to improve and streamline information sharing between research teams, management sectors, and stakeholder groups.
  相似文献   

17.
18.
19.
  1. The Pacific sand lance (Ammodytes personatus) is a key forage species for many commercially important fish (e.g. salmon and groundfish), marine birds, and whales found in nearshore coastal waters of British Columbia, Canada.
  2. Sand lance lack a swim bladder and have a requirement for low-silt, medium-coarse sandy sea-bed habitat for burying. Little information is available describing the distribution of burying habitat, partly because there are no commercial fisheries for A. personatus in British Columbia.
  3. This information is required by habitat and wildlife managers to identify and protect uncommon patches of burying habitats from detrimental activities, including dredging, infilling, and oil spills.
  4. In this study, habitat distribution results from five suitability modelling algorithms were evaluated: maximum entropy, generalized linear model, generalized additive model, random forest, and an ensemble model of the latter three.
  5. The maximum entropy model had the highest performance score (area under the receiver operator characteristic curve was 0.78) and was selected as the model that most accurately identified the presence of suitable A. personatus burying habitat.
  6. Model results indicate that suitable burying habitat is primarily influenced by derived sea-bed substrate, distance to estuary, distance to sand-gravel beaches, and bottom sea temperature.
  7. Overall, the spatial modelling identified only 105 km2 of highly suitable sand lance burying habitat, or 2.6% of the study area (0–150 m), primarily in Haro Strait, along the east coast of Vancouver Island, and in northern regions of the strait near Cortes, Savary, and Harwood islands.
  8. Identification of this uncommon and patchy burying habitat will contribute to the ongoing conservation of an important coastal prey species.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号