首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
Although the initial response to salvage (also known as, post-disturbance or sanitary) logging is known to vary among system components, little is known about longer term forest recovery. We examine forest overstory, understory, soil, and microtopographic response 25 years after a 1977 severe wind disturbance on the Flambeau River State Forest in Wisconsin, USA, a portion of which was salvage logged. Within this former old-growth hemlock-northern hardwoods forest, tree dominance has shifted from Eastern hemlock (Tsuga canadensis) to broad-leaf deciduous species (Ulmus americana, Acer saccharum, Tilia americana, Populus tremuloides, and Betula alleghaniensis) in both the salvaged and unsalvaged areas. While the biological legacies of pre-disturbance seedlings, saplings, and mature trees were initially more abundant in the unsalvaged area, regeneration through root suckers and stump sprouts was common in both areas. After 25 years, tree basal area, sapling density, shrub layer density, and seedling cover had converged between unsalvaged and salvaged areas. In contrast, understory herb communities differed between salvaged and unsalvaged forest, with salvaged forest containing significantly higher understory herb richness and cover, and greater dominance of species benefiting from disturbance, especially Solidago species. Soil bulk density, pH, organic carbon content, and organic nitrogen content were also significantly higher in the salvaged area. The structural legacy of tip-up microtopography remains more pronounced in the unsalvaged area, with significantly taller tip-up mounds and deeper pits. Mosses and some forest herbs, including Athyrium filix-femina and Hydrophyllum virginianum, showed strong positive responses to this tip-up microrelief, highlighting the importance of these structural legacies for understory biodiversity. In sum, although the pathways of recovery differed, this forest appeared to be as resilient to the compound disturbances of windthrow plus salvage logging as to wind disturbance alone, by most vegetative measures.  相似文献   

2.
This study was designed to answer questions about the patterns of understory diversity in managed forests of southern New England, and the factors that appear associated with those patterns. At the landscape-level, we used plot data to answer questions regarding the spatial distribution of forest understory plant species. Data from a combination of fixed area (understory vegetation) and variable radius (overstory trees) plot methods are combined with site variables for the analysis. Univariate and multivariate statistical methods are used to test for understory diversity relationships with overstory cover types and topography separately, and in combination. Analyses also test for relationships between specific understory species and cover types. In general the understory flora is dominated by four common clonal species that occur across the range of forest cover types: wild sarsaparilla (Aralia nudicaulis L.), Canada mayflower (Maianthemum candense Desf.), star flower (Trientalis borealis Raf.), and partridgeberry (Mitchella repens L.). Results also show that over story composition and structure can be used to assess understory species richness. Species richness follows a general trend among cover types of: hardwood ≥ regenerating forest, hardwood–pine, and pine ≥ mixed ≥ hardwood–hemlock > hemlock. Eastern hemlock (Tsuga canadensis L. Carriere) and mountain laurel (Kalmia latifolia L.) (which decreased in dominance from ridge to valley) both showed negative trends with understory species richness. Topographic position also appears associated with understory floristic patterns (particularly for the hardwood cover type), both in terms of species richness and compositional diversity which both increased from ridge, to midslope, to valley. However, overstory composition (covertype) appears to have a higher order influence on vegetation and mediates the role of topography. The results from this study provide foresters with a better understanding for maintaining floristic diversity and composition of the understory in managed forests.  相似文献   

3.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

4.
The large-scale conversion of old forests to tree plantations has made it increasingly important to understand how understory vegetation responds to such landscape changes. For instance, in some forest types a reduction in understory richness and cover is thought to result from the development of canopy closure in plantations, although there is a paucity of empirical data demonstrating this relationship. We used a 420-year forest chronosequence as a case study to assess the relationship between stand age, tree canopy cover and understory vascular plant richness and composition in the Siskiyou Mountains of Oregon. The chronosequence consisted of six young managed (age 7–44) and nine older unmanaged (age 90–427) stands. All stands were similar in underlying geology, slope, elevation, and aspect. We found a non-linear relationship between stand age and richness, in which richness was highest in the youngest stands, reached a low in mid-aged stands (∼55 years), then increased in the oldest stands. We also found that percent tree canopy cover was correlated with total understory cover, richness, diversity, and species composition. In general, young stands were characterized by high shrub and graminoid cover and old stands were characterized by an abundant herb layer. Our work suggests that a major component of our study landscape is currently entering the forest stage (canopy closure) characterized by low levels of vascular plant species richness and cover. We use our results to discuss the potential effects of future forest management on understory plants.  相似文献   

5.
Remote ponderosa pine (Pinus ponderosa) forests on the North Rim of Grand Canyon National Park, Arizona, USA provide valuable examples of reference conditions due to their relatively uninterrupted fire regimes, limited grazing history, and protection from logging. Wildfire is an important disturbance agent in upland forests of the Interior West, yet repeated measurements taken before and after lightning-ignited fires are rare. In 1999, a low-severity Wildland Fire Use fire burned 156 ha on Fire Point, a peninsula dominated by old-growth ponderosa pines, which had not burned for at least 76 years. We measured understory plant community and forest floor characteristics in 1998 (1 year before the fire) and 2001 (2 years after the fire) at this site and at nearby reference sites that did not burn in 1999 but have had continuing fire regimes throughout the past century. After the wildfire, the plant community at Fire Point shifted toward higher compositional similarity with the reference sites. Analysis of functional group composition indicated that this change was due primarily to an increase in annual and biennial forbs. Gayophytum diffusum, Polygonum douglasii, Chenopodium spp., Solidago spp., Elymus elymoides, Calochortus nuttallii, Hesperostipa comata, and Lotus spp. were indicative of forests influenced by recent fires. Species richness, plant cover, plant layer density and plant diversity were significantly lower at Fire Point than at the reference sites, possibly due to long-term fire exclusion, but the fire did not increase the rate of change in these variables after 2 years. Few exotic species were present at any site. Forest floor depths at Fire Point were reduced to depths similar to the reference sites, primarily due to consumption of the duff layer. There was a significant inverse relationship between the ratio of duff:litter and species richness. Compared to fire-excluded forests, old-growth ponderosa pine forests influenced by low-intensity surface fires generally have greater plant species richness (especially annual forbs) and lighter fuel loads. This study supports the continued application of the Wildland Fire Use strategy in old-growth montane forests to maintain and improve forest health by altering understory species composition and reducing fuel loads.  相似文献   

6.
The main objective of this work is to analyze the spatial and temporal response of Q. pyrenaica community to fire. In order to do so, an ecological characterization of 15 forests in different succession stages (5 Initial: 0–20 years, 5 Medium: 20–60 years and 5 Mature: over 60 years), paying special attention to structural and diversity features, was carried out. The results show that temporal changes are very important, and particularly affect the structure and relative abundance of the vegetation. The main differences consist in the change from a homogenous structure, with high cover and overlayering of woody species, at Initial stage, to a more pluristratified, complex and organized structure, with lower cover and overlayering of woody species at Mature stage. The changes in abundances showed a decrease in shrubby species, such as the Erica australis, Genista florida and Erica arborea at Initial stage, and the incorporation of tree species, such as Crataegus monogyna, Acer pseudoplatanus and Alnus glutinosa at Mature stage. However, there are no significative differences between stages for specific richness and diversity values. Spatial heterogeneity is high and similar in all three defined stages.  相似文献   

7.
  • ? Managed laurel forests in the Canary Islands have undergone clear-cutting with rotation periods of less than 30 y. Forest owners have recently requested a drastic reduction in the cutting interval. The effects of this new harvesting cycle on organisms like epiphytic bryophytes are not well known.
  • ? This study investigates how time since last clear-cut, host species and characteristics of tree zones influence the biomass, cover and richness of epiphyte bryophytes in managed laurel forests in La Palma, Canary Islands. Four forest ages (8, 15, 25 and 60 y) and three host tree species (Erica arborea, Laurus novocanariensis and Myricafaya) were studied.
  • ? Biomass, cover and richness of bryophytes increased through the chronosequence, both at the level of each plot and overall for L. novocanariensis. Most of the biomass (53%) and richness (81%) was concentrated in one of the tree species (L. novocanariensis), in plots for which 60 y had elapsed since the last clear-cutting. Trunks supported greater bryophyte biomass and richness than canopies, even in the oldest plots.
  • ? Our results suggest that the current rotation periods used to manage laurel forests are insufficiently long to allow for complete reestablishment of epiphytic bryophyte assemblages.
  •   相似文献   

    8.
    We examined whether heavy fuelwood collection can cause threshold change in understory forest community and evaluated how selective wood extraction might lead to delayed forest recovery in an urban forest of Nairobi, Kenya. Piecewise regression which represents strongest support for threshold change provided the best fit for the relationships between understory floristic composition (i.e. DCA axis 1) and human disturbance gradients (i.e. canopy cover, and distance from the slum), where threshold changes were detected at c.a. 350 m from the slum and c.a. 30% canopy cover. Only one tree species significantly indicated communities beyond the threshold while an aggressive invasive alien plant (IAP) Lantana camara was strongly represented. Total species diversity along the two human disturbance gradients peaked before the threshold was reached, suggesting that decline in species diversity along the prevailing disturbance gradient might be able to forecast threshold change. Tree species richness in the understory rapidly declined as the threshold was surpassed while other growth forms (i.e. shrubs, herbs and climbers) were relatively unaffected. The effect of selective tree cutting was indirectly impacting the forest understory as species richness pattern of preferred and non-preferred species paralleled that of trees and shrubs, respectively. Thickets of L. camara can negatively affect indigenous flora and its establishment was favored under selective fuelwood extraction removing certain tree species while leaving the IAP untouched. Shading can readily eliminate the IAP, but weak tree regeneration beyond the threshold suggested forest recovery might be delayed for longer than expected because of the interaction between selective fuelwood use and the IAP.  相似文献   

    9.
    We assessed the species richness and aboveground productivity of understory plants in nine types of forest stand (116 plots in total) that had different disturbance histories that were combinations of the frequency of plantation (clear-cutting, site preparation, planting), typhoon damage, and selective cutting. We established two 1 m × 1 m quadrats to measure species richness and productivity and one 1 m × 30 m belt to measure species richness in each plot. Canopy leaf area index (LAI), soil NH4+, soil C/N ratio, slope angle, and slope aspect were measured as current environmental factors affecting each plot. The variance in species richness was better explained by disturbance history (69% in quadrats; 86% in the belt) than by current environmental factors. Species richness and the Simpson index decreased as the frequency of plantation increased. In contrast, the variance in productivity was better explained by current environmental factors (82%), especially canopy LAI (45%), than by disturbance history. The relations of species presence and productivity to the explanatory variables differed among species, although there were some common responses within life forms. The effects of disturbance on species diversity remained for 20–80 years. Forest management should therefore take into account the long-term effects of disturbance history to maintain understory plant diversity.  相似文献   

    10.
    Understory plants could can act as indicators of temperate forest sustainability, health and conservation status due to their importance in ecosystem function. Harvesting impacts on understory plant diversity depends on their intensity. Variable retention has been proposed to mitigate the harmful effects of timber harvesting, but its effectiveness remains unknown in southern Patagonian Nothofagus pumilio forests. The objectives of this study were to: (i) define a baseline of understory plant diversity in old-growth forests along a site quality gradient and under canopy gaps; (ii) evaluate stands with three different variable retention treatments compared to old-growth forests; and (iii) assess temporal changes during 4 years after harvesting (YAH). A 61 ha N. pumilio forest was selected. Understory plant (Dicotyledonae, Monocotyledonae and Pteridophyta) richness, cover (including woody debris and bare forest floor) and aboveground dry biomass were characterized in summer for 5 years. Before harvesting, baseline samples were conducted along a site quality gradient and outside/inside canopy gaps. Analyzed treatments include a control of old-growth forest (OGF) and three different harvesting treatments with variable retention: (i) dispersed retention (DR) of 30 m2 ha−1 (20-30% retention); (ii) aggregated retention (AR) with one aggregate per hectare and clear-cuts (28% retention); and (iii) combined dispersed and aggregated retention (DAR) with one aggregate per hectare and dispersed retention of 10-15 m2 ha−1 (40-50% retention). Data analyses included parametric and permutational ANOVAs, multivariate classification and ordinations.Before harvesting, 31 plant species were found, where richness, cover and biomass were directly related to site quality. The presence of canopy gaps did not have a significant impact on the measured variables. After harvesting, 20 new species appeared from adjacent associated environments (two from N. antarctica forests and 18 from grasslands and peatlands). At the stand level, understory values were higher in AR > DR > DAR > OGF. Most (81-95%) plant richness at baseline conditions was conserved in all treatments, where inside the aggregates understory remained similar to OGF. Combination of aggregated and dispersed retention (DAR) better limited exotic species introduction and protected sensitive species, improving conservation in harvested stands. Changes in understory variables were observed after the first YAH in all treatments; greater changes were observed in the harvested areas than in aggregates. Changes stabilized at the fourth YAH. As a conclusion, the location of retention aggregates should be selected to preserve species understory diversity of more speciose and diverse habitats or particularly uncommon stands. Implementation of different kinds (patterns and levels) of retention for improvement of biodiversity conservation in harvested forests should be included in timber and forest management planning.  相似文献   

    11.
    Alternative strategies for stand density management in even-aged coniferous forests may increase plant species and functional diversity. We examined the effects of fixed and variable density thinning on tree seedling regeneration as well as on abundance (indexed by cover) and richness of understory vascular plants 11 years after harvesting 45- to 66-year old forests dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) or western hemlock (Tsuga heterophylla (Raf.) Sarg.) at three sites in western Oregon. Each site contained an unthinned control (CON), and thinning treatments selected to enhance overstory structural diversity and spatial variability within stands (HD, high density treatment at 300 trees ha−1; MD, moderate density treatment at 200 trees ha−1; VD300, VD200 and VD100, variable density treatments at 300, 200 and 100 trees ha−1). Leave islands are included in HD and the other thinning treatments contain both leave islands and gap openings. Tree seedling regeneration was highly variable and generally increased with thinning. Cover of all understory species was greater in VD100 than in the control whereas richness was greater in HD and MD. Cover and richness of early seral species were greater in most thinning treatments than in the control. Understory plant communities were overwhelmingly dominated by native species. In general, vegetation dynamics was accelerated by thinning, especially in variable density treatments. Cover of N-fixing understory species was greater in VD200 than in the other treatments, and in MD and VD300 than in the control, whereas richness of understory N-fixing species increased in all thinning treatments. Cover of understory species with intermediate soil water requirements was greater in MD, VD200 and VD100 than in the control, whereas richness of these species increased in VD200 compared to the control, HD and VD300. Thinning promoted higher diversity of understory conditions without reducing density and species richness of crop tree regeneration, and seemed to increase functional effect and response diversity.  相似文献   

    12.
    Novel fire mitigation treatments that chip harvested biomass on site are increasingly prescribed to reduce the density of small-diameter trees, yet the ecological effects of these treatments are unknown. Our objective was to investigate the impacts of mechanical thinning and whole tree chipping on Pinus ponderosa (ponderosa pine) regeneration and understory plant communities to guide applications of these new fuel disposal methods. We sampled in three treatments: (1) unthinned forests (control), (2) thinned forests with harvested biomass removed (thin-only), and (3) thinned forests with harvested biomass chipped and broadcast on site (thin + chip). Plots were located in a ponderosa pine forest of Colorado and vegetation was sampled three to five growing seasons following treatment. Forest litter depth, augmented with chipped biomass, had a negative relationship with cover of understory plant species. In situ chipping often produces a mosaic of chipped patches tens of meters in size, creating a range of woodchip depths including areas lacking woodchip cover within thinned and chipped forest stands. Thin-only and thin + chip treatments had similar overall abundance and species richness of understory plants at the stand scale, but at smaller spatial scales, areas within thin + chip treatments that were free of woodchip cover had an increased abundance of understory vegetation compared to all other areas sampled. Relative cover of non-native plant species was significantly higher in the thin-only treatments compared to control and thin + chip areas. Thin + chip treated forests also had a significantly different understory plant community composition compared to control or thin-only treatments, including an increased richness of rhizomatous plant species. We suggest that thinning followed by either chipping or removing the harvested biomass could alter understory plant species composition in ponderosa pine forests of Colorado. When considering post-treatment responses, managers should be particularly aware of both the depth and the distribution of chipped biomass that is left in forested landscapes.  相似文献   

    13.
    Maintenance of biodiversity is becoming a goal of forest management. This study determined effects of broadcast pine release herbicide treatments on plant species richness, diversity, and structural proportions seven years after treatment. Three study blocks were established in central Georgia. Plots 0.6–0.8 ha in size were planted to loblolly pine (Pinus taeda L.) in the Winter of 1982–83 and then treated with imazapyr (Arsenal), glyphosate (Roundup), and hexazinone (Velpar L. and Pronone 10G) in 1985. In 1992, overstory and understory (<1.5 m height) layers were examined utilizing stem and rootstock counts and basal area of overstory species and cover of understory species. ANOVA's were used to test for significance using a randomized complete block model. We found no effect of treatments on species richness. Diversity, measured separately for overstory and understory layers by Shannon-Wiener and Simpson indices, also was not influenced significantly by treatments. Arsenal significantly decreased Diospyros virginiana L. and increased Rubus argutus Link and legumes. Hexazinone treatments generally decreased Quercus nigra L., and Roundup significantly reduced Vaccinium spp. compared to the Check. We concluded that herbicide release treatments did not decrease overstory or understory plant species richness and diversity seven years post-treatment.  相似文献   

    14.

    Key message

    The high flammability of some companion species in Quercus suber forests, estimated in laboratory tests, could potentially generate an increase in fire vulnerability and in fire risk.

    Context

    Recurrent wildfire is one of the main causes of forest degradation, especially in the Mediterranean region. Increased fire frequency and severity due to global change could reduce the natural resilience of cork oak to wildfire in the future. Hence, it is important to evaluate the flammability of companion species in cork oak forests in the particularly dry bioclimatic conditions of North Africa.

    Aims

    This study aimed to assess and compare flammability parameters at laboratory scale among ten companion frequent species in cork oak forests.

    Methods

    Fuel samples were collected in a cork oak (Quercus suber L) forest in the southern part of the mountains of Tlemcen (Western Algeria). A series of flammability tests were carried out using a Mass Loss Calorimeter device (FTT ®). A cluster analysis to classify flammability of the selected species was conducted using the K-means algorithm.

    Results

    The results revealed differences in the four flammability parameters (ignitability, sustainability, combustibility and consumability), in both fresh and dried fine fuel samples from Quercus suber, Pinus halepensis, Quercus ilex, Quercus faginea, Erica arborea, Arbutus unedo, Pistacia lentiscus, Calicotome spinosa, Juniperus oxycedrus and Tetraclinis articulata. Application of the K-means clustering algorithm showed that C. spinosa, T. articulata, J. oxycedrus and P. halepensis are highly flammable because of their high combustibility and sustainability.

    Conclusion

    The findings identify species that could potentially increase the vulnerability of cork oak forests to forest fires.
      相似文献   

    15.
    We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

    16.
    Old growth stands of boreonemoral spruce (Picea abies) forests frequently have a shrub layer dominated by hazel (Corylus avellana) – a species which is generally excluded in intensively managed forests due to clearcutting activities. We sampled understory species composition, richness and biomass, as well as environmental variables beneath these two species and also within forest ‘gaps’ in order to determine the effect of overstory species on understory vegetation. Species richness and biomass of herbaceous plants was significantly greater under Corylus compared with plots under Picea and in forest gaps. Indicator species analysis found that many species were significantly associated with Corylus. We found 45% of the total species found under woody plants occurred exclusively under Corylus. Light availability in spring and summer was higher in gaps than under forest cover but no difference was found between plots under Corylus and Picea. Hence, reductions in light availability cannot explain the differences in species composition. However, Ellenberg indicator values showed that more light demanding species were found under Corylus compared to Picea, but most light demanding species were found in gaps. The litter layer under Picea was three times thicker than under Corylus and this may be an important mechanism determining differences in understory composition and richness between the woody species. The presence of Corylus is an important factor enhancing local diversity and small-scale species variation within coniferous stands. Hence, management should maintain areas of Corylus shrubs to maintain understory species diversity in boreal forests.  相似文献   

    17.
    We examined the response of understory plants in mature maple-dominated forests of southern Québec, Canada, following about 30 years of high deer densities, using a deer exclosure experiment. An exclosure and a paired control of 625 m2 each were established on six sites in 1998. An exclosure and a paired control of 16 m2 were added at each of the same sites in 2003 but under a recent canopy gap to determine if light could enhance plant responses. We measured plant richness and abundance, and aboveground biomass of different plant groups for 8 years in the understory plots and for 3 years in the canopy gaps. Four herbaceous species were also monitored individually in the same plots. No significant differences between treatments were found in plots under forest cover, except for lateral obstruction at 0–50 cm height which was higher in the exclosures. Under canopy gaps, however, tree seedling and total plant abundance were higher in deer exclosures than in control plots. Trillium erectum recovered partially as individuals were taller, had larger leaves and more frequently produced a flower or a fruit in the absence of deer browsing under forest cover. To a lesser extent, Erythronium americanum and Maianthemum canadense also exhibited signs of recovery but were still at the single-leaf stage after 8 years of recovery. In general, the different plant groups exhibited little recovery following deer exclusion, possibly because of the low light levels that prevailed in the understory of undisturbed maple-dominated forests. The higher latitude of the present study could also contribute to the slow recovery rates of the different groups of plants compared to studies conducted in northeastern USA. Variability among sites and years had an effect on detection of statistically significant differences. Trends are however appearing over time, suggesting that many understory plants are recovering very slowly following deer exclusion. Our results emphasize the importance of studying large herbivore–forest interactions on different groups of plants, but also on specific species, and under different latitudes to be fully understood.  相似文献   

    18.
    To examine the relationship between forest succession after severe logging forestry practices and the composition of avian communities, we investigated how forest bird composition and guild structure change as a function of structural properties along a successional gradient, including a climax mature forest (>400 years), a rehabilitated mixed forest (50-70 years), and a disturbed Masson pine forest (70 years) of the Dinghushan Nature Reserve, Guangdong Province, China. Of a total of 51 resident species recorded, mixed forests hosted the highest numbers of individuals and species, reflecting the high species richness of both forest and non-forest species. For forest-dependent species, however, mature stands had the highest observed and estimated species richness. Of 6 habitat-use guilds identified, vertical-profile generalists and understory-birds formed the two dominant guilds, accounting for 54.0% and 38.7% of all individuals respectively. The results of canonical correspondence analysis (CCA) clearly showed that most forest-dependent species were associated with high proportions of native canopy cover and the mean density of dead trees and large trees, which are characteristic of old-growth mature forests (horizontal heterogeneity) at stand level. Accordingly, conservation efforts should focus on the specialized requirements of the most habitat-restricted species in the future, especially for understory insectivores (Babblers) and large-tree users in mature subtropical monsoon forests of southern China. Moreover, since regenerating mixed forests are very similar to mature forests in both vegetation structure and bird community composition, we recommend that logging cycles (>50 years) be increased to a minimum of 50 years in southern China, so that a balance between economic and ecological interest can be reestablished.  相似文献   

    19.
    Mechanical mastication is increasingly prescribed for wildfire mitigation, yet little is known about the ecological impacts of this fuels treatment. Mastication shreds trees into woodchips as an alternative to tree thinning and burning the resulting slash, which can create soil disturbances that favor exotic plants. Previous research on mastication has not simultaneously considered both the responses of soil organisms and understory plant communities. We compared mastication to slash pile burning (both 6-months and 2.5-years post-treatment) and untreated controls in pinyon–juniper (Pinus edulisJuniperus osteosperma) woodland and measured soil properties, arbuscular mycorrhizal fungi (AMF) and understory plant composition. Our results showed that slash pile burns had severely degraded soil properties and low AMF abundance and richness compared to untreated or mastication plots. Pile burns were dominated by exotic plant species and had approximately 6× less understory plant abundance and richness than untreated plots. Only two variables differed between mastication and untreated plots 6-months post-treatment: mastication had lower soil temperature and higher soil moisture. Mastication plots 2.5-years post-treatment had more plant cover and richness than untreated plots or pile burns, although non-native Bromus tectorum cover was also greater and AMF spore richness was lower than untreated plots. The structural equation model (SEM) we developed showed that plant cover strongly influenced AMF abundance (0.50) and both plant cover (0.36) and AMF (0.31) positively influenced soil stability. In the short-term, mastication is a preferable method as it creates fewer disturbances than pile burning; however long-term impacts of mastication need further study as this practice could affect native plant communities. Our results suggest that the manner in which woody debris is treated following tree thinning has an important influence on soil stability and native plant biodiversity.  相似文献   

    20.
    Cork oak “Montados” are a particular Mediterranean ecosystem, which can be found in Southern Portugal. Portuguese “Montados” are man-made ecosystems, mainly used for cork production and cattle farming, that support a high biological diversity. Current sustainable management techniques imply a shrub clearing with heavy machinery, which can be highly disruptive for soil biota. In order to evaluate the effects of understory vegetation management on soil epigeic macrofauna, five zones were defined along a chronosequence of shrub clearing: a non-disturbed zone (zone 5) and zones where understory vegetation was cut at 4–5 years (zone 4), at 3–4 years (zone 3), at 2 years (zone 2) and at 1 year (zone 1). A sixth zone (zone 6) was selected in a pasture, where cattle are occasionally present. Soil fauna was sampled using “pitfall” traps and sampling took place in autumn 2003. A total of 2,677 individuals, separated into 152 species and morphospecies, were caught in the traps. With the exception of zone 6, that presented a lower number of species, all the other zones from the chronosequence presented, in most cases, a similar number of taxa, species diversity (Shannon) and species richness (Margalef). Multivariate analysis separated recently disturbed zones (plus zone 6) from those intervened at longer time; groups like Formicidae, Scydmaenidae, most families from Araneae and insect larvae appeared closely associated to zones 3–5 (with a higher shrub cover and thick litter layers), whereas, other Hymenoptera, Gastropda and most Coleoptera families, appeared associated to recently disturbed zones (zones 1 and 2) and to zone 6, characterized by a lower shrub cover and a lower accumulation of litter. This separation indicates that effects of the intervention can endure for 2 or 3 years. After that time, the normal natural regeneration of the understory vegetation seems to support the restoration of the macrofauna community, thus indicating that the sustainable management strategy adopted, i.e., making a shrub cut every 5–6 years, seems not induce a significant effect on local species richness of soil epigeic macrofauna.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号