首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIM To investigate the effect of mangiferin on hypoxia/reoxygenation (H/R)-induced injury of human myocardial cells and its mechanism. METHODS Human myocardial AC16 cells were divided into normal group, H/R group and H/R + mangiferin (50, 100 and 200 μmol/L) treatment groups. The mRNA and protein expression levels of Kelch-like epichlorohydrin-associated protein-1 (Keap-1), Bax, Bcl-2, caspase-3, caspase-9 and superoxide dismutase 2 (SOD2) were detected by RT-qPCR and Western blot, respectively. The protein expression of nuclear factor E2-related factor 2 (Nrf-2) in nucleus was determined by Western blot. The expression of microRNA-432-3p (miR-432-3p) was detected by RT-qPCR. The generation of reactive oxygen speciess (ROS) in the cells was measured by DCFH-DA probing. The cell viability was measured by CCK-8 assay. Apoptosis was analyzed by flow cytometry. RESULTS No significant difference in the expression of miR-432-3p and Keap-1 between normal group and H/R group was observed. Compared with normal group, the nuclear translocation of Nrf-2, the ROS level, and the mRNA and protein expression of Bax, caspase-3 and caspase-9 were significantly increased in H/R group (P<0.05). The mRNA and protein expression of SOD2 and Bcl-2, and the cell viability significantly decreased in H/R group compared with normal group, while the apoptosis was increased significantly (P<0.05). Treatment with mangiferin resulted in an increase in the miR-432-3p expression and a decrease in the ROS level, and the expression of Keap-1, Bax, caspase-3 and caspase-9 was also inhibited as compared with H/R group (P<0.05). The Nrf-2 nuclear translocation, and the protein levels of SOD2 and Bcl-2 in mangiferin treatment groups were significantly increased as compared with H/R group (P<0.05). The cell viability was increased significantly, and the apoptosis was decreased significantly in mangiferin treatment groups as compared with H/R group (P<0.05). The effects of mangiferin in middle- and high-dose groups were better than those in low-dose group, and no significant difference between middle- and high-dose groups was found. CONCLUSION Mangiferin inhibits the decrease in myocardial cell viability and the apoptosis induced by H/R injury. The mechanism may be related to the up-regulation of Nrf-2 antioxidant stress effect via enhancing the expression of miR-432-3p.  相似文献   

2.
AIM: To observe the effect of rapamycin (Rapa) on human neuroblastoma SH-SY5Y cell injury induced by oxygen-glucose deprivation (OGD), and to explore the role of autophagy in this process. METHODS: The SH-SY5Y cells were randomly divided into 4 groups:normal control group:the cells were cultured without OGD treatment; Rapa group:the cells were pretreated with Rapa for 1 h; OGD group:the culture medium was replaced by glucose-free medium and the cells were transferred to a humidified incubation chamber flushed by a gas mixture of 1% O2, 94% N2 and 5% CO2 for 12 h; Rapa+OGD group:the cultured cells were treated with Rapa for 1 h, and then were given the same treatments as those in OGD group. The cell viability was assessed by MTT assay. The degree of the cell damage was evaluated by determining the leakage of lactate dehydrogenase (LDH). The enzyme activity of caspase-3 was detected. TUNEL staining were used to detect the variation of cell apoptosis. The protein levels of apoptosis-related proteins Bax and Bcl-2, autophagy-related protein beclin-1 and autophagy marker protein LC3B were determined by Western blot. RESULTS: Compared with OGD group, the viability of the SH-SY5Y cells was significantly increased, and the activity of caspase-3 was significantly reduced in Rapa+OGD group (P<0.05). The SH-SY5Y cell injury was apparent after OGD with a great increase in the apoptotic rate (P<0.05). Compared with OGD group, the apoptotic rate significantly decreased in Rapa+OGD group (P<0.05). Compared with control group, the protein level of Bcl-2 was significantly decreased (P<0.05) and the protein level of Bax was significantly increased in OGD group. Compared with OGD group, the levels of Bcl-2, beclin-1 and LC3B-Ⅱ were significantly increased and the protein level of Bax was significantly increased in Rapa+OGD group (P<0.05). CONCLUSION: Rapamycin has a protective effect on in vitro cultured SH-SY5Y cells injured by OGD. The mechanism may be related to the promotion of autophagy.  相似文献   

3.
YANG Qing-yu  GAO Na 《园艺学报》2016,32(9):1627-1634
AIM: To observe the anti-apoptosis effect of liraglutide on the islet through microRNA-375 (miR-375) for providing additional pharmacodynamic evidence for its clinical application. METHODS: For in vitro study, C57BL/KsJ-db/m mice aged 8 weeks served as normal control group. A total of 40 male genetically diabetic C57BL/KsJ-db/db mice at the same age were randomly divided into diabetic control group (the db/db mice were injected subcutaneously with equivalent amount of saline) and liraglutide group (the db/db mice were injected subcutaneously with liraglutide at dose of 300 μg·kg-1·d-1). After 8 weeks of administration, body weight (BW) was measured and blood was collected for detection of fasting blood glucose (FBG), fasting blood insulin (FINS), triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). Before sacrifice, intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) were conducted. The histopathological features in the islet tissue were examined with HE staining. The apoptosis in the islet tissue was detected by TUNEL staining. The protein levels of caspase-3, Bcl-2 and Bax were determined by Western blot. The level of miR-375 in the islet tissue was detected by qPCR. Forin vitro study, the MIN-6 cells were cultured and divided into control group (incubated with equivalent amount of solvent), miR-375 mimic group and miR-375 mimic+ liraglutide group. The cell viability was examined by MTT assay. The protein levels of caspase-3, Bcl-2 and Bax were detected by Western blot. RESULTS: In thein vitro study, compared with control group, the levels of BW, FBG, FINS, TC, TG and LDL-C were decreased significantly in liraglutide group. The islet apoptosis was reduced by the administration of liraglutide. The expression of Bcl-2 was up-regulated significantly, while the protein levels of caspase-3 and Bax were down-regulated significantly in liraglutide group. The level of miR-375 was decreased significantly. In the in vitro study, the cell viability was decreased in miR-375 mimic group and increased in miR-375 mimic+liraglutide group. Moreover, the expression of Bcl-2 was decreased and the protein levels of caspase-3 and Bax were increased with the incubation of miR-375 mimic, while the expression of Bcl-2 was increased and the protein levels of caspase-3 and Bax were decreased with the co-incubation of miR-375 mimic and liraglutide. CONCLUSION: Liraglutide attenuates islet apotosis, and the mechanism may be associated with its effects of reducing the elevated level of miR-375 in islet tissues.  相似文献   

4.
AIM: To investigate the role of microRNA-486-5p (miR-486-5p) in the apoptosis of human bone marrow mesenchymal stem cells (hMSCs) induced by hydrogen peroxide (H2O2). METHODS: The hMSCs were cultured in vitro and exposed to serum-free medium and H2O2 (10 mmol/L). The changes of miR-486-5p expression in oxidative stress-related apoptosis of hMSCs were measured by real-time PCR. The hMSCs were transfected with miR-486-5p mimic or inhibitor at concentration of 30 nmol/L by Lipofectamine RNAiMAX. The effect of miR-486-5p on H2O2-induced decrease in cell viability was evaluated by MTT assay. Hoechst 33342 staining and flow cytometry were applied to determine the role of miR-486-5p in the apoptosis of hMSCs. The protein expression was evaluated by Western blotting. Caspase-3 activity was determined using a caspase-3 activity kit. RESULTS: Compared with control group, the expression of miR-486-5p significantly decreased after treated with H2O2 (P<0.05). In addition, over-expression of miR-486-5p in the hMSCs reduced the cell viability, accelerated apoptosis, down-regulated Bcl-2/Bax ratio, caspase-3 enzyme precursor content and phosphorylation of Akt, and activated caspase-3 activity. Conversely, down-regulation of miR-486-5p significantly inhibited H2O2-induced cell apoptosis and the caspase-3 activity, increased cell viability and up-regulated Bcl-2/Bax ratio and phosphorylation level of Akt. CONCLUSION: Over-expression of miR-486-5p promotes H2O2-induced hMSCs apoptosis, and repression of miR-486-5p protects hMSCs from H2O2-induced cellular apoptosis, which may be mediated by regulating Akt signaling pathway.  相似文献   

5.
AIM: To investigate the effect of cobalt chloride (CoCl2) on the apoptosis of neural stem cells (NSCs) and the expression of microRNA-26a (miR-26a) in vitro, and to explore the mechanisms of NSC apoptosis induced by CoCl2. METHODS: NSCs were exposed to CoCl2 at different doses (200~600 μmol/L) for 24 h. The cell viability and apoptosis were measured by CCK-8 assay and TUNEL method. The expression of miR-26a-3p, miR-26a-5p, GSK-3β, caspase-3, Bcl-2 and Bax was examined by real-time PCR. The protein levels of Bcl-2 and Bax were detected by Western blotting. RESULTS: The cell viability was inhibited and the apoptosis of NSCs was increased significantly by CoCl2 in a dose-dependent manner (P<0.05). CoCl2 at concentration of 400 μmol/L for 24 h was used to induce apoptosis and the expression of miR-26a was down-regulated compared with control (P<0.05). Exposure to CoCl2 at concentration of 400 μmol/L up-regulated the expression of GSK-3β, caspase-3 and Bax, down-regulated the expression of Bcl-2 and Bcl-2/Bax (P<0.05). CONCLUSION: CoCl2 at concentration of 400 μmol/L induces the apoptosis of NSCs obviously. CoCl2 may induce the NSC apoptosis by mitochondrial apoptotic pathway. Declining miR-26a may be related to NSC apoptosis.  相似文献   

6.
AIM: To investigate the effect of reactive oxygen species (ROS) on the apoptosis of HepG2 cells induced by artesunate. METHODS: The effect of artesunate on the viability of HepG2 cells was measured by MTT assay. The morphological changes of the apoptotic cells were observed by the method of Hoechst 33258 fluorescence staining.The apoptosis of HepG2 cells was analyzed by flow cytometry. DCFH-DA was used to detect the changes of ROS generation during the process of apoptosis. The protein levels of Bax, Bcl-2, cleaved caspase-3 and cytochrome C (Cyt C) were determined by Western blot. HepG2 cells were pretreated with apocynin and then Western blot was used to detect the expression of p47phox and p22phox, and ROS changes were analyzed by flow cytometry. RESULTS: Compare with control group, the cell viability was obviously inhibited after treatment with artesunate for 24 h (P<0.05). The nuclei were densely stained, and the proportion of apoptotic cells was increased (P<0.05). ROS was increased significantly (P<0.05). The results of Western blot demonstrated that the expression level of Bax was increased, Bcl-2 was decreased, the ratio of Bax/Bcl-2 was increased, and the protein levels of cleaved caspase-3 and Cyt C were increased. Pretreatment with apocynin reduced the expression of p47phox and p22phox and the generation of ROS in the artesunate treatment group. CONCLUSION: Artesunate induces the apoptosis of HepG2 cells. The possible mechanism may be related to the increase in the generation of ROS.  相似文献   

7.
AIM To study the effects of extracts of Herba Taxilli (Sangjisheng, SJS) on the viability and apoptosis of osteoarthritic chondrocytes and the underlying mechanism. METHODS Human primary osteoarticular chondrocytes (RPOC) were divided into control group, interleukin-1β (IL-1β) group, IL-1β+low-dose extracts of SJS (SJS-L) group, IL-1β+medium-dose extracts of SJS (SJS-M) group, IL-1β+high-dose extracts of SJS (SJS-H) group, IL-1β+anti-miR-NC group, IL-1β+anti-miR-375 group, IL-1β+SJS-H+miR-NC group, IL-1β+SJS-H+miR-375 group. The cell viability was measured by MTT assay, apoptosis was analyzed by flow cytometry, miR-375 expression was detected by qPCR, and the protein levels of cyclin D1, P21, Bcl-2, Bax and caspase-3 were determined by Western blot. RESULTS Compared with control group, the viability of RPOC at 24 h, 48 h and 72 h and the protein expression levels of cyclin D1 and Bcl-2 were significantly decreased (P<0.05), the protein levels of P21, Bax and caspase-3, the apoptotic rate and the expression level of miR-375 were remarkably increased in IL-1β group(P<0.05). Compared with IL-1β group, the cell viability at 24 h, 48 h and 72 h and the protein expression of cyclin D1 in the RPOC were greatly increased (P<0.05), while the expression of P21 was significantly decreased in IL-1β+SJS-M group and IL-1β+SJS-H group(P<0.05).The apoptotic rate, Bax, caspase-3 protein and miR-375 expression were obviously decreased (P<0.05), and Bcl-2 protein level was significantly increased in IL-1β+SJS-H group compared with IL-1β group(P<0.05). Compared with IL-1β+anti-miR-NC group, the expression of miR-375, the protein levels of P21, Bax, caspase-3 and the apoptotic rate in the RPOC of IL-1β+anti-miR-375 group were markedly decreased (P<0.05), while the cell viability at 24 h, 48 h and 72 h and the protein levels of cyclin D1 and Bcl-2 were significantly increased (P<0.05). Over-expression of miR-375 reversed the effects of extracts of SJS on the viability and apoptosis of RPOC with IL-1β stimulation. CONCLUSION The extracts of Herba Taxilli promotes the viability and inhibits apoptosis of RPOC treated with IL-1β, which is related to the regulation of miR-375 expression.  相似文献   

8.
AIM:To investigate the effects of TSG101 siRNA on the growth and drug sensitivity of human neuroblastoma cell line SH-SY5Y.METHODS:The small interfering RNA eukaryotic expression vector specific to human TSG101 gene was constructed by gene recombination,then transfected into SH-SY5Y cells.Stable transfectants were obtained by G418 screening and further identified by RT-PCR and Western blotting analysis.The growth curve was made using MTT assay.Cell cycle distribution of the transfected cells was studied by flow cytometry and the proliferative indexes were calculated.The apoptosis after CDDP treatment was detected by DNA ladder and Annexin V/propidium iodide binding analyses.The expression of Bcl-2,Bax,P-gp and MRP were analyzed by Western blotting.RESULTS:mU6pro-TSG101 siRNA was successfully constructed and transfected into SH-SY5Y cells.As detected by MTT and flow cytometry,down-regulation of TSG101 significantly suppressed the proliferation of SH-SY5Y cells with a G1 cell cycle arrest,compared with that in control (P<0.05).As detected by DNA ladder and Annexin V/propidium iodide binding analyses,down-regulation of TSG101 significantly enhanced the sensitivity of SH-SY5Y cells to CDDP-induced apoptosis,compared with that in control (P<0.05).The expression of P-gp and Bcl-2 in transfected cells were decreased as compared with that in the control,while MRP and Bax were not.CONCLUSIONS:Down-regulation of TSG101 suppresses the proliferation of SH-SY5Y cells,and enhances the sensitivity of SH-SY5Y cells to conventional chemotherapeutic agents to a degree,suggesting TSG101 may be useful for gene therapy in the future.  相似文献   

9.
AIM To investigate the effect of nisin on apoptosis of human osteosarcoma MG63 cells and its related oxidative stress mechanism. METHODS The MG63 cells were cultured in the medium containing different concentrations of nisin with or without antioxidant N-acetyl-L-cysteine (NAC). The cell viability was measured by CCK-8 assay. Apoptosis was analyzed by flow cytometry with annexin-V/PI staining. The production of intracellular reactive oxygen species (ROS) was detected by redox-sensitive dye 2',7'-dichlorofluorescein diacetate (DCFH-DA). The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolyl carbocyanine iodide (JC-1) was used to detect the changes of mitochondrial membrane potential (MMP). The protein levels of apoptosis-associated molecules Bax, Bcl-2 and cleaved caspase-3 were determined by Western blot. RESULTS Nisin decreased the viability of MG63 cells and promoted the apoptosis in a dose-dependent manner. It also up-regulated the protein level of cleaved caspase-3, increased the protein expression ratio of Bax/Bcl-2, triggered a large amount of intracellular ROS generation and reduced the MMP (P<0.05). Moreover, antioxidant NAC significantly inhibited nisin-induced apoptosis of MG63 cells, down-regulated the protein level of cleaved caspase-3, decreased Bax/Bcl-2 ratio, reduced intracellular ROS level, and restored the MMP (P<0.05). CONCLUSION Nisin may promote oxidative stress in human osteosarcoma cells, activate mitochondrial apoptosis pathway, and eventually induce apoptosis.  相似文献   

10.
AIM: To investigate the effect of calcium-regulated heat stable protein 1 (CARHSP1) gene expression on the viability, apoptosis and expression of interleukin-6 (IL-6) and C-reactive protein (CRP) in vascular endothe-lial cells induced by hypoxia.METHODS: The protein expression of CARHSP1 was detected by Western blot in atherosclerotic plaques. Human umbilical vein endothelial cells (HUVECs) were treated with hypoxia, and the cells were divided into normal culture group, hypoxia group, hypoxia+CARHSP1-siRNA group and hypoxia+pcDNA3.1-CARHSP1 group. The viability and apoptotic rate of the HUVECs were measured by CCK-8 assay and flow cytometry, respectively. The mRNA expression of IL-6 and CRP was detected by RT-PCR. The protein levels of caspase-3, cleaved caspase-3, Bcl-2 and Bax were determined by Western blot.RESULTS: The protein expression of CARHSP1 in atherosclerotic plaques was significantly higher than that in control group (P<0.05). Hypoxia significantly increased the expression of CARHSP1. The cell viability and the protein expression of Bcl-2 were significantly lower in hypoxia group than those in normal culture group (P<0.05). The apoptotic rate and the protein levels of IL-6, CRP, cleaved caspase-3 and Bax were significantly higher than those in normal culture group (P<0.05). Compared with hypoxia group, the cell viability and protein expression of Bcl-2 were significantly increased in hypoxia+CARHSP1-siRNA group, while the apoptotic rate and the protein levels of IL-6, CRP, cleaved caspase-3 and Bax were decreased significantly (P<0.05). The cell viability and protein expression of Bcl-2 were decreased significantly in hypoxia+pcDNA3.1-CARHSP1 group, while the apoptotic rate and the protein le-vels of IL-6, CRP, cleaved caspase-3 and Bax were increased significantly (P<0.05).CONCLUSION: The expression of CARHSP1 is increased in atherosclerotic plaques, and inhibition of CARHSP1 expression improves the viability, reduces the apoptosis, and down-regulates the expression of IL-6 and CRP in the HUVECs. Over-expression of CARHSP1 exerts the opposite effect.  相似文献   

11.
AIM: To investigate the effects of exosomes secreted by pancreatic cancer cells on the viability and function of β cells and the possible mechanism. METHODS: ExoQuick-TC kit was used to extract exosomes in the supernatants of mouse pancreatic cancer Pan02 and MPC-83 cells, and the extracted exosomes were identified by transmission electron microscopy. Fluorescence-labeled exosomes were incubated with mouse insulinoma MIN6 cells for 48 h to detect whether exosomes secreted by pancreatic cancer cells were uptaken by MIN6 cells. MTT and glucose-stimulated insulin secretion (GSIS) assays were conducted to examine cell viability and insulin secretion of MIN6 cells after incubating with exosomes. The expression of miR-204 and Bcl-2 mRNA in MIN6 cells was detected by qPCR. The protein expression of Bcl-2, Bax, caspase-3 and cytochrome C (Cyt-C) in MIN6 cells was determined by Western blot. RESULTS: The results of transmission electron microscopy showed that both Pan02 cells and MPC-83 cells secreted exosomes, and Pan02 cells secreted more. The co-incubation results of fluorescence-labeled exosomes and MIN6 cells confirmed that MIN6 cells were able to ingest large amounts of exosomes secreted by pancreatic cancer cells. The results of MTT and GSIS assays showed that the viability and the level of high glucose-stimulated insulin secretion of MIN6 cells in exosome treatment group significantly decreased compared with nontreatment group (P<0.01). The results of qPCR showed that the exosomes secreted by pancreatic cancer cells were rich in miR-204, and the mRNA expression of Bcl-2 in MIN6 cells was significantly down-regulated by exosome incubation (P<0.01). The results of Western blot showed that the protein expression of Bcl-2 in the MIN6 cells treated with exosomes was significantly down-regulated (P<0.05), and the protein levels of Bax, cleaved caspase-3 and Cyt-C in exosomes treatment group were significantly up-regulated (P<0.01). CONCLUSION: Pancreatic cancer cells secrete exosomes. The exosomes secreted by pancreatic cancer cells are ingested by β cells, and reduce the viability and insulin secretion of β cells. The mechanism may be related to the increase in exosomal miR-204 in the β cells. Increasing miR-204 may inhibit the expression of Bcl-2 and promote the activation of mitochondrial apoptosis in β cells.  相似文献   

12.
AIM: To study the effect of microRNA (miR)-24 on chemotherapy sensitivity and its possible mechanisms in human lung adenocarcinoma A549 cells. METHODS: The expression of miR-24 in the A549 cells and A549/DDP cells was determined by real-time PCR. Transfection of miR-24 inhibitor was used to down-regulate the miR-24 level in the A549/DDP cells. The viability and apoptosis rate were measured by CCK-8 assay and flow cytometry, respectively. The protein levels of Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9, cytochrome C (Cyt C), phosphorylated extracellular signal regulated kinase (p-ERK) and P53 were detected by Western blot. Luciferase reporter assay was used to predict and identify the target genes of miR-24. RESULTS: The expression of miR-24 was significantly higher in the A549/DDP cells than that in the A549 cells (P<0.05). miR-24 inhibitor induced cell apoptosis and increased the sensitivity of the A549/DDP cells to cisplatin. Furthermore, miR-24 inhibitor down-regulated the ratio of Bcl-2/Bax, while up-regulated the protein levels of P53, p-ERK, cleaved caspase-9, cleaved caspase-3 and Cyt C. Incubation with U0126, a specific ERK inhibitor, partly reversed the viability of miR-24 inhibitor transfected A549/DDP cells. Bioinformatics analysis demonstrated that p53 was a potential target gene of miR-24. Co-teansfection of miR-24 inhibitor and P53 siRNA in A549/DDP cells partially reversed the effect of miR-24 inhibitor on cell viabiltiy. CONCLUSION: Down-regulation of miR-24 increases the sensitivity of A549/DDP cells to cisplatin. The mechanism may be related to directly targeting p53 gene and over-activation of ERK/P53 signaling pathway, thus promoting apoptosis via mitochondrial apoptosis pathway.  相似文献   

13.
AIM:To explore the role of PI3K/Akt/nNOS in Zhouluotong extract resisting diabetic peripheral neuropathy. METHODS:The Schwann cells were divided into normal group (D-glucose 25 mmol/L), model group (D-glucose 100 mmol/L), Zhouluotong extract Z-6 + high glucose group, Zhouluotong + high glucose group, mecobalamine + high glucose group. The viability, nitric oxide content and the Ca2+-ATPase activity in Schwann cells were determined by Cell Counting Kit-8 , nitric oxide assay kit and Ca2+-ATPase assay kit, respectively. The apoptosis of Schwann cells were analyzed by flow cytometry. The expression of Bcl-2, Bcl-xL, Bax, Bak and caspase-3, and the phosphorylation levels of nNOS and Akt were determined by Western blotting. The signal pathway of PI3K/Akt was explored by dominant negative PI3K and Akt (δp85 and DN-Akt) transient transfection assay. RESULTS:Under high-glucose culture, the cell viability, nitric oxide content in culture supernatant, the expression of Bcl-2 and Bcl-xL, and the phosphorylation levels of Akt and nNOS in the Schwann cells were significantly increased. The cell apoptosis, the expression of Bax, Bak and caspase 3 in the Schwann cells were significantly decreased by Zhouluotong extract Z-6, compared with model group. Increased nitric oxide content and the up-regulation of nNOS were observed. However, the effects of blocking PI3K/Akt, the upstream pathway of nNOS , by transfection with DN-δp85 on Akt phosphorylation in the Schwann cells was still unclear. CONCLUSION: Zhouluotong extract Z-6 changes the phosphorylation of nNOS, and the expression of anti-apoptotic factors, caspase-3 and pro-apoptotic factors in Schwann cells under high-glucose culture, thus reducing apoptosis and elevating viability. The relationship to PI3K/Akt/nNOS pathway needs further investigation.  相似文献   

14.
AIM:To examine the effects of high concentration of extracellular ATP on human neuroblastoma SH-SY5Y cell injury. METHODS:Cultured SH-SY5Y cells were grouped according to the concentrations of ATP and treatment time. The cell viability was detected by CCK-8 assay. The variation of autophagic vacuoles was observed with monodansylcadaverine staining. The cell apoptosis was analyzed by Hoechst 33258 staining. Meanwhile, apoptotic rate was detected by flow cytometry. The levels of caspase-3 and microtubule-associated protein 1 light chain 3-Ⅱ (LC3-Ⅱ) were determined by Western blotting. RESULTS:Compared with control group, the survival rate of SH-SY5Y cells was significantly reduced by ATP at different concentrations (3, 6, 9, 12 and 15 mmol/L for 3 h) and different treatment time (1, 2, 3 and 6 h with 6 mmol/L ATP, peaking at 3 h). The autophagic vacuoles of SH-SY5Y cells were significantly increased at 1 h with ATP treatment, trended to decrease over time and returned to control level at 6 h. The protein expression of LC3-Ⅱ was significantly increased at 1 h with ATP treatment, which was consistent with the time points of increasing autophagic vacuoles. LC3-Ⅱ expression level gradually decreased at 2~3 h with ATP treatment, and returned to control level at 6 h. Compared with control group, the apoptotic rate and the expression level of caspase-3 were enhanced synchronously. The peak of apoptotic rate occurred at 3 h, and kept until 6 h.The level of cleaved caspase-3 expression peaked at 6 h. CONCLUSION:High concentration of extracellular ATP induces the autophagy and apoptosis of SH-SY5Y cells. The increased autophagy shows up, followed by the climax of apoptosis until 6 h. With the prolonged duration of ATP, apoptosis is the main process in the cells.  相似文献   

15.
AIM To investigate the effect of 27nt-miRNA (27nt-miR) on apoptosis of human umbilical vein endothelial cells (HUVECs) induced by oxidized low-density lipoprotein (Ox-LDL) and its underlying mechanism. METHODS HUVECs were cultured in vitro and grouped as below: normal control group, Ox-LDL group, 27nt-miR+Ox-LDL group, anti-27nt-miR+Ox-LDL group and negative control+Ox-LDL group. The cells in Ox-LDL group were treated with Ox-LDL at 40 mg/L for 48 h, while those in normal control group were untreated but cultured normally. The cells in 27nt-miR+Ox-LDL group, anti-27nt-miR+Ox-LDL group and negative control+Ox-LDL group were transfected with their corresponding lentiviral vectors under the same procedure, followed by treatment with Ox-LDL at 40 mg/L for 48 h to induce apoptosis. The cell viability was measured by CCK-8 assay. The migration capacity was detected by scratch assay. The caspase-3 activity was measured by caspase-3 activity assay kit. The apoptotic rate was analyzed by Hoechst 33258 and flow cytometry. The mRNA and protein expression levels of Bcl-2, Bax and caspase-3 were determined by RT-qPCR and Western blot. RESUITS: Compared with negative control+Ox-LDL group, the cell viability and migration ability were significantly decreased by over-expression of 27nt-miR in the HUVECs (P<0.05), while the activity of caspase-3 and apoptosis induced by Ox-LDL were significantly increased (P<0.05). Furthermore, the mRNA and protein expression levels of Bax and caspase-3 were significantly up-regulated (P<0.05), and the mRNA and protein expression level of Bcl-2 was down-regulated in 27nt-miR+Ox-LDL group (P<0.05). Meanwhile, all the above indexes showed an opposite tendency in anti-27nt-miR+Ox-LDL group. CONCLUSION 27nt-miR promotes Ox-LDL-induced apoptosis and inhibits the viability and migration of HUVECs in vitro, possibly through regulating the expression of apoptotic/anti-apoptotic proteins such as Bax,caspase-3 and Bcl-2.  相似文献   

16.
AIM: To investigate the effect of homeodomain-interacting protein kinase 2 (HIPK2) on the viabi-lity, apoptosis and JAK2/STAT3 signaling pathway in NRK-52E renal tubular epithelial cells induced by hypoxia and reoxygenation (H/R). METHODS: HIPK2 small interfering RNA (siRNA) was transfected into NRK-52E cells by LipofectamineTM 2000, and normal control group (control group) and negative control group (HIPK2-NC group) were set up. After H/R, the cell viability was measured by CCK-8 assay, the apoptotic rate and Ca2+ fluorescence intensity were analyzed by flow cytometry, and the protein levels of Ki67, cleaved caspase-3, caspase-12, Bcl-2, Bax, p-JAK2 and p-STAT3 were determined by Western blot. RESULTS: Compared with control group, the protein expression of HIPK2 in the NRK-52E cells was significantly decreased after transfection with HIPK2 siRNA (P<0.05). Compared with control group, the cell viability and the protein expression of Ki67 and Bcl-2 in H/R group were also significantly decreased, and the apoptotic rate, the Ca2+ fluorescence intensity and the protein levels of cleaved caspase-3, caspase-12, Bax, p-JAK2 and p-STAT3 were significantly increased (P<0.05). Compared with H/R group, the cell viability and the protein expression of Ki67 and Bcl-2 in HIPK2-siRNA+H/R group were significantly increased, while the apoptotic rate, the Ca2+ fluorescence intensity and the protein levels of cleaved caspase-3, caspase-12, Bax, p-JAK2 and p-STAT3 were significantly decreased (P<0.05). CONCLUSION: Inhibition of HIPK2 gene expression promotes H/R-induced growth of NRK-52E renal tubular epithelial cells, and reduces the apoptosis. The mechanism is related to down-regulating the JAK2/STAT3 signaling pathway.  相似文献   

17.
AIM: To investigate whetier resveratrol induces apoptosis of human ovarian cancer SKOV3 cells through Sirt3-SOD2-ROS pathway. METHODS: SKOV3 cells were cultured in vitro and treated with resveratrol at 0, 2.5, 5, 10, 20, 40 and 80 mg/L for 24 h. The inhibitory effect of resveratrol on the viability of SKOV3 cells was measured by MTT assay. SKOV3 cells were randomly divided into blank control group, 10 mg/L resveratrol group, 20 mg/L resveratrol group and 40 mg/L resveratrol group. After 24 h of treatment, Hoechst 33342 staining and confocal microscopy were used to observe the nuclear changes. The protein levels of silent mating type information regulation 2 homolog 3 (Sirt3), superoxide dismutase 2 (SOD2), Bcl-2, Bax and cleaved caspase-3 were determined by Western blot. RESULTS: Treatment with resveratrol at 2.5, 5, 10, 20, 40 and 80 mg/L for 24 h significantly reduced the viability of SKOV3 cells. The observation by confocal microscopy showed that the nucleus of SKOV3 cells was markedly condensed and heavily stained with the increase in the concentration of resveratrol. Compared with blank control group, the red fluorescence intensity of ROS in different concentrations of resveratrol groups was significantly reduced. The results of Western blot showed that the protein levels of Sirt3, SOD2, Bax and cleaved caspase-3 in resveratrol groups were significantly higher than those in control group, while the protein expression of Bcl-2 was significantly lower than that in control group (P<0.05). CONCLUSION: Resveratrol induces apoptosis of SKOV3 cells by regulating Sirt3-SOD2-ROS pathway.  相似文献   

18.
ATM: To explore the possibility that advanced glycation end products (AGEs) induces rat chondrocyte injury by modulating oxidative stress. METHODS: Primarily cultured rat chondrocytes were identified. The viability of the chondrocytes was measured by CCK-8 assay. The intracellular levels of reactive oxygen species (ROS) were detected by DCFH-DA staining. The number of apoptotic cells was determined by Hoechst 33342 nuclear staining and flow cytometry. RT-PCR was performed to measure the mRNA levels of Bax, Bcl-2, caspase-3, MMP3, MMP13 and COL2 in the chondrocytes. Western blotting was used to evaluate the protein levels of cleaved caspase-3, MMP3, MMP13 and COL2. RESULTS: Compared with control group, the intracellular levels of ROS in the chondrocytes treated with AGEs were significantly increased (P<0.05), and pretreatment with N-acetyl-L-cysteine (NAC) suppressed the formation of ROS (P<0.05). Besides, NAC inhibited AGEs-induced apoptosis of the chondrocytes, as indicated by reduceing the levels of Bax/Bcl-2 and caspase-3, decreased the expression of MMP3 and MMP13, and reduced the loss of COL2.CONCLUSION: AGEs induce chondrocyte injury by activating oxidative stress.  相似文献   

19.
AIM: To investigate the effect of microRNA-24-3p (miR-24-3p) on the viability and apoptosis of esophageal cancer cells. METHODS: The expression of miR-24-3p and KLF6 mRNA in the esophageal cancer cells TE11, Eca109 and EC9706 were detected by RT-qPCR. The protein expression of KLF6 was determined by Western blot. EC9706 cells were transfected with anti-miR-24-3p and KLF6 siRNA. The cell viability was measured by MTT assay, the apoptotic rate was analyzed by flow cytometry, and the proliferation, apoptosis and IL-6/STAT3 signaling pathways related proteins were determined by Western blot. The level of IL-6 was measured by ELISA. The dual luciferase reporter gene assay was used to verify the relationship between miR-24-3p and KLF6. RESULTS: The levels of miR-24-3p were up-regulated in the esophageal cancer cells TE11, Eca109 and EC9706 (P < 0.05), and the expression of KLF6 at mRNA and protein levels was down-regulated (P < 0.05). Knock-down of miR-24-3p expression inhibited the cell viability, induced apoptosis, and inhibited the protein levels of CDK4, cyclin D1, CDC25A, p-STAT3, Bcl-2 and IL-6, and promoted the protein expression of caspase-3 and Bax in EC9706 cells. CONCLUSION: miR-24-3p targets KLF6 gene to affect the viability and apoptosis of esophageal cancer cells by regulating IL-6/STAT3 signaling pathway.  相似文献   

20.
AIM: To investigate the effect of sulodexide (SDX) on the apoptosis of human dermal microvascular endothelial cells (HDMECs) exposed to hypoxia and its underlying mechanism. METHODS: The HDMECs were cultured and divided into normoxia control group cultured under normoxic condition; hypoxia control group cultured in a humid incubator maintained at 37℃ with 5% CO2 and 1% O2 for 24 h; treatment groups treated with SDX at 0.25, 0.5 and 1 LSU/mL for 24 h under hypoxic condition. The cell viability was measured by CCK-8 assay. The apoptotic rate of the HDMECs was analyzed by flow cytometry. The activity of caspase-3 in HDMECs was examined by caspase-3 activity assay kit. The expression of pro-apoptotic factor P53, caspase-3, Bax and anti-apoptotic factor Bcl-2 at mRNA and protein levels was determined by real-time PCR and Western blot. RESULTS: SDX increased the viability of HDMECs exposed to hypoxia, but also decreased the apoptosis. Furthermore, SDX down-regulated the expression of pro-apoptotic factor P53, Bax and caspase-3 at mRNA and protein levels as well as the activity of caspase-3, while the expression of anti-apoptotic factor Bcl-2 was up-regulated. CONCLUSION: SDX significantly increases the viability and decreases the apoptosis of HDMECs exposed to hypoxia. Inhibition of the mitochondrial apoptosis pathway may be involved in the underlying mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号