首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 161 毫秒
1.
水稻新质源(CMS-FA)雄性不育恢复基因的遗传   总被引:6,自引:0,他引:6  
发掘水稻新型雄性不育细胞质源CMS-FA,育成系列优质米不育系和系列新质源恢复系,在组配成强优势杂交稻组合的基础上,研究新质源雄性不育恢复系的恢复基因遗传.采用新质源(CMS-FA)不育系金农1A与恢复系金恢3号杂交获得杂交F1和F2代种子.用F1分别与不育系或保持系回交,获得(不育系//不育系/恢复系和不育系/恢复系//保持系)2个测交群体.同时种植P1、P2、P3、F1、F2、B1F1和B2F1等群体,考察花粉染色率、套袋结实率和自然结实率,卡平方测验遗传分离适合度.结果表明,不育系与恢复系杂交F1代正常可育,育性恢复(可育)基因为显性遗传.F2代分离出可育:不育适合3:1,育性恢复(可育)基因为1对显性基因控制.B1F1和B2F1代2个测交群体的可育:不育都适合1:1分离规律,验证了F2代育性恢复(可育)单基因的遗传模式.暂时确定新质源(CMS-FA)核质互作三系的基因型为不育系S(SS)、保持系F(SS)和恢复系S(FF).  相似文献   

2.
为了研究杂交组合(高146A×K103)的P1、P2、F1和F2 世代群体对不育系高146A早抽穗性状的遗传特点,本研究利用主基因+多基因混合遗传模型,并且采用χ2测验方法对不育基因与早抽穗控制基因间的遗传关系进行了研究。结果表明:高146A早抽穗性状表现为一数量性状,其遗传符合两对加性-显性-上位性主基因 加性-显性多基因遗传模型,以主基因作用为主,多基因的作用相对较小,其中一对主基因的加性、显性起主要作用,另一个主基因的显性和上位性效有较大作用;在F2群体中,雄性不育和早抽穗两性状共有早熟可育、早熟不育、晚熟可育和晚熟不育等四种表型,表型分离比例符合三对基因独立遗传分配规律(分离比例为39:13:9:3;χ2=3.18 <χ20.05=7.81),这些结果表明控制该雄性不育系高146A的不育和早抽穗性状的三对基因为独立遗传,无连锁关系。  相似文献   

3.
李曙光  赵团结  盖钧镒 《作物学报》2010,36(7):1061-1066
利用大豆质核互作雄性不育系NJMCS3A的质、核供体亲本N21566和N21249构建F2和BC1F1育性分离群体进行雄性育性的遗传分析与基因定位。结果表明, F1正反交可育,F2和BC1F1的可育株与不育株分离比例经χ2测验分别符合3∶1和1∶1,表明NJCMS3A供体亲本雄性育性由一对基因控制,可育等位基因为显性。该基因可能是NJCMS3A的一个恢复基因。选用793对SSR引物对F2和BC1F1群体分别进行育性基因定位,发现该育性基因位于O连锁群上,在Satt331和Satt477标记之间,与Satt331、CSSR133和Satt477标记距离的次序一致,分别为8.1~10.4 cM、11.4~16.4 cM、13.3~19.2 cM。  相似文献   

4.
以食葵不育系17-A26为母本、恢复系17-C19为父本,构建P1、P2、F1、F2、B1和B2 6个世代群体,研究了产量相关性状盘径、单株总粒数、结实率、百粒重、粒长和粒宽的后代变异及遗传率。结果表明,6个性状均为数量性状,变异幅度排序为单株总粒数>粒长>盘径>结实率>百粒重>粒宽,狭义遗传率排序为百粒重>粒长>单株总粒数>粒宽>盘径>结实率。根据遗传进度结果,百粒重、粒长、单株总粒数和粒宽宜早代根据表型选择,盘径宜晚代选择,结实率宜晚代结合多环境联合选择。  相似文献   

5.
穞稻与粳稻恢复系C堡籽粒灌浆速率的特征及遗传分析   总被引:3,自引:2,他引:1  
张启武  江建华  姚瑾  洪德林 《作物学报》2009,35(7):1229-1235
穞稻是一种分蘖力强、灌浆期短的较原始的亚洲栽培稻粳稻类型。大穗型杂交粳稻F1单株有效穗数偏少、部分籽粒充实度欠佳,为克服该缺点,本研究调查了穞稻(P1)与粳稻恢复系C堡(P2)及其正反交F1、B1、B2和F2 6个世代各6个灌浆时段的灌浆速率,并运用世代平均数分析方法和主基因+多基因混合遗传模型6个世代联合分析的方法,对平均灌浆速率进行了遗传分析。结果表明: (1)以正反交没有发现平均灌浆速率的细胞质效应。(2)P1、P2及其F1灌浆速率最大的时段都是开花后8~14 d。(3)穞稻全灌浆期28 d,比C堡短14 d;平均灌浆速率比C堡快50%。(4)世代平均数分析显示平均灌浆速率遗传符合加性-显性-上位性模型。主基因+多基因混合遗传模型分析显示平均灌浆速率受2对加性-显性-上位性主基因+加性-显性-上位性多基因共同控制,以主基因遗传为主。  相似文献   

6.
不结球白菜维生素C含量主基因+多基因遗传分析   总被引:6,自引:0,他引:6  
林婷婷  王建军  王立  陈暄  侯喜林  李英 《作物学报》2014,40(10):1733-1739
以高维生素C含量不结球白菜自交系乌塌菜和低维生素C含量不结球白菜自交系二青杂交获得的6个世代(P1、P2、F1、B1、B2和F2)株系为材料, 应用植物数量性状主基因+多基因混合遗传模型, 对不结球白菜中维生素C含量进行遗传分析。结果显示, 不结球白菜中维生素C含量受1对加性主基因+加性-显性多基因控制, 其中2011年结果中, 主基因的加性效应为13.15, 在B1、B2、F2世代中主基因的遗传率分别为54.38%、38.58%和18.69%, 多基因的遗传率分别为24.69%、36.92%和40.7%; 2013年结果中, 主基因的加性效应为6.04, 在B1、B2、F2世代中主基因的遗传率分别为1.88%、6.41%和45.04%, 多基因的遗传率分别为39.67%、16.57%和16.91%。可见, 不结球白菜维生素C性状受环境影响较大, 在不结球白菜高维生素C含量品种选育过程中, 要注重环境影响, 并可以通过分子标记辅助选择, 对性状进行改良。  相似文献   

7.
鲁麦15号(原代号太8362143系山东农业大学小麦遗传育种宣从(Tal扬麦1号B1×757318)F1×104-14复合杂交F1中分离出来的可育株系选而成。1990年8月通过山东省品种审定并定名。  相似文献   

8.
为将雄性不育基因应用于甜玉米杂交制种中,达到降低劳动成本且保证种子纯度的目的。以来源于甜玉米自交系K78的雄性不育自发突变体male sterility 2020(ms2020)为材料,构建ms2020与甜玉米自交系M08的F1及相应的F2遗传群体,通过表型鉴定、遗传分析和基因定位研究ms2020甜玉米雄性不育突变体。表型鉴定结果表明:F1群体均表现为雄性可育,F2群体出现了育性分离。不育植株能够正常抽雄,但花药不开裂、散粉异常,花药变小且颜色淡黄;1%I2-KI染色发现不育植株的花药内包含不能正常着色的败育花粉粒。遗传分析结果表明:育性正常植株与不育植株的比例符合3∶1,表明ms2020雄性不育突变体是由单基因控制的隐性突变体。利用BSA技术,初步将目的基因定位在7号染色体短臂上;随后利用初定位区间内的20对SSR标记对不育基因进行定位,将不育基因精细定位在标记S1和W10之间,物理距离为11.30 kb。该区间内包含Zm00001d018802和Zm00001d018803...  相似文献   

9.
以超多穗行数DH系15D969和低穗行数自交系PH6WC、X901m组建的2个6世代群体(P1、P2、F1、B1、B2和F2)为材料,运用主-多基因混合模型遗传分析方法对穗行数进行遗传分析。结果表明:材料Ⅰ的F1穗行数平均优势为-1.11%,为2对主基因加、显、上+多基因加、显混合模型,主基因遗传率为12.22%~96.37%,多基因遗传率为0~61.16%;材料Ⅱ的F1穗行数平均优势为1.16%,为2对主基因加+多基因加、显混合模型,主基因遗传率为6.48%~54.18%,多基因遗传率为4.77%~67.23%。说明,穗行数由主基因和多基因共同主导,DH系15D969的超多穗行数由不完全显性多基因控制。  相似文献   

10.
新质源CMS-FA杂交稻系统的亲本资源筛选   总被引:5,自引:0,他引:5  
用新质源雄性不育系金农1A(CMS-FA)作母本, 分别与来自10个国家和国内13个省份的220个水稻品种组配成杂交种, 考察F1代的花粉染色率、套袋结实率和自然结实率。在F1代中, 当这3项育性指标均≤10%时, 显示父本品种具有雄性不育保持能力, 因而将其划分为保持系资源; 当3项育性指标均≥80%时, 显示父本品种具有雄性不育恢复能力, 将其划分为恢复系资源; 此外的其他父本品种, 即3项育性指标中任何一项指标>10%或<80%, 既不能作为保持系, 也不能作为恢复系, 被划分为非杂交稻亲本资源。在220个水稻品种中, 可作为金农1A保持系的有122个, 占55.5%; 未发现恢复系亲本; 非杂交稻亲本品种有98个, 占44.5%。CMS-FA型的杂交稻亲本资源利用率为55.5%。对照野败型不育系珍汕97A(CMS-WA)的保持系亲本品种有44个, 占20.0%; 恢复系亲本品种42个, 占19.1%; 非杂交稻亲本品种134个, 占60.9%。CMS-WA型的杂交稻亲本资源利用率为39.1%。CMS-FA系统比CMS-WA系统的亲本稻种资源利用率高16.4个百分点, 尤其是保持系资源利用率高35.5个百分点(近1.8倍)。国外品种的育性普遍低于国内品种。  相似文献   

11.
Summary Identification and location of fertility restoring genes facilitates their deployment in a hybrid breeding program involving cytoplasmic male sterility (CMS) system. The study aimed to locate fertility restorer genes of CMSWA system on specific chromosomes of rice using primary trisomics of IR36 (restorer), CMS (IR58025A) and maintainer (IR58025B) lines. Primary trisomic series (Triplo 1 to 12) was crossed as maternal parent with the maintainer line IR58025B. The selected trisomic and disomic F1 plants were testcrossed as male parents with the CMS line IR58025A. Plants in testcross families derived from disomic F1 plants (Group I crosses) were all diploid; however, in the testcross families derived from trisomic F1 plants (Group II crosses), some trisomic plants were observed. Diploid plants in all testcross families were analyzed for pollen fertility using 1% IKI stain. All testeross families from Group I crosses segregated in the ratio of 2 fertile: 1 partially fertile+partially sterile: 1 sterile plants indicating that fertility restoration was controlled by two independent dominant genes: one of the genes was stronger than the other. Testcross families from Group II crosses segregated in 2 fertile: 1 partially fertile+ partially sterile: 1 sterile plants in crosses involving Triplo 1, 4, 5, 6, 8, 9, 11 and 12, but families involving triplo 7 and triplo 10 showed significantly higher X2 values, indicating that the two fertility restorer genes were located on chromosome 7 and 10. Stronger restorer gene (Rf-WA-1) was located on chromosome 7 and weaker restorer gene (Rf-WA-2) was located on chromosome 10. These findings should facilitate tagging of these genes with molecular markers with the ultimate aim to practice marker-aided selection for fertility restoration ability.  相似文献   

12.
Development of cytoplasmic-genic male sterility in safflower   总被引:1,自引:0,他引:1  
K. Anhani 《Plant Breeding》2005,124(3):310-312
An interspecific cross was made between Carthamaus oxyacantha and the cultivated species C. tinctorius to develop a cytoplasmic‐genic male sterility (CMS) system in safflower. C. oxyacantha was the donor of sterile cytoplasm. The 3: 1 segregation pattern observed in BC1F2 suggested single gene control with dominance of male‐fertility over male‐sterility. The information obtained from crossing male sterile X male fertile plants in BC1F3 and BC1F4 generations showed statistically significant single gene (1: 1) segregation for male sterility vs. male fertility. The results demonstrated that C. tinctorius possesses a nuclear fertility restorer gene and that a single dominant allele restored fertility (Rf) in progeny carrying CMS cytoplasm of C. oxyacantha. Male sterility occurred with the homozygous recessive condition (rfrf) in a sterile C. oxyacantha cytoplasm background and not in the normal cytoplasm of C. tinctorius. The genetic background of different restorer lines of C. tinctorius having normal cytoplasm did not effect fertility restoration. The absence of male sterile plants in C. tinctorius populations ruled out the possibility of genetic male sterility. Normal meiosis in F1 and BC1F2 ruled out a cytogenetic basis for the occurrence of male sterility.  相似文献   

13.
Available material of oilseed (Brassica napus L., AACC) comprises two yellow-flowered breeding lines and a white/pale-flowered line of resynthesized rape. The flower colour white/pale is dominant over yellow, and is controlled by a gene located in the C-genome. The yellow-flowered genotypes acted as restorer lines and the white/pale-flowered genotype as a maintainer line in a cytoplasmic male sterility system. The segregation pattern of flower colour and male fertility restorer characters were studied in F2 generations of crosses between these lines, also in a three-way cross additionally including a yellow flowered B. campestris (AA) line. Evidense was obtained in support of the conclusion that the flower colour and male fertility restorer characters are monogenically controlled and independently inherited. Whether the male fertility restorer gene is located in the A or C genome remains to be determined.  相似文献   

14.
A Brassica juncea line carrying an introgression from Moricandia arvensis restored male fertility to two cytoplasmic male‐sterile (CMS) B. juncea lines carrying either M. arvensis or Diplotaxis catholica cytoplasm. Genetics of fertility restoration was studied in the F1, F2, F3 and backcross generations of the cross between CMS and fertility‐restorer lines. No male‐sterile plants were found in F1‐F3 generations of the cross between CMS [M. arvensis] B. juncea and the restorer. However, a 1: 1 segregation for male sterility and fertility was observed when the F1 was pollinated with non‐restorer pollen from a euplasmic line. These results clearly show that restoration is mono‐genic and gametophytic. In CMS lines carrying D. catholica cytoplasm, the restorer conferred male fertility to the F1 and showed 3: 1 and 1: 1 segregations for male fertility and sterility in F2 and BC1 generations, respectively, indicating a monogenic, sporophytic mode of fertility restoration. The results were also supported by pollen stainability in the F1 which was about 65% in M. arvensis‐based CMS and >90% in D. catholica‐based CMS. The above results are discussed in the light of previous molecular studies which showed association between CMS and atpA in both systems.  相似文献   

15.
A male sterile plant appeared in the radish breeding program at the Hubei Academy of Agricultural Sciences, Hubei, China. In its progeny, a two-type (half of plants male sterile, the other half male fertile) line 01GAB was established. An F2 population of 260 plants from a cross of male-sterile 01GAB and a male fertile line 9802H segregated for male fertility in a 3:1 ratio indicating that fertility was restored by a single dominant gene, here designated RsMs. A PCR-based DNA marker specific to the male fertility Rfob gene in 9802H was absent in 01GAB. Linkage analysis placed the RsMs locus 10.7 cM away from the Rfo locus. In an F2 population of hybrids between 01GAB and male fertile 9802B, a co-dominant DNA marker for the RSultr3.2A (a radish sulfate transporter gene) locus was linked to the RsMs locus at 1.5 cM suggesting that fertility restoration in 01GAB was located in the region with known male sterility restorers in radish. However, no maintainer for the 01GAB source of male sterility has been identified so far. Cytological observations have shown that the abnormalities in male sterile anthers first appeared in tapetum at the tetrad stage, followed by a hypertrophy of the tapetal cells at the vacuolate microspore period. These results suggest that male sterility in 01GAB is likely to be genetic in nature, or it may represent a new type of the cytoplasmic male sterility.  相似文献   

16.
Cytoplasmic male sterile system in ridge gourd has been converted to cytoplasmic genetic male sterile (CGMS) system through the development of analogues of male sterile (MS) line, maintainer line and fertility restorer line. These lines were developed by crossing the MS mutant, regenerated through in vitro culture, with monoecious pollen parents Deepthi, Haritham, LA 101, CO 2, IC 92761 and IC 92685. All hybrids and the BC1 generation developed by crossing with the recurring pollen parents Deepthi, Haritham and LA 101 were male sterile. Male sterile BC1 plants have been advanced to BC6 generation and the parental line LA 101 was proved to be a successful maintainer line, producing male sterile progeny in successive back cross generations. Analogue of cytoplasmic male sterile line, MS LA 101, was developed through back crossing and on crossing with fertility restorer lines Arka Sumeet and LA 102, this line excelled as female parent, resulting heterotic combinations. Mitochondrial marker rpS14 and SCAR Tm-53 were identified to yield male sterility specific markers whereas SSR marker 18956 has generated the male fertility specific marker. These primers are recommended for marker assisted selection of ridge gourd, for utilizing male sterility for hybrid seed production and for developing A, B and C lines in CGMS system.  相似文献   

17.
‘Ogura radish’, a cytoplasmic genetic male sterile line, was crossed with four local and three Japanese cultivars to identify maintainer lines. Out of seven F1 families, one cross involving a local cultivar, Aushi, produced 100% male sterile (MS) progeny. The crosses involving the other two local cultivars, Tangail Local and Kuni, produced about 90% MS progeny, indicating the presence of maintainer gene(s) for male sterility. The fourth local cultivar, Tasaki, produced 100% male fertile (MF) progeny. All three exotic cultivars appeared to possess the chromosomal gene(s) for controlling the male sterility. In BC1, BC2 and BC3 generations, segregation of MS plants were more frequent when ‘Aushi’ was used as recurrent parent. The expression of male sterility was not affected by seasonal influences. Thus the local cultivar ‘Aushi’ may be used as maintainer line for ‘Ogura radish’. To produce hybrid seed, ‘Tasaki’ can be used as pollinator line as it exhibit high heterosis with ‘Aushi’. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号