首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A growth trial was conducted to estimate the phosphorus requirement of European sea bass juveniles. Six experimental isonitrogenous and isoenergetic semi‐purified diets (casein based) were formulated to contain 0.48%, 0.65%, 0.77%, 0.86%, 1.05% and 1.25% phosphorus (diets D1, D2, D3, D4, D5 and D6 respectively). Dicalcium phosphate was used as dietary phosphorus source. Twelve groups of 25 fish of 10 g initial body weight were allocated to 55‐L tanks in a thermoregulated water recirculating system. Each experimental diet was assigned to duplicate groups of these fish. The trial lasted for 10 weeks and fish were fed two times a day, 6 days a week, to apparent visual satiation. At the end of the trial, final weight of fish fed diet D1 was significantly lower than that of the other groups, except of fish fed diet D4. Mortality of fish fed diet D1 was significantly higher than that of fish fed the other diets, except for diet D6. Feed efficiency and protein efficiency ratios were significantly lower with diet D1 than with the other diets. Nitrogen retention (% nitrogen intake) of fish fed diet D1 was significantly lower than in the other groups, except that of fish fed diet D4. Energy retention (% energy intake) was not significantly different among groups. At the end of the trial there were no differences in whole body composition among groups. Whole body phosphorus content averaged 0.72% (on a fresh weight basis) and was not significantly affected by dietary phosphorus content. Phosphorus retention averaged 6.1 g kg?1 weight gain and was not significantly different among groups. Phosphorus retention (% phosphorus intake) was significantly higher in fish fed diets D2 and D3 than in fish fed higher dietary phosphorus levels. Expressed per unit body weight per day, phosphorus retention was not significantly different among groups fed diets D2 to D6, while phosphorus losses linearly increased with dietary phosphorus intake. Results of this trial indicate that the phosphorus requirement of sea bass juveniles was satisfied with a diet containing 0.65% of phosphorus.  相似文献   

2.
A feeding trial was conducted in a recirculating system to determine the dietary protein requirement for juvenile black sea bass. Six isocaloric diets were formulated to contain varying levels of crude protein (CP) ranging from 36 to 56% (36, 40, 44, 48, 52, and 56%) by substituting a mixture of carbohydrates and lipid for fish meal. The feeding experiment was carried out in 18‐75 L aquaria stocked at a density of 15 juveniles (initial average weight 6.7 g) per tank. Fish were fed test diets in triplicate tanks to apparent satiation twice a day for 8 wk. Whole‐body proximate composition was analyzed after the feeding trial. After the feeding trial, weight gain and specific growth rate of fish fed the 44% CP diet were not significantly different from those fed the 48, 52, and 56% CP diets, but were significantly higher (P < 0.05) than those fed the 36 and 40% CP diets. Feed conversion efficiency and protein efficiency ratio were significantly affected by dietary protein level. The dietary requirement of protein for maximum growth of black sea bass juveniles, estimated using broken‐line regression analysis on weight gain, was 45.3% and maximum weight gain occurred at 52.6% based on polynomial regression analysis.  相似文献   

3.
The effect of dietary carbohydrate complexity on growth, feed utilization, and glycemia was studied in European sea bass juveniles. Four isonitrogenous (50% crude protein) and isolipidic (15% crude lipids) diets were formulated to contain 20% pregelatinized maize starch (PGS diet), dextrin (DEX diet), maltose (MAL diet), or glucose (GLU diet). No effect of dietary carbohydrate complexity on growth was noticed. Feed efficiency and protein efficiency ratio were lower in fish fed the GLU diet than in the other groups, whereas the opposite was observed for feed intake. Plasma glucose peaked 3–4 h after feeding in fish fed the MAL and GLU diets, whereas in fish fed the PGS and DEX diets the peak was reached 5–6 h after feeding. Peak plasma glucose concentration (13 mmol/L) was higher in fish fed the GLU diet than the other diets (9 mmol/L). Shorter hyperglycemia duration was observed in fish fed the MALT and GLU diets (6 h) than the PGS and DEX diets (10 h). Complex carbohydrates delayed plasma glucose concentration peak compared with simple sugars, whereas the opposite was observed for hyperglycemia duration. Overall, dietary maltose, dextrin, and starch were apparently better utilized as energy source than glucose by European sea bass juveniles.  相似文献   

4.
The effect of fish meal (FM) substitution with fermented soybean meal (FSBM) in the diets of the carnivorous marine fish, black sea bream, Acanthopagrus schlegelii, was investigated. An 8‐wk feeding trial was conducted with black sea bream (11.82 ± 0.32 g; mean initial weight) in indoor flow‐through fiberglass tanks (25 fish per tank). Six isonitrogenous and isoenergetic diets were formulated, in which FM was replaced by FSBM at 0% (control diet), 10% (FSBM10), 20% (FSBM20), 30% (FSBM30), 40% (FSBM40), or 50% (FSBM50), respectively. Each diet was fed to triplicate groups of fish twice daily to apparent satiation. The results showed that there was no difference in survival of black sea bream during the feeding trial. Fish fed the FSBM10 or FSBM20 diet showed comparable growth performance compared with fish fed the control diet (P > 0.05), whereas more than 30% replacement of FM adversely affected weight gain and specific growth rate (P < 0.05). Feed intake was significantly lower for fish fed the FSBM50 diet compared with fish fed the control diet. Feed conversion ratio (FCR) tended to increase with increasing dietary FSBM with the poorest FCR observed for fish fed the FSBM50 diet. Protein efficiency ratio and protein productive values showed similar patterns. Apparent digestibility of nutrients significantly decreased with increasing dietary FSBM level. With the exception of protein content, no significant differences in whole body and dorsal muscle composition were observed in fish fed the various diets. Fish fed the FSBM50 diet had significantly lower intraperitoneal ratio than fish fed the control or FSBM10 diet. Hepatosomatic index and condition factor were unaffected by dietary treatments. This study showed that up to 20% of dietary FM protein could be replaced by FSBM protein in the diets of juvenile black sea bream.  相似文献   

5.
张静雅  任幸  李伟业  柳敏海  王力  王岩 《水产学报》2020,44(11):1873-1882
通过10周生长实验评价了利用棉籽浓缩蛋白替代条纹锯鮨(Centropristis striata)饲料鱼粉的潜力。采用单因素实验设计,设4个鱼粉替代水平。对照饲料(C)中鱼粉含量为35%,通过添加棉籽浓缩蛋白分别替代饲料C中鱼粉的40%(R40)、60%(R60)和80%(R80)。每个处理设3个重复。实验鱼初始体重为29.5 ± 0.5g。实验期间,每天分两次按饱食量投喂实验饲料。结果表明:利用棉籽浓缩蛋白替代饲料鱼粉对鱼摄食、生长、饲料利用效率、鱼体组成和养殖废物(氮、磷和碳)排放量无显著影响,但单位鱼产量鱼粉消耗量(RCP)随饲料鱼粉含量下降而降低。基于生长、饲料成本、对环境的影响和RCP进行综合分析结果表明投喂饲料R80时养殖效益有别于投喂饲料C、R40和R60时。上述结果显示通过添加棉籽浓缩蛋白可将条纹锯鮨饲料鱼粉含量降低至7%。  相似文献   

6.
The aim of this study was to evaluate the effect of dietary ribonucleic acid (RNA) on the performance of European sea bass juveniles. Two diets containing fish meal as the only nitrogen source were formulated with 39% or 50% of crude protein (LP and HP diet, respectively). Two other diets were formulated similarly to LP diet, but included yeast-RNA extract at 6.2% and 12.4% levels (LP6 and LP12 diets, respectively) by replacing dextrin. Total nitrogen content of the LP12 diet was equivalent to that of the HP diet. The four experimental diets were isoenergetic (22 kJ GE g−1 DM). Triplicate groups of 25 fish (IBW=13 g) were fed the test diets for 10 weeks. The reduction of dietary protein level did not significantly affect growth rate but significantly increased feed intake and decreased feed efficiency. However, nitrogen retention (%N intake) was significantly improved with the decrease in dietary protein level. Dietary RNA incorporation did not affect feed intake or feed efficiency, although it reduced growth rate of fish fed the highest dietary RNA level. Nitrogen retention (%N intake) significantly decreased with the dietary supplementation of RNA. Dry matter, nitrogen and energy digestibilities were not significantly affected by dietary treatments. Final whole-body composition was also unaffected by dietary treatments, except for ash content which was significantly higher in the LP12 group. Hepatosomatic index was significantly increased by the dietary incorporation of RNA. The dietary supplementation of RNA had no protein sparing effect and significantly reduced energy retention. It may be concluded that dietary RNA supplementation had no nutritive value for European sea bass.  相似文献   

7.
An 8‐week trial was conducted to compare the efficacy of a chelated copper (Cu) with the inorganic Cu (CuSO4), in the diet of Japanese sea bass (Lateolabrax japonicus). Six diets were prepared based on two basal diets (semi‐purified or practical) at two Cu inclusion levels (0 and 4 mg kg?1 from or chelated‐Cu), accordingly named as S0, SI4, SM4, P0, PI4 and PM4 respectively. Each diet was fed to quadruplicate groups of Japanese sea bass (initial weight: 65.0 ± 0.03 g) during the trial. Fish fed practical diets had higher feed intake, specific growth rate, protein efficiency rate (PER), liver Cu accumulation, liver Na+K+‐ATPase and plasma alkaline phosphatase, but lower hepatosomatic index than the groups fed semi‐purified diets (< 0.05). Higher PER was exhibited by fish fed chelated‐Cu diets than that of fish fed CuSO4 diets (< 0.05). Although liver Cu accumulation was significantly higher in fish fed practical diets,, liver Cu content increased significantly with increasing dietary copper levels only in fish fed semipurified diets. Chelated‐Cu has higher efficiency than CuSO4 when fed in practical diets. Poor growth performance of fish fed semipurified diets might induce underestimating the nutrient requirement of Japanese sea bass.  相似文献   

8.
Juvenile sea bream were fed on diets containing 0.0, 2.0 or 4.0 g kg?1 of a soybean trypsin inhibitor (SBTI) for 30 days. The growth performance, total protease activity and intestinal histology were studied after 0, 15 and 30 days of dietary treatment. No significant differences were found in the weight gain, specific growth rate (SGR) and feed conversion rate in fish fed on inhibitor‐supplemented diets when compared with those fed on an inhibitor‐free diet. Only the SGR at day 15 decreased significantly with protease inhibitor inclusion, although this effect was not observed at day 30. In relation to proteolytic activity at day 15, the total protease activity in the distal intestine decreased in fish fed on inhibitor‐supplemented diets. Zymograms of these extracts showed that the SBTI reduced the intensity of some proteolytic fractions in the distal intestine. A noticeable reduction in the protease activity of the intestinal content in fish fed on the highest level of soybean inhibitor (4.0 g kg?1) was also observed. However, at day 30, the inhibition effect on these active bands was not detected, and the total protease activity was similar to that in fish fed on an inhibitor‐free diet. Histological examination revealed no perceptible differences in the intestinal structure between any of the diet groups. In addition, all fish were maintained under experimentation for 10 more days and fed on an inhibitor‐free diet to determine whether the possible effects caused by the protease inhibitor could be reverted. The administration of SBTI‐supplemented diets did not affect sea bream growth performance or intestine histology after 30 days, and only a decrease in the total alkaline protease activity was found at day 15.  相似文献   

9.
The inclusion of phytogenics in fish feed is a promising strategy to compensate for the negative performance effects of replacing fishmeal (FM) with vegetable sources. The present work assessed the interactive effects of different dietary FM levels (22.5 and 10% of formulation) and the supplementation of a commercial blend of anise, citrus, and oregano essential oils (Digestarom PEP M.G.E 150) on European sea bass, Dicentrarchus labrax growth performance, nutrient utilization, gut morphology, antioxidant status, and immunological response over a 60‐day growth trial. Results showed decreased growth and protein efficiency ratio and increased feed conversion ratio with a low dietary FM level. In contrast, supplementation of the phytogenic product demonstrated improved performance and nutrient utilization together with increased protein and energy retention. Supplementation with the plant essential oils fully compensated for the negative intestinal changes observed in sea bass fed a low‐FM diet but showed little improvement in fish immunological response, except for the 30% increase in lysozyme activity observed in fish fed the low FM‐supplemented diet compared to those fed the standard high‐FM diet. Overall, this study supports the use of this phytogenic product in low‐FM diets as a possible tool to decrease feed costs associated with FM without compromising fish performance, nutrient utilization, and health.  相似文献   

10.
Sea bass (Dicentrarchus labrax) larvae were fed from day 15 to day 35 with 4 isoenergetic formulated diets that varied in protein (30, 40, 50, 60%) and carbohydrate (37, 27, 17, 7%) content. The diets were designated as P30, P40, P50 and P60, respectively. Best growth and survival were noted for P50 larvae. Poor growth and survival were observed for P30 larvae. The specific activity of amylase increased in direct relation to the dietary carbohydrate level from day 18 onwards. This increase was the result of extensive amylase synthesis. Trypsin activity was positively correlated with dietary protein level only at day 35. This study shows that the mechanisms involved in amylase regulation are efficient in very young sea bass larvae, while those related to trypsin appear later in ontogeny and thus suggests an age-dependent regulation of enzyme synthesis.  相似文献   

11.
A 12‐week growth trial was performed to evaluate the effect of lupin seed meal as a protein source in diets for gilthead sea bream (Sparus aurata) juveniles. Six experimental diets were formulated to be isonitrogenous and isoenergetic and to contain 10%, 20% and 30% of raw lupin (Lupinus angustifolius) seed meal protein or 20% and 30% lupin (L. angustifolius) seed meal processed by infrared radiation (micronized) in place of fish meal protein, the only protein source of the control diet. Fish accepted all diets well and no significant differences in feed utilization among groups were noticed during the trial. Final weight of fish fed the experimental diets was identical or higher than the control group. Final weight of fish fed diets including 20% micronized lupin protein was even significantly higher than that of fish fed the fish meal‐based control diet. Moreover, at the same dietary lupin seed meal protein inclusion levels, final weight of fish fed diets including micronized lupin was significantly higher than with raw lupin. A trend was also noticed for a decrease of final weight with the increase in lupin seed meal in the diets. At the end of the trial no significant differences in proximate whole‐body composition, hepatosomatic and visceral indices were observed among groups. It is concluded that lupin seed meal can replace up to 30% fish meal protein in diets for gilthead sea bream juveniles with no negative effects on growth performance. Furthermore, micronization of lupin seeds improves its dietary value for gilthead sea bream juveniles. At the same dietary lupin inclusion levels, diets including micronized lupin seeds promote significantly higher growth rates than raw lupin seeds.  相似文献   

12.
To investigate potential use of increasing nutritional density of diets for rapid growth of warm‐water fishes, a feeding trial was conducted in which growth performance, body indexes, and whole‐body composition of juvenile hybrid striped bass fed diets comprising protein (49, 54, and 59%), lipid (16, 20, 23, and 28%), and energy (22.0–25.1 kJ/g) concentrations beyond established minimum levels were compared to those of fish fed a more typical commercial reference diet (37.5% crude protein, 10.5% crude lipid, and 19.6 kJ/g energy on a dry matter basis). A subset of the experimental diets and the commercial reference diet also were fed to juvenile red drum. After 6 wk of feeding, hybrid striped bass fed the high‐protein and high‐lipid diets showed much greater growth performance compared to fish fed the commercial diet. Increasing dietary protein level, but not lipid level, tended (P ≤ 0.1) to enhance weight gain and feed efficiency of hybrid striped bass. Hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, and whole‐body protein were significantly (P < 0.01) influenced by dietary protein level. The dietary lipid and associated energy level had significant negative linear effects on daily feed intake. Linear regression analysis showed that dietary energy : protein ratio, largely influenced by dietary protein level, moderately but significantly influenced weight gain, HSI, IPF ratio, and whole‐body protein of hybrid striped bass and red drum. Red drum grew very similar to hybrid striped bass in response to the experimental diets. However, significant differences in HSI, IPF ratio, whole‐body protein, lipid, moisture, and ash between hybrid striped bass and red drum were observed, indicating species differences in protein and energy partitioning. In particular, the excessive lipid in the diet increased HSI and whole‐body lipid of red drum but not of hybrid striped bass.  相似文献   

13.
This study evaluated the potential of using poultry by‐product meal (PBM) to replace fish meal in diets for Japanese sea bass, Lateolabrax japonicus. Fish (initial body weight 8.5 g fish?1) were fed six isoproteic and isoenergetic diets in which fish meal level was reduced from 400 g kg?1 (diet C) to 320 (diet PM1), 240 (diet PM2), 160 (diet PM3), 80 (diet PM4) or 0 g kg?1 (diet PM5), using PBM as the fish meal substitute. The weight gain (WG), specific growth rate, nitrogen retention efficiency, energy retention efficiency and retention efficiency of indispensable amino acids were higher in fish fed PM1, PM2, PM3 and PM4 diets than in fish fed diets C or PM5. The phosphorus retention efficiency was lower in fish fed PM3, PM4 and PM5 diets than in fish fed C, PM1 or PM2 diets. Fish fed diet PM5 had the highest feed conversion ratio, total nitrogen waste output (TNW) and total phosphorus waste output (TPW) among the treatments. No significant differences were found in the hepatosomatic index or body contents of moisture, lipid and ash among the treatments. Fish fed diet C had lower condition factor and viscerosomatic index than those of fish fed PM1, PM3, PM4 and PM5 diets. The results of this study indicate that using fish meal and PBM in combination as the dietary protein source produced more benefits in the growth and feed utilization of Japanese sea bass than did using fish meal or PBM alone as the dietary protein source. The dietary fish meal level for Japanese sea bass can be reduced to 80 g kg?1 if PBM is used as a fish meal substitute.  相似文献   

14.
Two feeding trials were conducted to determine the digestibility of a casein-based semi-purified diet and the effects of different protein levels on growth and protein use of spotted sand bass Paralabrax maculatofasciatus juveniles. For trial I, a semipurified diet with vitamin-free casein as the sole source of protein was fed three times a day to apparent satiation, for a period of 20 d. Feces were collected by siphoning each tank. The digestibility of the experimental diet was high: 97% for protein, 89% for lipids, and 84% for gross energy, whereas that of organic matter was 78%. For trial II, seven diets were formulated using vitamin-free casein at graded levels (25, 30, 35, 40, 45, 50, and 55% protein). Triplicate tanks for each dietary treatment were stocked with fish and fed by hand three times a day to apparent satiation for 6 wk. Perfomance of fish fed the different diets was evaluated for survival, percent weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio. Survival was 100% for all treatments. Growth of spotted sand bass juveniles increased as the dietary protein increased, but no evidence of reaching a plateau was found. The daily feed intake values showed an inverse relation to the protein content of the diets. The feed conversion ratio did not differ among diets containing 40% protein or greater. The results indicate that spotted sand bass juveniles with 2.5-g mean weight need at least 55% dietary protein for best growth when casein is the sole protein source. However, in terms of feed conversion ratio, the requirement apparently could be lower.  相似文献   

15.
Two primary ways to achieve low‐cost, nutritionally efficacious diets for sunshine bass (Morone chrysops × M. saxatilis) are to decrease crude protein (CP) levels and the use alternative animal or plant ingredients to partially, or totally, replace fish meal. A 459‐day feeding trial was conducted with juvenile (35 g) sunshine bass to evaluate growth, feed efficiency, size distribution at harvest, immune function status and body composition when fed diets containing soybean meal (SBM), feed‐grade poultry by‐product meal (PBM), and supplemental methionine as complete replacements for menhaden fish meal (MFM) at 300 g kg?1 diet, while simultaneously reducing dietary crude protein (CP; 320, 360, and 400 g kg?1). The feeding trial was conducted in 12, 0.04‐ha earthen ponds stocked at a rate of 300 per pond (3000/ac). At 400 g kg?1 dietary protein, there were no differences in responses between fish fed the diet containing MFM or the diet in which MFM was completely replaced with PBM and supplemental methionine on a digestible protein basis. However, final mean weight, percentage weight gain, specific growth rate, and protein efficiency ratio were linearly related (P < 0.10) to dietary protein level in the diets while no significant differences were found in feed intake and feed conversion ratio. The expected odds of fish at harvest being classified into larger size categories (> 680 g) decreased as dietary protein level decreased based on ordinal logistic regression. There were no significant relationships between body compositional indices and dietary treatments. Body fat ranged from 56 g kg?1 to 62 g kg?1, single fillets ranged from 28% to 30%, and livers ranged from 2.45% to 2.62% of body weight across treatments. Fillet protein concentration was positively linear and quadratic for protein level in the diet but fillet moisture, lipid and ash did not differ among diets. Total serum protein, immunoglobulin and lysozyme activity decreased linearly with decreasing diet protein level. These results suggest that complete replacement of MFM with feed grade PBM and supplemental methionine is possible in diets for sunshine bass and that further reductions in dietary protein level may be possible with amino acid supplementation.  相似文献   

16.
This study was conducted to evaluate the effects of dietary sodium diformate (NaDF) on growth performance, gut microflora, digestive enzyme activities and immune response parameters of Asian sea bass (Lates calcarifer) juveniles. Fish with initial weight of 12.5 ± 0.4 g were fed with five experimental diets contained 0.0 (control), 5, 10.0, 15.0 and 20 g NaDF kg?1 in triplicate for 6 weeks. Fish fed diet containing 5 g NaDF kg?1 had significantly the highest final body weight and feed intake among different treatments. The gut total viable bacterial counts gradually decreased with increasing dietary NaDF level. Specific activity of chymotrypsin improved in fish fed diets administered with NaDF compared to the control group. Fish fed 5 g NaDF kg?1 diet showed the highest serum lysozyme level among different treatments. The serum classical pathway activity of complement showed higher level in fish fed diets contained 5 and 10 g NaDF kg?1 than other groups. According to break‐point regression method analysis, the optimum inclusion of dietary NaDF in L. calcarifer juveniles was estimated between 4.6 and 5.1 g/kg, when specific growth rate and feed conversion ratio were plotted against dietary NaDF levels.  相似文献   

17.
Growth, reproductive performance, muscle and egg composition were investigated in grass carp, Ctenopharyngodon idella (Valenciennnes), fed hydrilla or formulated diets with varying protein levels. Five experimental diets, with varying levels (20%, 25%, 30%, 35% and 40%) of crude protein (CP), were used. One of the fish groups was fed hydrilla. Fish (44.1±0.3 cm; 913±9 g) were stocked (20 tank?1) in outdoor concrete tanks (20 × 10 × 1.5 m) in duplicate, and fed to satiation, twice daily, at 09:00 and 17:00 hours for the experimental duration of 360 days. High (P<0.05) weight gain was recorded in fish fed 30% and 35% CP diets. However, values for gonadosomatic index (GSI), egg diameter, relative fecundity (eggs kg?1 body weight), fertilizability and hatchability (%) were comparable (P>0.05) in fish at ≥25% of dietary protein intake. Hydrilla‐fed fish exhibited lower (P<0.05) values for the measured parameters. Crude protein content in muscle increased with dietary protein level. Highest (P<0.05) muscle protein was obtained in fish fed 35% CP diet. Muscle fat was comparable (P>0.05) among fish receiving formulated diets. Ash content was not significantly (P>0.05) different among fish of different dietary groups. Moisture content in fish fed formulated diets, with the exception of 20% CP diet, did not vary significantly (P>0.05). Eggs of fish fed formulated diets contained higher CP and fat contents than those of hydrilla‐fed fish. High (P<0.05) moisture content was noted in the eggs of hydrilla‐fed fish. Ctenopharyngodon idella fed formulated diet, with a minimum of 25% CP, showed better reproductive performance than those fed hydrilla.  相似文献   

18.
A feeding trial was conducted to evaluate dietary protein and lipid requirements for juvenile largemouth bass, Micropterus salmoides. A 4 × 2‐factorial layout included four protein (420, 450, 480, and 510 g/kg) and two lipid (80 and 120 g/kg) levels. Fish (initial weight 8.7 g) were fed the test diets for 8 wk. Weight gain, feed intake, feed conversion ratio, hepatosomatic index, and body composition were dependent on dietary protein level. Nitrogen retention efficiency was independent of dietary protein level, lipid level, and their interaction. Weight gain was higher in fish fed the diet containing 480–510 g/kg crude protein than in fish fed the diet containing 420–450 g/kg crude protein at two dietary lipid levels. The feed intake and weight gain were higher in fish fed the diet containing 484 g/kg crude protein and 115 g/kg crude lipid than in fish fed the diet containing 478 g/kg crude protein and 77 g/kg crude lipid. This study indicated that the suitable dietary protein and lipid levels for largemouth bass are 480–510 g/kg and 120 g/kg, respectively.  相似文献   

19.
An experiment was performed to evaluate the growth performance and feed utilization of white sea bream juveniles (initial weight, 14 g) fed diets of cornstarch of different origins (normal and waxy). Four experimental diets were formulated to be isolipidic and to contain normal and waxy starch (26% or 42%) at two protein (36% and 48%) levels. The growth trial lasted 15 weeks and, at the end of the trial, there were no differences in the growth rate among groups. At the highest dietary starch level – but not at the lowest level – the feed efficiency ratio and PER were significantly lower in fish fed the waxy starch diet. Protein efficiency ratio and N retention (% N intake) were not affected by starch source but were significantly higher in the diets with a lower protein content. No differences in energy retention (% energy intake) were observed among groups. Except for the protein content, which was significantly higher in fish fed diets with a high protein level, no other differences were observed among groups in whole‐body composition. Hepatosomatic Index (HSI) was significantly higher in fish fed high‐starch diets, but there were no differences in visceral indices among groups. The apparent digestibility coefficients of protein and energy were not affected by the dietary starch level, but were significantly lower in diets including waxy starch. Glutamate dehydrogenase activity was higher in fish fed high‐protein diets, but it was not affected by dietary starch source. Alanine aminotransferase and aspartate aminotransferase activities were not different among groups. Glucose 6‐phosphate dehydrogenase, malic enzyme and fatty acid synthetase activities were not affected by the dietary starch level, but were significantly lower in fish fed waxy starch. The results of this study indicate that diets for white sea bream juveniles may include up to 42% starch without negative effects on fish performance. Moreover, normal starch appears to be more efficiently used as an energy source than waxy starch.  相似文献   

20.
The 8‐week experiment was conducted to evaluate the effects of partial replacement of fish meal (FM) with soybean protein concentrate (SPC) on juvenile black sea bream, Acanthopagrus schlegelii (10.70 ± 0.04 g). Diets were formulated to replace FM protein by SPC at 0, 8, 16, 24, 32 or 40% (designated as T1, T2, T3, T4, T5 and T6, respectively). Diets except T1 were supplemented with phytase at 2000 phytase activity U kg?1. The results showed that survival rate, growth performance and feed utilization were not significantly affected by increasing dietary SPC. Fish fed diet T3 had higher feed intake compared to those fed T1, T2 and T5 diets. Whole body compositions of black sea bream were significantly influenced by SPC replacing FM except for protein, ash and phosphorus content. Condition factor of fish was significantly lower in T2 than that of fish in T3 group. Apparent digestibility coefficients (ADCs) of dry matter was higher in fish fed T6 diet than those of fish fed T1 and T2 diets, ADCs of phosphorus increased with dietary SPC level up to T3 and then decreased. The results obtained in this study indicate that FM protein could be effectively replaced by SPC protein with phytase in diet of black sea bream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号