首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The purposes of this study were to determine the phylogenetic background and the virulence gene profiles of Escherichia coli isolates from colisepticemic and feces of healthy (AFEC) broiler chickens. In this study, 253 E. coli isolates including 141 avian pathogenic E. coli (APEC) and 112 AFEC isolates were examined by PCR. In general, 253 E. coli isolates distributed among group A (51.8%), B1 (15.8%), B2 (8.7%), and D (23.7%). Ten (8.9%) AFEC isolates segregated in to B1 phylo-group and 102 (91.1%) isolates fell into six different phylogenetic subgroups. Distribution of colisepticemic and fecal isolates differed significantly in their assignments to A and B1 phylo-groups. The three most prevalent virulence genes were crl, fimH, and aer in isolates between both groups. The four genetic markers aer, papC, afa, and sfa were detected significantly more often among colisepticemic isolates than in fecal isolates from healthy broilers. The presence of stx 2 gene in fecal isolates were significantly differs among the colisepticemic isolates. F17 fimbrial family encoding gene and eae gene were detected in APEC and AFEC isolates, respectively. The colisepticemic and fecal isolates possessed the virulence genes were detected in all of the four phylogenetic groups. Several combination patterns of the virulence genes were detected in APEC and AFEC isolates. In colisepticemic isolates the combination of aer, crl, and fimH genes was the most prevalent pattern. None of the examined isolates harbored the cdt, cnf1, ipaH, and stx 1 virulence gene sequences.  相似文献   

2.
Faecal samples obtained from 190 healthy mithuns were examined for the presence of Escherichia coli. Total one‐hundred and five E. coli isolates were obtained from these samples, which belonged to 55 different serogroups. These isolates were subjected to multiplex polymerase chain reaction (m‐PCR) for detection of stx1, stx2, eaeA and hlyA genes. Twenty‐three (21.90%) E. coli isolates belonging to 14 serogroups revealed the presence of at least one virulence gene when examined by m‐PCR. Nineteen percent and 2.85% of the mithuns were found to carry Shiga toxin‐producing E. coli (STEC) and enteropathogenic E. coli, respectively. stx1 and stx2 genes were found to be prevalent in 7 (6.67%) and 18 (17.14%) of the isolates respectively, whereas eaeA and hlyA genes were found to be carried by three (2.85% each) isolates. Interestingly, none of the STEC isolates belonged to serogroup O157.  相似文献   

3.
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of human intestinal diseases worldwide. Pigeons are distributed in public areas and are potential reservoirs for pathogenic bacteria. One hundred fifty-four fresh fecal samples were obtained from trapped pigeons in southeast of Iran and were cultured for isolation of E. coli. The isolates were examined to determine the prevalence of stx1, stx2, and eae genes, antimicrobial resistance, and their phylotypes. The confirmed E. coli isolates (138) belong to four phylogenetic groups: A (54.34%), B1 (34.05%), B2 (3.62%), and D (7.79%). Thirteen (9.42%) isolates were positive for one of the examined genes. Eight isolates (5.79%) were positive for eae, four (2.89%) for stx2, and one isolate (1.44%) for stx1 gene. Phylotyping assays showed that eight eae-positive isolates fall into three phylogroups; A (three isolates), B1 (three isolates), and D (two isolates), whereas four stx2-positive isolates belonged to the A (three isolates) and D (one isolate) groups. The stx1-positive isolate belonged to phylogroup A. One hundred six isolates (76.81%) showed resistance to at least one of the selected antibacterial agents. The maximum resistance rate was against oxytetracycline (73.91%), and the minimum was against flumequine (2.17%). Twenty different patterns of drug resistance were observed. According to the results, pigeons could be considered as carriers of STEC strains. However, E. coli isolates of pigeon feces increase the potential of these birds to act as a reservoir of multiple antibiotic resistant bacteria.  相似文献   

4.

The aims of the present study were to investigate the prevalence of some virulence genes and also determine the antimicrobial resistance pattern of E. coli isolated from bovine with subclinical mastitis. The milk of 502 cows was collected from 8 dairy herds in the southwest of Iran. Conventional biochemical tests were used for identification of E. coli at the species level. Antimicrobial susceptibility patterns of E. coli isolates were determined by disc agar diffusion method and polymerase chain reaction (PCR) was used for detection of seven virulence genes including f17A, afaE-8, afaD-8, eaeA, cnf1, cnf2, and iucD. Seventy (13.94%) isolates of E. coli were identified in 502 milk samples. The highest rate of resistance was observed against tetracycline (18.6%), while none of the isolates were resistant to streptomycin. Eight (11.5%) out of 70 E. coli isolates carried at least one of the virulence genes. The afaD-8 was the most prevalent gene detected in 5 (7.1%) isolates. The afaE-8, iucD, and eaeA were detected in 3, 3, and 2 isolates respectively. Low prevalence of virulence factors may be indicating that most of the E. coli isolates originated from the commensal flora of cows and enter to the udders via environment contamination with feces.

  相似文献   

5.
In the present study, 100 Avian-Pathogenic Escherichia coli (APEC) isolates from colibacillosis-suspected broilers and 100 Avian Faecal Escherichia coli (AFEC) isolates from healthy broilers in Iran were examined by PCR for confirmation of their serogroups and phylogenetic background, and their association with ten virulence-associated genes (VAG) including fimC, iutA, chuA, sitA, iss, cvaA/B, hylA, stx1, stx2, and yjaA. Serogroups O78, O1, O2 and O18 were the prominent strains including 54 % of the APEC and 23 % of the AFEC strains. At phylotyping, the majority of APEC strains belonged to phylogenetic group E (22 %) while for the AFEC strains, half of the isolates were not assigned to any group but the predominant phylogroup was E (27 %). Virulence genotyping, revealed that the predominant VAGs were iutA (97 %), fimC (87 %) and iss (84 %) among APEC strains, and fimC (95 %), iss (93 %) and sitA (87 %) in AFEC strains. This is the first time that phylogroup E is described as predominant phylogroup among APEC strains also, this is the first report on the presence of the stx1 gene in APEC strains isolated from broilers in Iran. The results of the present study indicate that VAGs are more prevalent in APEC strains belonging to O2 and O78 serogroups, also phylogroups E and D have more frequency of VAGs than other phylogroups. Therefore, the APEC strains belonging to O2 and O78 serogroups and phylogroups E and D probably have more pathogenicity to broilers.  相似文献   

6.
Fecal samples from 67 3–5-months-old calves with diarrhea were screened for the presence of shiga toxin-producing Escherichia coli (STEC). Several accessory virulence factors genes were also tested. Among 192 E.coli isolates tested, 15 (7.6%) were found to harbour the shiga toxin 1 or 2 (stx1 or stx2) genes. The stx2-carrying samples were further subtyped by PCR for the stx2c, stx2d, and stx2e toxin variants. It was shown that stx2-positive bacteria mainly possessed the stx2c shiga toxin type gene. The enterohemolysin (hlyA) and intimin (eae) genes were found in seven (46.7%) STEC strains whereas the cytotoxic necrotizin factor 1 and 2 or the P fimbrial genes were detected in two isolates only. This study confirmed that calves are a reservoir of STEC strains (with all pathogenicity genes) that may be virulent for humans.  相似文献   

7.
This study was conducted to determine the prevalence and characteristics of pathogenic Escherichia (E.) coli strains from diarrheic calves in Vietnam. A total of 345 E. coli isolates obtained from 322 diarrheic calves were subjected to PCR and multiplex PCR for detection of the f5, f41, f17, eae, sta, lt, stx1, and stx2 genes. Of the 345 isolates, 108 (31.3%) carried at least one fimbrial gene. Of these 108 isolates, 50 carried genes for Shiga toxin and one possessed genes for both enterotoxin and Shiga toxin. The eae gene was found in 34 isolates (9.8%), 23 of which also carried stx genes. The Shiga toxin genes were detected in 177 isolates (51.3%) and the number of strains that carried stx1, stx2 and stx1/stx2 were 46, 73 and 58, respectively. Among 177 Shiga toxin-producing E. coli isolates, 89 carried the ehxA gene and 87 possessed the saa gene. Further characterization of the stx subtypes showed that among 104 stx1-positive isolates, 58 were the stx1c variant and 46 were the stx1 variant. Of the 131 stx2-positive strains, 48 were stx2, 48 were stx2c, 11 were stx2d, 17 were stx2g, and seven were stx2c/stx2g subtypes. The serogroups most prevalent among the 345 isolates were O15, O20, O103 and O157.  相似文献   

8.
One hundred and twenty seven Escherichia coli isolates from bovine mastitis were examined to detect the phylogenetic group/subgroups and a selection of virulence associated genes. Forty nine (38.58%) isolates belonged to group B1 the remaining isolates fell into four phylogenetic subgroups: A0 (18.11%), A1 (26.77%), D1 (6.29%) and D2 (10.23%). None of the isolates belonged to B2 group. Forty seven (37.00%) isolates were positive for at least one virulence gene, among them f17A was the most common gene, found in 20.47% of the isolates. Among the E. coli isolates, 11.81% had iucD, 9.44% f17c-A, 9.44% cnf2, 7.87% f17b-A, 6.29% afaD-8 and afaE-8, 3.14% f17d-A, 0.78% cnf1 and 0.78% clpG genes. All of the detected virulence genes were present alone or in combination with each other except clpG and f17d-A genes that were only found alone. None of the isolates contained the genes for F17a-A, intimin, P or S fimbriae.  相似文献   

9.
Thirty-five Escherichia coli isolates obtained from the liver, spleen and intestines of 180 frugivorous and insectivorous bats were investigated for antimicrobial resistance phenotypes/genotypes, prevalence of Extended-Spectrum beta-lactamase (ESBL) production, virulence gene detection and molecular typing. Eight (22.9 %) of the isolates were multidrug resistant (MDR). Two isolates were cefotaxime-resistant, ESBL-producers and harbored the blaCTX-M-15 gene; they belonged to ST10184-D and ST2178-B1 lineages. tet(A) gene was detected in all tetracycline-resistant isolates while int1 (n = 8) and blaTEM (n = 7) genes were also found. Thirty-three of the E. coli isolates were assigned to seven phylogenetic groups, with B1 (45.7 %) being predominant. Three isolates were enteropathogenic E. coli (EPEC) pathovars, containing the eae gene (with the variants gamma and iota), and lacking stx1/stx2 genes. Bats in Nigeria are possible reservoirs of potentially pathogenic MDR E. coli isolates which may be important in the ecology of antimicrobial resistance at the human-livestock-wildlife-environment interfaces. The study reinforces the importance of including wildlife in national antimicrobial resistance monitoring programmes.  相似文献   

10.
Cattle faecal samples (n = 480) were collected from a cluster of 12 farms, and PCR screened for the presence of the intimin gene (eae). Positive samples were cultured, and colonies were examined for the presence of eae and verocytotoxin (vtx) genes. Colonies which were positive for the intimin gene and negative for the verocytotoxin genes were further screened using PCR for a range of virulence factors including bfpA, espA, espB, tir ehxA, toxB, etpD, katP, saa, iha, lpfAO157/OI‐141 and lpfAO157/OI‐154. Of the 480 faecal samples, 5.8% (28/480) were PCR positive, and one isolate was obtained from each. All 28 isolates obtained were bfpA negative and therefore atypical EPEC (aEPEC). The serotypes detected included O2:H27, O8:H36, O15:H2, O49:H+, O84:H28, O105:H7 and O132:H34 but half of the isolates could not be serogrouped using currently available antisera. Twenty‐two (79%) of the isolates carried the tir gene but only 25% were espB positive, and all other virulence genes tested for were scarce or absent. Several isolates showed intermediate resistance to ciprofloxacin, kanamycin, nalidixic acid, minocycline and tetracycline; full resistance to nalidixic acid or tetracycline with one isolate (O?:H8) displaying resistance to aminoglycosides (kanamycin and streptomycin), quinolones (nalidixic acid) and sulphonamides. This study provides further evidence that cattle are a potential source of aEPEC and add to the very limited data currently available on virulence genes and antibiotic resistance in this pathogenic E. coli group in animals.  相似文献   

11.
Virulence factors are associated with the capacity of E. coli strains to cause intestinal and extraintestinal infections. Thirty one E. coli isolates were obtained from heart blood or internal organs of septicemic calves. The O serogroups of isolates were determined. PCR assays were performed to determine the phylogenetic groups and presence of specific virulence genes. Fourteen (45.16%) isolates belonged to seven O serogroups (O8, O15, O20, O45, O78, O101 and O103) and 17 (54.83%) isolates were O-nontypeable. E. coli isolates fall into three phylogenetic groups included 15 isolates belonged to B1, 9 to A and 7 to D phylogenetic groups. Nineteen (61.29%) isolates exhibited at least one of the virulence genes. F17 family (5 isolates f17b, 3 isolates f17c, 1 isolate f17a) genes and aerobactin encoding gene of iucD (5 isolates) were the two most prevalent virulence genes. Three isolates were positive for cnf2 and cdtIII genes in combination and they were O-nontypeable. AfaE-VIII, CS31A gene (clpG) and hemolysin encoding gene (hly) were detected in 3, 4 and 3 isolates respectively. None of the isolates contained the ipaH sequences and the genes encoding fimbria (F5, F41, S, P), AfaI adesin, toxins (LT-I, ST-I, SLT-I, SLT-II, CNF1 and CDT-IV) and intimin.  相似文献   

12.
The aims of this study were to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains in pigs as a possible STEC reservoir in India as well as to characterize the STEC strains and to determine the antimicrobial resistance pattern of the strains. A total of 782 E. coli isolates from clinically healthy (n?=?473) and diarrhoeic piglets (309) belonging to major pig-producing states of India were screened by the polymerase chain reaction (PCR) assay for the presence of virulence genes characteristic for STEC, that is, Shiga toxin-producing gene(s) (stx1, stx2), intimin (eae), enterohemolysin (hlyA) and STEC autoagglutinating adhesin (Saa). Overall STEC were detected in 113 (14.4 %) piglets, and the prevalence of E. coli O157 and non-O157 STEC were 4 (0.5 %) and 109 (13.9 %), respectively. None of the O157 STEC isolates carried gene encoding for H7 antigen (fliCh7). The various combinations of virulence genes present in the strains studied were stx1 in 4.6 %, stx1 in combination with stx2 gene in 5.1 %, stx1 in combination with stx2 and ehxA in 0.6 %, stx1 in combination with stx2 and eae in 0.2 % and stx2 alone in 3.7 %. All STEC isolates were found negative for STEC autoagglutinating adhesin (Saa). The number of STEC isolates which showed resistance to antimicrobials such as ampicillin, tetracycline, streptomycin, lincomycin, nalidixic acid, sulfadiazine, penicillin, gentamicin, kanamycin and ceftriaxone were 100, 99, 98, 97, 95, 94, 92, 88, 85 and 85, respectively. Ninety-seven isolates showed resistance to more than 2 antimicrobials, and 8 resistance groups (R1 to R8) were observed. This study demonstrates that pigs in India harbour both O157 and non-O157 STEC, and this may pose serious public health problems in future.  相似文献   

13.
Antimicrobial resistance profile of E. coli and Salmonella serovars isolated from diarrheic calves and handlers in Egypt is unknown due to the absence of monitoring. Therefore, this study aimed to determine the virulence, genetic and antimicrobial resistance profiles of E. coli and Salmonella serovars associated with diarrhea in calves and handlers in intensive dairy farms in Egypt. A total of 36 bacterial strains (20 E. coli and 16 Salmonella) were isolated from fecal samples of 80 diarrheic Holstein dairy calves (10 E. coli and 13 Salmonella) and hand swabs of 35 handlers (10 E. coli and 3 Salmonella) in two intensive dairy farms in Sharkia Governate in Egypt. E. coli strains belonged to six different serogroups and O114:K90 was the most prevalent serogroup (30%). However, Salmonella strains were serotyped into four different serogroups and S. Kiel was the most prevalent serotype (50%). Thirteen (65%) E. coli isolates were harbouring either stx2, eaeA and/or astA virulence-associated genes. However, stn and spvC virulence genes were detected in 2 (12.5%) and 4 (25%) of Salmonella isolates, respectively. E. coli isolates showed marked resistance to ampicillin (75%), while Salmonella strains exhibited high resistance to amikacin (100%), gentamicin (93.75%) and tobramycin (87.5%). Results of the present study showed that E. coli and Salmonella serovars isolated from diarrheic calves and handlers in intensive dairy farms in Egypt exhibited resistance to multiple classes of antimicrobials, which may pose a public health hazard. Thus, the continuous monitoring of antimicrobial resistance is necessary for both humans and veterinary medicine to decrease the economic losses caused by antimicrobial-resistant strains in animals as well as the zoonotic risk.  相似文献   

14.
牛肉源大肠杆菌的耐药性检测及相关耐药基因分布   总被引:6,自引:3,他引:3  
为了解牛肉源大肠杆菌的耐药性并检测其相关耐药基因分布,本研究选取了117株牛肉源大肠杆菌,经药敏纸片法对11种抗菌药物进行了药敏检测,并根据耐药表型利用普通和(或)多重PCR技术对耐四环素菌中tet(A)、tet(B)和tet(C)基因,耐氨苄西林菌中blaTEM1、blaPSE1和blaOXA1基因,耐链霉素菌中strA-strB、aadA1基因,耐磺胺类药菌中sul1、sul2和sul3基因进行了调查分析。结果显示,117株大肠杆菌对四环素、氨苄西林、链霉素和磺胺异恶唑的耐药率较高,分别为89%、42%、38%和22%。tet(A)基因是所有四环素耐药基因中最为流行的一种基因(55%);在检测的3个β-内酰胺类药物耐药基因中,最流行的为blaTEM1基因(73%);链霉素的耐药性主要由strA-strB基因(38%)编码;sul2基因在耐磺胺异恶唑菌中的检出率最高(77%)。结果表明本次分离的牛肉源大肠杆菌耐药非常严重,进一步肯定了肉牛业生产中抗菌药的使用对大肠杆菌耐药性的产生和发展所发挥的重要作用,提示食品动物养殖应严格控制饲料中抗菌药的滥用。  相似文献   

15.
A simple, rapid and specific PCR‐based method for identification of shiga toxin‐producing Escherichia coli (STEC) was developed. The procedure involves amplification of the E. coli‐specific universal stress protein A (uspA) gene (uspa‐PCR), with the primer pair described by other authors, which allows differentiation of E. coli (STEC and non‐STEC) from other gram‐negative bacteria followed by identification of the main genetic virulence traits of the uspA‐positive isolates. For this purpose, two multiplex PCR assays, based on previously published primer sequences, were established. Assay 1 (mPCR‐1) uses three primer pairs and detects the genes encoding O157 (rfb), enterohemolysin (ehly) and shiga toxin (stx), generating amplification products of 420, 534 and 230 bp, respectively. Assay 2 (mPCR‐2) uses four primer pairs specific for rfb (E. coli O157), eaeA (intimin), stx1 and stx2 (shiga toxin 1 and 2, respectively), generating PCR amplicons of 420, 840, 348 and 584 bp, respectively. These two assays were validated by testing several E. coli reference strains and 202 previously characterized E. coli isolates originating from calves and from children, and 100% agreement with previous results was obtained. The method developed can be used for specific identification of STEC bacteria including those of the O157 serogroup.  相似文献   

16.
The objectives of this study were to determine the presence and prevalence of non-O157 shiga toxin-producing Escherichia coli (STEC) isolates from faeces of healthy fat-tailed sheep and detection of phylogenetic background and antibiotic resistance profile of isolates. One hundred ninety-two E. coli isolates were recovered from obtained rectal swabs and were confirmed by biochemical tests. Antibiotic resistance profiles of isolates were detected and phylogenetic background of isolates was determined according to the presence of the chuA, yjaA and TspE4.C2 genetic markers. The isolates were examined to determine stx 1 , stx 2 and eae genes. Non-O157 STEC isolates were identified by using O157 specific antiserum. Forty-three isolates (22.40 %) were positive for one of the stx 1 , stx 2 and eae genes, whereas 10.42 % were positive for stx 1 , 19.38 % for eae and 2.60 % for stx 2 gene. None of the positive isolates belonged to O157 serogroup. Twenty isolates possessed stx 1 were distributed in A (six isolates), B1 (13) and D (one) phylogroups, whereas stx 2 positive isolates fell into A (three isolates) and B1 (two) phylogenetic groups. Eighteen isolates contained eae gene belonged to A (five isolates), B1 (seven) and D (six) phylogroups. The maximum and minimum resistance rates were recorded against to penicillin and co-trimoxazole respectively. The positive isolates for stx 1 , stx 2 and eae genes showed several antibiotic resistance patterns, whereas belonged to A, B1 and D phylogroups. In conclusion, faeces of healthy sheep could be considered as the important sources of non-O157 STEC and also multidrug-resistant E. coli isolates.  相似文献   

17.
Prevalence, presence of virulence and adherence associated genes, genetic diversity, biochemical characteristics, and antibiotic susceptibility were determined for Escherichia coli O157 isolated over 4 months in Chongqing city and Three-Gorge Reservoir Areas. 11 isolates of E. coli O157 were isolated from 1504 samples and 7 of them are O157:H7 and 4 are O157:H? All O157:H7 isolates had eaeA, ehxA, EspA and Tccp genes, but did not have stx1 and stx2. All O157:H? isolates did not have stx1, stx2, eaeA, ehxA, EspA and Tccp genes except for the isolate obtained from Yunyang county which had stx1. When eaeA and ehxA presented in isolates were digested by restriction enzymes, the numbers and the sizes of the segments were the same as the control E. coli O157 strains. This suggests that eaeA and ehxA exhibit poor polymorphism. Most E. coli O157 isolates showed identical biochemical activities to the standard strains for sorbitol and rhamnose, and all E. coli O157:H7 obtained from feces at the same dairy cattle farm had similar biochemical characteristics. Antibiotic susceptibility demonstrated resistance of the isolates to penicillin, ampicillin, bacitracin, cefuroxime, erythromycin, gentamycin and tetracycline, indicating the isolates obtained in this study had a multi-drug resistance.  相似文献   

18.
The aim of this study was to evaluate the occurrence of Shiga toxin (stx)-producing Escherichia coli (STEC) in diarrheic newborn calves, as well as the resistance profile of this microorganism against antimicrobials routinely used in veterinary therapy. The antimicrobial profile of Eugenia uniflora against E. coli clinical isolates was also analyzed. Specimens from the recto-anal junction mucosa were investigated by using chromogenic medium and identification of E. coli was done using microbiological methods (Gram staining, indole test, methyl red test, Voges-Proskauer test, citrate test, urease test, and hydrogen sulfide test). The stx1 and stx2 genes corresponding to the STEC pathotype were evaluated by using polymerase chain reaction and electrophoresis. The susceptibility profile to antimicrobial agents commonly used in veterinary therapeutic practice and the antimicrobial effect of lyophilized hydroalcoholic extract of E. uniflora L. leaves against E. coli clinical isolates were evaluated by disk diffusion and microdilution methods. Shiga toxin-positive E. coli was identified in 45% of diarrheic newborn calves (stx1 = 23.2%, stx2 = 4.0%, stx1 + stx2 = 18.2%). The frequency of stx-positive E. coli in the bacterial population was equal to 17.0% (168/990 clinical isolates): 97 (9.8%) stx1-positive E. coli, 12 (1.2%) stx2-positive E. coli, and 59 (6.0%) stx1 + stx2-positive E. coli isolates. All stx-positive E. coli analyzed showed resistance to multiple drugs, that is, from 4 to 10 antimicrobials per clinical isolate (streptomycin, tetracycline, cephalothin, ampicillin, sulfamethoxazole + trimethoprim, nitrofurantoin and nalidixic acid, ciprofloxacin, gentamicin, and chloramphenicol). Effective management measures should be implemented, including clinical and laboratory monitoring, in order to promote animal and worker health and welfare, prevent and control the spread of diseases, and ensure effective treatment of infectious diseases. The E. uniflora L. leaves showed inhibition of microbial growth based on the diameter of halos, ranging from 7.9 to 8.0 mm and 9.9 to 10.1 mm for concentrations of 50 and 150 mg/mL, respectively. This plant displayed bacteriostatic action and a minimum inhibitory concentration of 12.5 mg/mL for all clinical isolates. Its clinical or synergistic effects with antimicrobial agents must be determined from clinical and preclinical trials.  相似文献   

19.
1. Escherichia coli isolated from lesions (Avian Pathogenic E. coli?-?APEC) of layer hens affected by colibacillosis and from intestinal contents of clinically-healthy birds (Avian Faecal E. coli?-?AFEC) were serotyped. All the isolates were investigated for the presence of virulence genes to determine which genes were more closely related to those from lesions.

2. A number of different serogroups were detected, O78 being predominant among the isolates from colibacillosis.

3. E. coli isolated from lesions were not linked to a specific pathotype (set of common virulence genes).

4. The presence of the virulence genes, with the exception of astA, was associated more generally with APEC strains.

5. Statistically, genes such as cva/cvi, tsh, iss, irp2 and iucD were more related to isolates from colibacillosis.

6. It is suggested that the detection of these genes in a rapid and inexpensive test for field practitioners could provide useful information about the potential virulence of E. coli isolated in commercial layer flocks.  相似文献   

20.
Avian pathogenic Escherichia coli (APEC) causes economically significant infections in poultry. The genetic diversity of APEC and phylogenetic relationships within and between APEC and other pathogenic E. coli are not yet well understood. We used multilocus sequence typing (MLST), PCR-based phylogrouping and virulence genotyping to analyse 75 avian E. coli strains, including 55 isolated from outbreaks of colisepticaemia and 20 from healthy chickens. Isolates were collected from 42 commercial layer and broiler chicken farms in Sri Lanka. MLST identified 61 sequence types (ST) with 44 being novel. The most frequent ST, ST48, was represented by only six isolates followed by ST117 with four isolates. Phylogenetic clusters based on MLST sequences were mostly comparable to phylogrouping by PCR and MLST further differentiated phylogroups B1 and D into two subgroups. Genotyping of 16 APEC associated virulence genes found that 27 of the clinical isolates and one isolate from a healthy chicken belonged to highly virulent genotype according to previously established classification schemes. We found that a combination of four genes, ompT, hlyF, iroN and papC, gave a comparable prediction to that of using five and nine genes by other studies. Four STs (ST10, ST48, ST117 and ST2016) contained APEC isolates from this study and human UPEC isolates reported by others, suggesting that these STs are potentially zoonotic. Our results enhanced the understanding of APEC population structure and virulence association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号