首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2 X 3 factorial arrangement was used in each of two trials with two levels of floor space allowance (.25, .13 m2/pig) and three dietary treatments (basal, basal + 660 ppm vitamin C, basal + 55 ppm carbadox). The reduction in floor space allowance was achieved in trial 1 by doubling the number of pigs/pen from eight to 16 and in trial 2 by reducing the size of pens by half. An 18% protein starter diet was used as the basal diet. Total numbers of pigs used were 216 in trial 1 and 144 in trial 2. Pigs were weaned between 4 and 5 wk of age (7.5 kg average wt) and fed ad libitum for 28 d. Reducing floor space allowance caused a (P less than .05) reduction in weight gain of weanling pigs in both trials. When the reduction of floor space allowance was done by increasing number of pigs/pen (trial 1), pigs responded with a significantly reduced feed intake with no change in efficiency of feed utilization. However, when floor space allowance was reduced by changing the size of the pen (trial 2), feed intake of pigs was not affected but efficiency of feed utilization was reduced significantly. Neither form of crowding affected vitamin C concentration in adrenal glands and weights of adrenal glands, spleen and thymus. Dietary supplementation of carbadox, but not vitamin C, produced significantly greater weight gain, feed efficiency, and spleen weight of pigs in both trials. Although there was no interaction between crowding and dietary treatment in affecting the performance of pigs, supplemental carbadox improved the performance of crowding-stressed pigs by maintaining an adequate level of feed intake and improving feed efficiency, whether crowding was caused by increased pig density or by reduced pen size. No significant differences in phytohemagglutinin (PHA) skin test response or in the neutrophil-to-lymphocyte ratio (N/L) were observed among treatments in trial 1, while a significantly reduced response to PHA and a higher N/L were detected in crowding-stressed pigs in trial 2.  相似文献   

2.
Two 28-d randomized complete block design experiments were conducted to evaluate the effects of concentrations and sources of Zn on growth performance of nursery pigs. Seven stations participated in Exp. 1, which evaluated the efficacy of replacing 2,500 ppm of Zn from ZnO with 125, 250, or 500 ppm of Zn from Zn methionine. A control diet with 125 ppm of supplemental Zn was included at all stations. A total of 615 pigs were used in 26 replicates. Average weaning age was 20.6 d and the average initial BW was 6.3 kg. There were no differences in any growth response among the three supplemental Zn methionine levels fed in Exp. 1. Zinc supplementation from Zn methionine improved ADG compared with the control during all phases (P < 0.05), due primarily to an increase in ADFI. Pigs fed 2,500 ppm of Zn from ZnO gained faster (P < 0.01) than those fed the control diet during all phases, and faster (P < 0.05) than those fed supplemental Zn from Zn methionine for the 28-d experiment. Differences in gain were again due mainly to differences in feed intake. A second experiment compared five sources of supplemental organic Zn (500 ppm of Zn) with 500 and 2,000 ppm supplemental Zn from ZnO and a control (140 ppm total Zn). Six stations used a total of 624 pigs, with an average weaning age of 20.4 d and averaging 6.2 kg BW in 15 replicates. Pigs fed 2,000 ppm of Zn from ZnO gained faster (P < 0.05) than pigs fed the control or any of the 500 ppm of Zn treatments (ZnO or organic Zn). Pigs fed the 2,000 ppm of Zn from ZnO also consumed more feed than those receiving 500 ppm of Zn from ZnO or from any of the organic Zn sources (P < 0.05). Organic sources of Zn did not improve gain, feed intake, or feed efficiency beyond that achieved with the control diet. Supplemental Zn at a concentration of 500 ppm, whether in the form of the oxide or in an organic form, was not as efficacious for improved ADG as 2,000 to 2,500 ppm of Zn from ZnO.  相似文献   

3.
Efficacy of tiamulin as a growth promotant for growing swine   总被引:2,自引:0,他引:2  
A study involving 244 pigs initially averaging 13 kg was conducted at two stations to evaluate tiamulin as a growth promotant for growing swine. In each experiment, four replicate pens of five (Exp. 1) or six (Exp. 2) pigs/pen were used to evaluate each treatment. In Exp. 1, pigs were fed 0, 11, 22 or 44 ppm tiamulin from 15 to 58 kg, then fed a nonmedicated control diet for the remainder of the experiment (to 95 kg). In Exp. 2, pigs were fed 0, 2.75, 5.5, 11 or 22 ppm tiamulin from 11 to 56 kg, followed by the nonmedicated control diet (to 95 kg). In each experiment, carbadox (55 ppm) was included as a positive control and was fed to an average weight of 35 kg, followed by the control diet. Averaged across all dietary levels, tiamulin resulted in a 14.1% improvement in gain and a 5.7% improvement in feed:gain ratio during the first 28 to 35 d of the experiment (to 30 kg). These improvements were slightly less than those resulting from the feeding of carbadox during the same period (21.5 and 6.9%, respectively). From 13 to 57 kg, pigs fed tiamulin gained 11.6% faster and 3.1% more efficiently than did controls. Over the entire experiment (13 to 95 kg), tiamulin-fed pigs gained 5.7% faster than did controls, even though the tiamulin was withdrawn at 57 kg body weight. Growth rate from 13 to 57 kg plateaued at the 11-ppm dietary level of tiamulin; whereas, feed:gain ratio plateaued at the 22-ppm level. The results indicate that tiamulin is an effective growth promotant for growing swine.  相似文献   

4.
A study involving nine research stations from the NCR-42 Swine Nutrition Committee used a total of 1,978 crossbred pigs to evaluate the effects of dietary ZnO concentrations with or without an antibacterial agent on postweaning pig performance. In Exp. 1, seven stations (IA, MI, MN, MO, NE, ND, and OH) evaluated the efficacy of ZnO when fed to nursery pigs at 0, 500, 1,000, 2,000, or 3,000 mg Zn/kg for a 28-d postweaning period. A randomized complete block experiment was conducted in 24 replicates using a total of 1,060 pigs. Pigs were bled at the 28-d period and plasma was analyzed for Zn and Cu. Because two stations weaned pigs at < 15 d (six replicates) and five stations at > 20 d (18 replicates) of age, the two sets of data were analyzed separately. The early-weaned pig group had greater (P < 0.05) gains, feed intakes, and gain:feed ratios for the 28-d postweaning period as dietary ZnO concentration increased. Later-weaned pigs also had increased (P < 0.01) gains and feed intakes as the dietary ZnO concentration increased. Responses for both weanling pig groups seemed to reach a plateau at 2,000 mg Zn/kg. Plasma Zn concentrations quadratically increased (P < 0.01) and plasma Cu concentrations quadratically decreased (P < 0.01) when ZnO concentrations were > 1,000 mg Zn/kg. Experiment 2 was conducted at seven stations (KY, MI, MO, NE, ND, OH, and OK) and evaluated the efficacy of an antibacterial agent (carbadox) in combination with added ZnO. The experiment was a 2 x 3 factorial arrangement in a randomized complete block design conducted in a total of 20 replicates. Carbadox was added at 0 or 55 mg/kg diet, and ZnO was added at 0, 1,500, or 3,000 mg Zn/ kg. A total of 918 pigs were weaned at an average 19.7 d of age. For the 28-d postweaning period, gains (P < 0.01), feed intakes (P < 0.05), and gain:feed ratios (P < 0.05) increased when dietary ZnO concentrations increased and when carbadox was added. These responses occurred in an additive manner. The results of these studies suggest that supplemental ZnO at 1,500 to 2,000 mg Zn/kg Zn improved postweaning pig performance, and its combination with an antibacterial agent resulted in additional performance improvements.  相似文献   

5.
Two experiments were conducted with young pigs to determine the efficacy of ornithine (Orn) or citrulline (Cit) as precursors of arginine (Arg). In Exp. 1, pigs were individually fed an Arg-deficient, semipurified diet (.18% Arg) supplemented with .3% Arg or an equimolar quantity of Orn or Cit. Supplemental Arg or Cit increased rate and efficiency of weight gain, but Orn addition was without effect. Free Arg in plasma 3 h post-prandial was increased by addition of either Arg or Cit to the basal diet. Liver Arg was elevated by dietary addition of Arg, Orn or Cit; kidney Arg and Orn were elevated only in pigs receiving supplemental Cit. Arginine or Cit addition to the diet increased Arg concentration in muscle tissue, but muscle Orn was unresponsive to any of the supplements fed. In Exp. 2, pigs were again fed the Arg-deficient, semipurified diet supplemented with .3% Arg or four times an isomolar quantity of ornithine. Arginine addition to the diet increased weight gain and feed efficiency, while Orn supplementation was without effect. Plasma Orn was increased by excess Orn, while plasma Cit was unaffected by supplemental Arg or Orn. Moreover, excess Orn increased free Orn and proline (Pro) in liver, kidney and muscle. Free Cit, however, increased only in liver from feeding excess Orn. In addition, excess Orn decreased both plasma ammonia and free glutamine (Gln) concentration in brain. Arginase activity was roughly 10, 40 and 100 times greater in hepatic tissue than in renal cortex, renal medulla or intestinal mucosa, respectively, while hepatic ornithine transcarbamoylase (OTC) activity was about 15 times greater than the activity present in mucosa tissue. Renal OTC activity was too low to be accurately measured.  相似文献   

6.
Two experiments were conducted, involving 68 third-litter sows and 20 first-litter gilts in Exp. 1 and 82 first-litter gilts in Exp. 2. On d 108 of gestation, the dams were moved into individual crates, stratified by parity and breed, and randomly assigned within strata, to one of two treatments: (1) fed a basal 16% protein corn-soybean meal diet, 1.8 and 2.7 kg once daily before farrowing and for the first 7 d of lactation, respectively, and then ad libitum until pigs were weaned at 28 d of age, and (2) fed the basal diet plus 1 g of L-ascorbic acid (vitamin C)/dam daily from d 108 of gestation through d 7 of lactation and on the same feeding schedule as for treatment 1. In Exp. 1, no effect of vitamin C supplementation was observed in sows or gilts on total pigs born/litter, number of live pigs/litter or average live pig weight at birth, 7 or 28 d of age, or on plasma vitamin C concentration of dams at d 108 of gestation or d 7 of lactation or of pigs at birth, 7 or 28 d of age. However, there was a lower (P less than .01) plasma vitamin C concentration of the dams at d 7 of lactation than at d 108 of gestation. Plasma vitamin C concentration also declined (P less than .01) as pigs aged. In Exp. 2, with all gilts, vitamin C supplementation again showed no effect on any of the reproductive traits measured in Exp. 1. It is concluded that daily supplementation of 1 g of vitamin C to either sows or gilts from d 108 of gestation through d 7 of lactation has no beneficial effect on the reproductive or lactation performance of swine.  相似文献   

7.
Two experiments involving 496 cross-bred pigs evaluated the efficacy of various dietary levels of vitamin E, with or without supplemental fat, on postweaning pig performance and weekly serum and terminal tissue alpha-tocopherol concentrations. The first trial involved 248 pigs weaned at an average of 15 d of age and 4.8 kg BW. The experiment was a randomized complete block design conducted in seven replicates. Vitamin E was added as dl-alpha-tocopheryl acetate at 0, 20, 40, 60, 80, 100, 150, or 200 IU/kg diet. Pigs were bled initially and at 7-d intervals for a 42-d period. Liver and s.c. adipose tissue samples were collected from six pigs per treatment group at 42 d. In Exp. 2, a 2 x 4 factorial arrangement of treatments in a randomized complete block design was conducted in seven replicates. The experiment used a total of 248 pigs weaned at 19 d of age and averaged 6.4 kg BW. Four vitamin E levels (0, 20, 40, and 60 IU/kg diet) and two added fat levels of 0 or 5% were fed for 35 d. Four pigs per treatment pen were bled weekly, and at 35 d a total of four pigs per treatment group were killed and liver, heart, and s.c. adipose tissues were collected and analyzed for alpha-tocopherol. The basal diet in both experiments contained an average 7.9 IU for period 1, and later diets averaged 11.0 IU vitamin E/kg. In both experiments serum alpha-tocopherol concentrations declined from weaning to 7 d after weaning and continued to decline each week after weaning when the basal diets were fed. Serum alpha-tocopherol concentrations increased (P < 0.01) each week as the dietary vitamin E level increased in both experiments. In Exp. 2, when fat was added to the diet serum alpha-tocopherol concentrations were higher (P < 0.01) than in diets without added fat. Liver, heart muscle, and adipose tissue alpha-tocopherol concentrations increased (P < 0.01) as vitamin E level increased, but at the higher dietary vitamin E level the liver surpassed the adipose tissue in its alpha-tocopherol concentration. Liver and adipose alpha-tocopherol concentrations were higher (P < 0.01) when fat was added to the diet. These results indicate that supplementation of 40 to 60 IU/kg diet with added fat resulted in a relatively constant balance of serum and tissue concentration of alpha-tocopherol during the nursery period, but when fat was not supplemented a dietary vitamin E level of 80 to 100 IU/kg diet may be needed. The current NRC recommendations for vitamin E for the pig from 5 to 20 kg BW may need to be reevaluated.  相似文献   

8.
Three experiments were conducted to evaluate the effects of feeding dietary concentrations of organic Zn as a Zn-polysaccharide (Quali Tech Inc., Chaska, MN) or as a Zn-proteinate (Alltech Inc., Nicholasville, KY) on growth performance, plasma concentrations, and excretion in nursery pigs compared with pigs fed 2,000 ppm inorganic Zn as ZnO. Experiments 1 and 2 were growth experiments, and Exp. 3 was a balance experiment, and they used 306, 98, and 20 crossbred pigs, respectively. Initially, pigs averaged 17 d of age and 5.2 kg BW in Exp. 1 and 2, and 31 d of age and 11.2 kg BW in Exp. 3. The basal diets for Exp. 1, 2, and 3 contained 165 ppm supplemental Zn as ZnSO4 (as-fed basis), which was supplied from the premix. In Exp. 1, the Phase 1 (d 1 to 14) basal diet was supplemented with 0, 125, 250, 375, or 500 ppm Zn as Zn-polysaccharide (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). All pigs were then fed the same Phase 2 (d 15 to 28) and Phase 3 (d 29 to 42) diets. In Exp. 2, both the Phase 1 and 2 basal diets were supplemented with 0, 50, 100, 200, 400, or 800 ppm Zn as Zn-proteinate (as-fed basis) or 2,000 ppm Zn as ZnO (as-fed basis). For the 28-d Exp. 3, the Phase 2 basal diet was supplemented with 0, 200, or 400 ppm Zn as Zn-proteinate, or 2,000 ppm Zn as ZnO (as-fed basis). All diets were fed in meal form. In Exp. 1, 2, and 3, pigs were bled on d 14, 28, or 27, respectively, to determine plasma Zn and Cu concentrations. For all three experiments, there were no overall treatment differences in ADG, ADFI, or G:F (P = 0.15, 0.22, and 0.45, respectively). However, during wk 1 of Exp. 1, pigs fed 2,000 ppm Zn as ZnO had greater (P < or = 0.05) ADG and G:F than pigs fed the basal diet. In all experiments, pigs fed a diet containing 2,000 ppm Zn as ZnO had higher plasma Zn concentrations (P < 0.10) than pigs fed the basal diet. In Exp. 1 and 3, pigs fed 2,000 ppm Zn as ZnO had higher fecal Zn concentrations (P < 0.01) than pigs fed the other dietary Zn treatments. In conclusion, organic Zn either as a polysaccharide or a proteinate had no effect on growth performance at lower inclusion rates; however, feeding lower concentrations of organic Zn greatly decreased the amount of Zn excreted.  相似文献   

9.
Four experiments were conducted to evaluate the effects of supplementing graded levels (0 to 100 ppm) of L-carnitine to the diet of weanling pigs on growth performance during a 34- to 38-d experimental period. A fifth experiment was conducted to determine the effects of addition of L-carnitine to diets with or without added soybean oil (SBO) on growth performance. In Exp. 1, 128 pigs (initial BW = 5.5 kg) were allotted to four dietary treatments (six pens per treatment of four to six pigs per pen). Dietary treatments were a control diet containing no added L-carnitine and the control diet with 25, 50, or 100 ppm of added L-carnitine. In Exp. 2, 3, and 4, pigs (4.8 to 5.6 kg of BW) were allotted to five dietary treatments consisting of either a control diet containing no added L-carnitine or the control diet with 25, 50, 75, or 100 ppm of added L-carnitine. All diets in Exp. 1 to 4 contained added soybean oil (4 to 6%). There were seven pens per treatment (four to five pigs per pen) in Exp. 2, whereas Exp. 3 and 4 had five and six pens/treatment (eight pigs per pen), respectively. In general, dietary carnitine additions had only minor effects on growth performance during Phases 1 and 3; however, dietary L-carnitine increased (linear [Exp. 1], quadratic [Exp. 2 to 4], P < 0.03) ADG and gain:feed (G:F) during Phase 2. The improvements in growth performance during Phase 2 were of great enough magnitude that carnitine addition tended to increase ADG (linear, P < 0.10) and improve G:F (quadratic, P < 0.02) for the entire 38-d period. In Exp. 5, 216 weanling pigs (5.8 kg of BW) were allotted (12 pens/treatment of four to five pigs per pen) to four dietary treatments. The four dietary treatments were arranged in a 2 x 2 factorial with main effects of added SBO (0 or 5%) and added L-carnitine (0 or 50 ppm). Pigs fed SBO tended (P < 0.07) to grow more slowly and consumed less feed compared with those not fed SBO, but G:F was improved (P < 0.02). The addition of L-carnitine did not affect (P > 0.10) ADG or ADFI; however, it improved (P < 0.03) G:F. Also, the increase in G:F associated with L-carnitine tended to be more pronounced for pigs fed SBO than those not fed SBO (carnitine x SBO, P < 0.10). These results suggest that the addition of 50 to 100 ppm of added L-carnitine to the diet improved growth performance of weanling pigs. In addition, supplemental L-carnitine tended to be more effective when SBO was provided in the diet.  相似文献   

10.
Results of studies on the effect of dietary P deprivation on pig renal 1 alpha- and 24-hydroxylase activities and on concentrations of plasma alkaline phosphatase, Ca, P and vitamin D metabolites are presented. Renal 1 alpha-hydroxylase activity was increased six- to eightfold and plasma 1,25-dihydroxyvitamin D3 concentration increased two- to threefold in pigs fed a low P diet (.085% P) compared with pigs fed a control diet (.6% P). In contrast, renal 24-hydroxylase activity and plasma 25-hydroxyvitamin D concentration did not differ between diet groups. Plasma alkaline phosphatase activity was two to four times higher in pigs fed the low P diet compared with pigs fed the control diet. The rate of gain by pigs fed the low P diet was less than pigs fed the control diet. The low P diet was associated with a prolonged elevation of renal 1 alpha-hydroxylase activity in spite of the presence of a pronounced hypercalcemia.  相似文献   

11.
Four experiments were conducted to determine the effects of supplemental Trp on meat quality, plasma and salivary cortisol, and plasma lactate. Experiment 1 was a preliminary study to measure plasma cortisol concentrations in 4 barrows (50 kg of BW) that were snared for 30 s at time 0 min. Pigs were bled at -60, -30, -15, 2, 4, 6, 8, 10, 15, 20, 25, 30, 45, 60, 90, and 120 min. Plasma cortisol was near maximum 10 min after the pigs were snared. In Exp. 2, 20 barrows (50 kg of BW) were allotted to a basal corn-soybean meal diet or the basal diet with 0.5% supplemental l-Trp for 5 d. After the 5-d feeding period, pigs were snared for 30 s and bled at -10, 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 45, 60, 90, and 120 min after snaring. Pigs fed the diet with supplemental Trp had a lower (P < 0.01) mean plasma cortisol than pigs fed the basal diet. Plasma lactate also was decreased (P < 0.07) by supplemental Trp. In Exp. 3, the same pigs and treatments were used as in Exp. 2, but 5 pigs were snared and 15 pigs adjacent to those being snared were bled to determine if pigs are stressed when they are adjacent to pigs being snared. For pigs adjacent to snared pigs, the area under the curve (P < 0.06) and mean for plasma cortisol was lower (P < 0.01) in pigs fed Trp relative to those fed the basal diet. In Exp. 4, 90 barrows (initial BW of 106 kg) were allotted to 6 treatments in a 3 x 2 factorial arrangement. Three diets with Trp (basal diet, basal supplemented with 0.5% Trp for 5 d, or pigs fed the basal diet with a 0.1 g/kg of BW Trp bolus given 2 h before slaughter) were combined with 2 handling methods (minimal and normal handling). Dressing percent, 24-h pH, and 24-h temperature were reduced in the minimally handled pigs (P < 0.10) compared with the normally handled pigs. Pigs fed Trp in the diet relative to those fed the basal diet had increased 45-min temperature, Commission Internationale de l'Eclairage (CIE) redness (a*) and yellowness (b*) values, and drip and total losses (P < 0.10). Tryptophan in bolus form decreased 45-min pH in the minimally handled pigs but increased 45-min pH in the normally handled pigs (handling x Trp bolus interaction, P = 0.08). Tryptophan in the diet increased CIE lightness (L*) in minimally handled pigs but decreased CIE L* in the normally handled pigs (handling x Trp diet interaction, P = 06). No other response variables were affected by handling method or Trp. Results indicate that Trp decreases plasma cortisol but has no positive effect on meat quality.  相似文献   

12.
The purpose of this investigation was to compare the growth performance of grower pigs fed low-CP, corn-soybean meal (C-SBM) AA-supplemented diets with that of pigs fed a positive control (PC) C-SBM diet with no supplemental Lys. Five experiments were conducted with Yorkshire crossbred pigs, blocked by BW (average initial and final BW were 21 and 41 kg, respectively) and assigned within block to treatment. Each treatment was replicated 4 to 6 times with 4 or 5 pigs per replicate pen. Each experiment lasted 28 d and plasma urea N was determined at the start and end of each experiment. All diets were formulated to contain 0.83% standardized ileal digestible Lys. All the experiments contained PC and negative control (NC) diets. The PC diet contained 18% CP and was supplemented with only DL-Met. The NC diet contained 13% CP and was supplemented with L-Lys, DL-Met, L-Thr, and L-Trp. The NC + Ile + Val diet was supplemented with 0.10% Val + 0.06% Ile. The NC + Ile + Val diet was supplemented with either His (Exp. 1), Cys (Exp. 2), Gly (Exp. 2, 3, and 4), Glu (Exp. 3), Arg (Exp. 4), or combinations of Gly + Arg (Exp. 4 and 5) or Gly + Glu (Exp. 5). Treatment differences were considered significant at P < 0.10. In 3 of the 4 experiments that had PC and NC diets, pigs fed the NC diet had decreased ADG and G:F compared with pigs fed the PC diet. The supplementation of Ile + Val to the NC diet restored ADG in 4 out of 5 experiments. However, G:F was less than in pigs fed the PC diet in 1 experiment and was intermediate between the NC and PC diets in 3 experiments. Pigs fed supplemental Ile + Val + His had decreased G:F compared with pigs fed the PC. Pigs fed supplemental Cys to achieve 50:50 Met:Cys had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.224% supplemental Gly had similar ADG, greater ADFI, and decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.52% supplemental Gly had ADG and G:F similar to that of pigs fed the PC. Pigs fed supplemental Glu had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.48% supplemental Arg had decreased G:F compared with pigs fed the PC. Pigs fed the diet supplemented with Gly + Arg had ADG and G:F similar to pigs fed the PC. Pigs fed the low-CP diets had reduced plasma urea N compared with pigs fed PC. The results of these experiments indicate that supplementing Gly or Gly + Arg to a low-CP C-SBM diet with 0.34% Lys, Met, Thr, Trp, Ile, and Val restores growth performance to be similar to that of pigs fed a PC diet with no Lys supplementation.  相似文献   

13.
Two experiments were conducted to evaluate the effect of dietary Se and Ca on Se utilization in postweaning swine. Two levels of dietary Se (.3 or 5.0 ppm) supplemented as sodium selenite and four levels of total dietary Ca (.50, .80, 1.10 or 1.40%) in a 20% protein, corn-soybean meal diet were evaluated. Inorganic Ca was supplied from dicalcium phosphate and limestone. In Exp. I, 135 pigs weaned at 4 wk of age were allotted by sex, litter and weight and fed a basal diet for 7 d and then their treatment diets for a 28-d period. Plasma and tissue were collected at the end of the trial for Se concentration and glutathione peroxidase (GSH-Px) activity. Dietary Ca had no effect on gain or feed measurements but 5.0 ppm Se depressed daily gain slightly. When 5.0 ppm dietary Se was fed, there resulted higher liver, kidney, heart and longissimus muscle Se concentrations than when .3 ppm was provided, but dietary Ca had no effect on tissue Se values within each dietary Se level. Plasma GSH-Px increased when higher dietary Se was provided, whereas neither heart nor liver GSH-Px activity was affected by dietary Se or Ca level. In Exp. II, a 5-d balance trial was conducted with 32 barrows after adjustment to their treatment diet for a 28-d period. Selenium retention increased quadratically as dietary Ca increased, whereas Ca retention was not affected by dietary Se. These results suggest that low dietary Ca levels may reduce total Se retention but not Se metabolism within body tissue.  相似文献   

14.
Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs   总被引:12,自引:0,他引:12  
Brewers dried yeast, a source of mannan oligosaccharides (MOS), was assessed as an alternative to an antimicrobial agent (carbadox) for young pigs in two experiments. The yeast contained 5.2% MOS. Agglutination tests confirmed adsorption of several serovars of E. coli and Salmonella spp. onto the yeast product. In Exp. 1, seven replicates (five pigs per pen) of 22-d-old pigs were fed a nonmedicated basal diet or the basal diet with carbadox (55 mg/kg), yeast (3%), or a combination of 3% yeast and 2% citric acid for 28 d. Carbadox did not improve growth performance. Growth rate and feed intake were depressed (P < 0.05) in pigs fed yeast alone or in combination with acid. Log counts of total coliforms, Escherichia coli, and Clostridium perfringens in feces were not affected by diet, but Bifidobacteria spp. counts were lower (P < 0.05) in pigs fed the yeast + acid diet and lactobacilli counts were higher (P < 0.05) in pigs fed yeast. Fecal pH and VFA concentrations and intestinal morphological traits were not consistently affected by diet. Serum IgG levels were elevated in the yeast + acid (P < 0.01) group. In Exp. 2, the effects of yeast and carbadox additions to the diet on enteric microbial populations in young pigs housed in isolation units were evaluated. Pigs (n = 24) were weaned at 11 d of age (4.1 kg BW) and placed in isolation chambers (two pigs per chamber) equipped with individual air filtering systems and excrement containers. Treatments were a nonmedicated basal diet and the basal diet with 55 mg/kg of carbadox or with 3% yeast. Diets were fed for 29 d, then each pig was orally dosed with approximately 9.5 x 10(8) CFU of E. coli K88. Daily fecal E. coli K88 counts were not different (P > 0.05) among treatments, but fecal shedding of carbadox-resistant coliforms was higher (P < 0.01) during the 9-d period in pigs fed carbadox. Total fecal coliforms were consistently lower throughout the postinoculation period in pigs fed yeast (P < 0.05). Yeast reduced colonization oftotal coliforms in the duodenum,jejunum, cecum, and colon, but it did not have a consistent effect on colonization of E. coli K88. Pigs fed yeast tended (P < 0.10) to have higher serum IgG levels than controls. In these experiments, brewers dried yeast and carbadox had minimal effects on growth, microbial populations, and intestinal health traits of early-weaned pigs, but certain serum immunological traits were enhanced by feeding yeast.  相似文献   

15.
Pigs from sows fed a diet deficient in Se and low in vitamin E were fed a Torula yeast diet supplemented with 100 IU dl-alpha-tocopheryl acetate/kg of diet. Dietary treatments were levels of supplemental Se of 0, .025, .050, .075 or .100 ppm. Some death loss occurred in pigs receiving no supplemental Se at approximately 5 wk of age. Autopsy revealed liver and heart lesions typical of vitamin E-Se deficiency. Selenium supplement had no significant effect on average daily gain, feed intake or gain to feed ratio for the 4-wk experiment. Selenium status of pigs was determined by serum Se concentration and serum glutathione peroxidase (GSH-Px) activity. Serum Se increased linearly (P less than .01) with increasing supplemental Se. Serum GSH-Px activity increased linearly (P less than .01) and quadratically (P less than .05) with increasing supplemental Se. With time, the level of serum Se and GSH-Px activity decreased in unsupplemental pigs, but increased in pigs fed diets supplemented with Se and resulted in significant interactions (P less than .01) between dietary Se level and time on experiment. The correlation between serum Se concentration and GSH-Px activity was .81 (P less than .01).  相似文献   

16.
Five 28- to 33-d experiments involving 460 crossbred pigs weaned at 28 +/- 2 d of age (initial weight, 6.7 to 8.1 kg) were conducted to determine the effects of feeding high dietary levels of Cu sulfate (CuSO4) or Cu oxide (CuO) on rate and efficiency of gain and liver Cu stores of weanling pigs. The pigs were housed in groups of five to six/pen and fed a fortified, unmedicated, corn-soybean meal-dried whey basal diet (1.1% lysine, 30 ppm Cu). In Exp. 1 and 2, pigs (eight replicates) were fed the basal or the basal plus 125 or 250 ppm Cu from CuSO4 or CuO for 28 d. In Exp. 3 and 4, four replications were fed the same diets as in Exp. 1 and 2 plus two additional diets (500 ppm Cu from CuSO4 or CuO). In Exp. 5, dietary levels of 0, 125, 250, 375 or 500 ppm Cu from CuSO4 were evaluated using four replications. At the end of each experiment, the liver from one pig in each pen was collected for Cu analysis. Overall, rate and efficiency of gain were improved (P less than .01) by feeding 125 or 250 ppm Cu as CuSO4, with the 125 ppm dietary level being about 75% as effective in stimulating growth as 250 ppm. Performance of pigs was not different from controls when the highest (500 ppm) level of Cu (from CuSO4) was fed. Liver Cu increased 10- to 70-fold when 250 to 550 ppm Cu from CuSO4 was included in the feed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Two experiments were conducted to determine the effects of feeding reduced-CP, AA-supplemented diets at two ambient temperatures (Exp. 1) or three levels of dietary NE (Exp. 2) on pig performance and carcass composition. In Exp. 1, 240 mixed-sex pigs were used to test whether projected differences in heat increment associated with diet composition affect pig performance. There were 10 replications of each treatment with four pigs per pen. For the 28-d trial, average initial and final BW were 28.7 kg and 47.5 kg, respectively. Pigs were maintained in a thermoneutral (23 degrees C) or heat-stressed (33 degrees C) environment and fed a 16% CP diet, a 12% CP diet, or a 12% CP diet supplemented with crystalline Lys, Trp, and Thr (on an as-fed basis). Pigs gained at similar rates when fed the 16% CP diet or the 12% CP diet supplemented with Lys, Trp, and Thr (P > 0.10). Pigs fed the 12% CP, AA-supplemented diet had a gain:feed similar to pigs fed the 16% CP diet when housed in the 23 degrees C environment but had a lower gain:feed in the 33 degrees C environment (diet x temperature, P < 0.01). In Exp. 2, 702 gilts were allotted to six treatments with nine replicates per treatment. Average initial and final BW were 25.3 and 109.7 kg, respectively. Gilts were fed two levels of CP (high CP with minimal crystalline AA supplementation or low CP with supplementation of Lys, Trp, Thr, and Met) and three levels of NE (high, medium, or low) in a 2 x 3 factorial arrangement. A four-phase feeding program was used, with diets containing apparent digestible Lys levels of 0.96, 0.75, 0.60, and 0.48% switched at a pig BW of 41.0, 58.8, and 82.3 kg, respectively. Pigs fed the low-CP, AA-supplemented diets had rates of growth and feed intake similar to pigs fed the high-CP diets. Dietary NE interacted with CP level for gain:feed (P < 0.06). A decrease in dietary NE from the highest NE level decreased gain:feed in pigs fed the high-CP diet; however, gain:feed declined in pigs fed the low-CP, AA-supplemented diet only when dietary NE was decreased to the lowest level. There was a slight reduction in longissimus area in pigs fed the low-CP diets (P < 0.08), but other estimates of carcass muscle did not differ (P > 0.10). These data suggest that pigs fed low-CP, AA-supplemented diets have performance and carcass characteristics similar to pigs fed higher levels of CP and that alterations in dietary NE do not have a discernible effect on pig performance or carcass composition.  相似文献   

18.
This study investigated the effects of supplemental Mg, Trp, vitamin C, vitamin E, and herbs on stress responses, skin lesions, and meat quality of slaughter pigs (106.0 +/- 8.6 kg of BW). These 5 supplements were tested in 4 similar experiments. In Exp. 1, 2 treatments were tested: 1) control treatment without supplementation, and 2) supplementation of an herbal product (2.5 g/L of drinking water for 2 d). Eighty-eight pigs per treatment were involved, of which 40 were selected for meat quality measurements (over 4 replicates). The experimental design of Exp. 2 and 3 was the same as Exp. 1, except that in Exp. 2 Mg (3 g/L of drinking water for 2 d) was supplemented and in Exp. 3 Trp (6 g/kg of feed, as-fed basis) was supplemented. In Exp. 4, 3 treatments were tested: 1) control treatment without supplementation, 2) supplementation of vitamin C (300 mg/kg of feed for 21 d, as-fed basis), and 3) supplementation of vitamin E (150 mg/kg of feed for 21 d, as-fed basis). In Exp. 4, 66 pigs per treatment were used, of which 42 were evaluated for meat quality (over 6 replicates). Pigs supplemented with vitamin E ate less than control (P = 0.03) or vitamin C-supplemented pigs (P = 0.03). Pigs were transported to a commercial slaughterhouse and were slaughtered after a lairage period. Blood sampling at slaughter revealed no differences between the control and supplemented pigs in plasma cortisol, glucose, lactate, or creatine kinase concentrations. Pigs provided with Mg (P = 0.002) or Trp (P = 0.04) had lower plasma NEFA concentrations than control pigs, and pigs supplemented with vitamin C had greater concentrations than the control (P = 0.03) or vitamin E-supplemented pigs (P = 0.01). Supplementation of the herbal product increased the frequency of pigs with shoulder (P = 0.05) and loin lesions (P = 0.03), whereas Mg lowered the incidence of loin lesions (P = 0.01). Measurements of pH and temperature in the LM and biceps femoris 45 min postmortem revealed no differences among treatments, and no influence of treatments on LM pH, electrical conductivity, and water holding capacity was observed 48 h postmortem. Compared with the control loins, loins of pigs supplemented with vitamin C (Japanese color scale, L*, and a* value; P < 0.05) or vitamin E (Japanese color scale and a* value; P < 0.03) were redder and less pale, and the loin of vitamin E-supplemented pigs was more yellow (b* value; P = 0.04). Generally, Mg could lower loin damage, whereas vitamin C and vitamin E supplementation resulted in a color improvement of the loin.  相似文献   

19.
Two experiments involving 168 10-d-old weaned pigs were conducted to compare growth-promoting properties of dietary spray-dried animal plasma (SDAP), spray-dried porcine plasma (SDPP), and chicken egg-yolk antibodies (EYA) or egg-yolk powder (EYP, contains no specific antibodies) from d 0 to 14 postweaning. In Exp. 1, 96 pigs (3.2 +/- 0.2 kg BW) were used to test the hypothesis that the superior performance of piglets fed SDPP-based diets was partly due to the presence of specific antibodies against enterotoxigenic Escherichia coli (ETEC), which could be replaced with EYA. Four experimental diets in a completely randomized design and arranged in a 2 x 2 factorial (SDPP without or with autoclaving [AuSDPP] and without [EYP] or with supplementation of EYA) were used. Autoclaving SDPP at 121degrees C for 15 min completely destroyed anti-K88/F18 antibodies. Overall feed intake and gain:feed ratio were similar (P > 0.05) among treatments and averaged 122.7 g/d and 0.688, respectively. However, pigs fed AuSDPP+EYP diets had poorer (P < 0.001) ADG compared with those fed SDPP+EYP or SDPP+EYA from 0 to 14 d. Scours were four times higher (P < 0.05) for treatment AuSDPP+EYP compared with all other treatments. Plasma urea nitrogen concentration was higher (P < 0.05) in AuSDPP+EYP- and AuSDPP+EYA-fed pigs. Also twice the number of piglets fed AuSDPP+EYP appeared unhealthy compared with piglets on treatment AuSDPP+EYA. In Exp. 2, 72 10-d-old weaned pigs (3.5 kg BW) were used to compare the effect of EYA supplementation and oral challenge of ETEC strain F18 on performance and visceral organ weights. The experimental diets consisted of SDAP+EYP, SDAP+EYA, SDPP+EYP, and SDPP+EYA. From d 0 to 7, and the entire experimental period, dietary treatment did not influence (P > 0.05) growth rate and feed consumption. Plasma urea N concentration was higher (P < 0.05) in piglets fed the SDAP+EYP diet before and after the oral challenge. Gain:feed ratio, organ weights, villi heights, and crypt depths were not affected (P > 0.05) by dietary treatments. The results indicate that SDPP contains specific anti-ETEC antibodies, which is one of the factors responsible for its superior growth-enhancing effects. Spray-dried animal plasma, SDPP and EYA have similar growth promoting effect in early-weaned pigs.  相似文献   

20.
Weanling pigs with mean initial BW of 6.04 kg (Exp.1) and 5.65 kg (Exp. 2) and mean age at weaning of 18.2 d (Exp. 1) and 17.7 d (Exp. 2) were used in two 5-wk experiments (Exp. 1, n = 180; Exp. 2, n = 300) to evaluate the effects of an organic acid blend (Acid LAC, Kemin Americas Inc., Des Moines, IA) and an inorganic/organic acid blend (Kem-Gest, Kemin Americas Inc.) on weanling pig growth performance and microbial shedding. In Exp. 1, the 5 dietary treatments were 1) negative control, 2) diet 1 + 55 ppm carbadox, 3) diet 1 + 0.4% Acid LAC, 4) diet 1 + 0.2% Kem-Gest, 5) diet 1 + 0.4% Acid LAC and 0.2% Kem-Gest. In Exp. 2, the 6 dietary treatments were diets 1 through 4 corresponding to Exp. 1, plus 5) sequence 1: 0.4% Acid LAC for 7 d followed by 0.2% Kem-Gest for 28 d, and 6) sequence 2: 0.2% Kem-Gest for 7 d followed by 0.4% Acid LAC for 28 d. Pigs were housed at 6 (Exp. 1) or 10 (Exp. 2) pigs/pen. Treatments were fed throughout the experiment in 3 phases: d 0 to 7, d 7 to 21, and d 21 to 35. In Exp. 1, there were no differences (P > 0.05) in ADG, ADFI, or G:F among the dietary treatments at any time during the study. In Exp. 2, throughout the study, pigs fed carbadox (diet 2) and sequence 1 (diet 5) diets had the greatest ADG (d 0 to 35; 262, 294, 257, 257, 292, and 261 g/d, diets 1 through 6, respectively; P < 0.05), greater ADFI than all other acid treatments (P < 0.05), and tended to have greater ADFI than diet 1 (P < 0.10). Fecal pH, Escherichia coli concentrations, and Salmonella presence were determined at d 6, 20, and 34 for Exp. 1, and on d 32 for Exp. 2. For both experiments, there was no effect of treatment on the presence of fecal Salmonella (P > 0.10) at any sampling time. In Exp. 1, fecal E. coli concentrations for pigs fed the carbadox (P < 0.05) diet were greater than for pigs fed the combination diet with 0.4% Acid LAC and 0.2% Kem-Gest on d 34, and the pigs fed the negative control diet tended (P < 0.10) to have greater fecal E. coli concentrations than those fed the combination diet on d 34. In Exp. 2, fecal pH of pigs fed sequence 1 tended to be greater than fecal pH of pigs fed diet 1, diet 4, or sequence 2 (P < 0.10), but there was no dietary effect on fecal E. coli. In Exp. 1, growth performance of pigs fed the Acid LAC and Kem-Gest diets was similar to each other and to that of the carbadox-fed pigs. Adding the combination of 0.4% Acid LAC and 0.2% Kem-Gest to nursery pig diets reduced ADFI and pig growth rate. In Exp. 2, pigs fed the acid sequence of Acid LAC-Kem-Gest had similar growth performance to pigs fed carbadox, and this novel dietary acid sequence may have merit as a replacement for antibiotics in the nursery phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号