首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions among grain type (grain sorghum, corn or wheat), roughage level and monensin level were studied in four feedlot trials using pen-fed crossbred yearling cattle. In Trial 1, cattle fed high-moisture corn (HMC) were more efficient (.1537 vs .1406 for gain/feed; P less than .01) than cattle fed dry-rolled grain sorghum (DRGS). As level (0, 3, 6, 9%) of dietary roughage was increased, feed efficiency (gain/feed) decreased (.1566, .1461, .1479, .1382; linear, P less than .01). In Trial 2, a grain type (DRGS; dry-rolled corn, DRC; dry-rolled wheat, DRW) x roughage level interaction was observed for daily gain and feed efficiency. Feed efficiency (gain/feed) was decreased when roughage was added to diets containing DRC (.1608 vs .1750) or DRGS (.1674 vs .1465), but not to the diet containing DRW (.1664 vs .1607). In trial 3, a grain type x roughage level x monensin level interaction (P less than .08) was observed for feed efficiency. The addition of 27.5 mg of monensin per kilogram of the 0% roughage-DRC diet tended to improve feed efficiency (.1633 vs .1531), but the addition of monensin to the 7.5% roughage-DRC diet tended to depress feed efficiency (.1476 vs .1575). The addition of either roughage (.1493 vs .1420) or monensin (.1500 vs .1413) to the DRW diet improved feed efficiency. In Trial 4, cattle fed a combination of 75% DRW and 25% DRC were more efficient (.1618 vs .1591; P less than .06) than cattle fed DRC. As level of roughage (0, 3.75, 7.5%) increased, feed efficiency decreased linearly (.1645, .1599, .1569; P less than .0001). Monensin had no effect on feed efficiency. The value of feeding roughage and monensin was variable both across grain types and within similar grain types.  相似文献   

2.
In three experiments consisting of three finishing trials each, five corn storage and(or) feeding treatments were evaluated: 1) dry whole (DWC); 2) whole high-moisture (WHMC); 3) mixture (MHMC) of ground (GHMC) or rolled (RHMC) high-moisture corn with WHMC; 4) GHMC stored in a bunker silo; and 5) RHMC, corn stored whole but fed in rolled form. In Exp. 1, gains and feed intakes of steers fed whole corn (DWC vs WHMC) were similar. Steers fed GHMC and RHMC had lower (P less than .05) gains and intakes than steers fed whole corn. However, feed to gain ratios were 9% better (P less than .10) for steers fed RHMC than for steers fed GHMC. In Exp. 1 and 2, gains of steers fed MHMC were intermediate to gains of steers fed whole (DWC and WHMC) or processed corn (GHMC and RHMC). Feed to gain ratios of steers fed whole or processed corn were similar to feed to gain ratios of steers fed MHMC. In Exp. 3, steers fed 28.6% moisture GHMC had lower (P less than .05) intakes and feed to gain ratios than steers fed 22.5% moisture GHMC. Intakes and feed to gain ratios decreased 1.2 and 1.4%, respectively, for each 1% increase in corn moisture. Data are interpreted to mean that the relative effect of corn moisture content on cattle performance depends on form of corn fed; positive associative effects of MHMC are negligible, but RHMC has a greater feed value than GHMC.  相似文献   

3.
Two trials were conducted to determine the effect of corn processing method on performance and carcass traits in steers fed finishing diets containing wet corn gluten feed (WCGF). In Trial 1, 480 steer calves (303 kg initial BW) were fed eight finishing diets: 1) dry-rolled corn (DRC) without; and 2) with 32% (DM basis) WCGF; 3) steam-flaked corn (SFC) without; and 4) with WCGF; 5) a combination of DRC and SFC without WCGF; 6) finely-ground corn (FGC) with WCGF; 7) high-moisture corn (HMC) with WCGF; and 8) whole corn (WC) with WCGF. Feeding WC + WCGF increased (P < 0.10) DMI and decreased gain:feed compared with all other treatments. Feeding DRC + WCGF increased (P < 0.10) DMI and decreased (P < 0.10) gain:feed compared with treatments other than WC + WCGF. Steers on treatments that included WCGF gained similarly, regardless of corn processing method, and at a rate 6% faster (P < 0.10) than steers fed diets that did not include WCGF. Gain:feed did not differ among steers fed SFC, SFC + WCGF, SFC + DRC, and HMC + WCGF. Steers fed SFC or SFC + WCGF were more efficient (P < 0.10) than steers fed DRC or FGC + WCGF. In Trial 2, 288 steer calves (382 kg initial BW) were fed six finishing diets: 1) DRC without; and 2) with 22% (DM basis) WCGF; 3) SFC without; and 4) with WCGF; 5) finely rolled corn (FRC) with WCGF; and 6) HMC corn with WCGF. Steers fed DRC + WCGF or FRC + WCGF consumed more DM (P < 0.10) than steers fed DRC, SFC, or SFC + WCGF. Feed intake did not differ between steers fed SFC + WCGF and HMC + WCGF. All treatment groups receiving WCGF consumed more DM (P < 0.10) feed than steers fed DRC or SFC without WCGF. Steers fed SFC + WCGF gained 8% faster (P < 0.10), and steers fed DRC 9.5% slower (P < 0.10) than steers receiving all other treatments. Daily gains did not differ among other treatment groups. Steers fed SFC or SFC + WCGF gained 10% more (P < 0.10) efficiently than all other treatment groups. Feed efficiency did not differ among steers fed DRC, DRC + WCGF, FRC + WCGF, and HMC + WCGF. Estimates for the NEg of WCGF calculated from animal performance indicated that WCGF contained approximately 25.3% more energy when fed with SFC than when fed with DRC. In general, more intensively processing corn improved gain:feed in finishing diets containing WCGF.  相似文献   

4.
Two finishing trials were conducted to determine the effects of adding different types of corn bran, a component of corn gluten feed, on cattle performance. In Trial 1, 60 English crossbred yearling steers (283 +/- 6.7 kg) were used in a completely randomized design with four dietary treatments. Treatments were diets with no corn bran, dry corn bran (86% DM), wet corn bran (37% DM), and rehydrated dry bran (37% DM). Bran was fed at 40% of dietary DM. All finishing diets had (DM basis) 9% corn steep liquor with distillers solubles, 7.5% alfalfa hay, 3% tallow, and 5% supplement. Gain efficiency and ADG were greater (P < 0.01) for cattle fed no corn bran compared with all treatments containing corn bran; however, no differences were detected across corn bran types. In Trial 2, 340 English crossbred yearling steers (354 +/- 0.6 kg) were used in a randomized block design with treatments assigned based on a 2 x 4 + 2 factorial arrangement (four pens per treatment). One factor was the corn processing method used (dry-rolled corn, DRC; or steam-flaked corn, SFC). The other factor was corn bran type: dry (90% DM), wet (40% DM), or dry bran rehydrated to 40 or 60% DM. Bran was fed at 30% of dietary DM, replacing either DRC or SFC. Two control diets (DRC and SFC) were fed with no added bran. All finishing diets contained (DM basis) 10% corn steep liquor with distiller's solubles, 3.5% alfalfa hay, 3.5% sorghum silage, and 5% supplement. Corn bran type did not affect DMI (P = 0.61), ADG (P = 0.53), or G:F (P = 0.10). Dry matter intake was greater (P < 0.01) by steers fed bran compared with those fed no bran, and was greater by steers fed DRC than by steers fed SFC (P < 0.01). Interactions occurred (P < 0.01) between grain source and bran inclusion for ADG and G:F. The ADG by steers fed the SFC diet without bran was greater (P < 0.01) than by steers fed SFC diets with bran, whereas the ADG by steers fed DRC diets with or without bran was similar. Daily gain was 15.2% greater (P < 0.01) by steers fed SFC without bran than by steers fed DRC without bran. Gain efficiency was 16.9% greater (P < 0.01) for steers fed SFC without bran compared with steers fed DRC without bran. In DRC and SFC diets, feeding bran decreased (P < 0.01) G:F by 5.2 and 13.8%, respectively. The moisture content of corn bran had no effect on finishing steer performance, and drying corn bran did not affect its energy value in finishing cattle diets.  相似文献   

5.
Four trials were conducted to determine the effects of adding various levels and types of fat to dry-rolled corn (DRC) finishing diets containing 0 or 7.5% forage. In Trial 1, 88 yearling steers (mean BW = 352 +/- 38 kg) and 176 heifers (mean BW 316 +/- 15 kg) were blocked by sex and weight into four replications. Treatments were 0, 2, 4, or 6% (DM basis) bleachable fancy tallow (BT) fed with 0 or 7.5% (DM basis) forage. Addition of BT to the 7.5% forage diet had no effect on ADG or gain/feed (G/F). However, adding BT to the all-concentrate diet decreased ADG (linear, P < .01) and G/F (linear, P = .08). In Trial 2, 184 yearling steers (mean BW = 347 +/- 21 kg) and 144 heifers (mean BW 322 +/- 8 kg) were blocked by sex and weight into six replications. Fat treatments were 0% fat, 4% BT, or 4% animal-vegetable oil blend (A-V); each fat treatment was fed with 0 or 7.5% forage. Across forage levels, the addition of fat increased (P < .01) ADG and G/F for cattle fed DRC. In Trial 3, 18 crossbred wether lambs (mean BW = 44.4 +/- 2.5 kg) were fed DRC and 7.5% forage and allotted randomly to the same fat treatments fed in Trial 2. Apparent total tract fat digestibility increased (P < .01) with the addition of BT or A-V. In Trial 4, 40 crossbred wethers (mean BW = 25 +/- 4.1 kg) and 16 ewes (mean BW = 23 +/- 2.7 kg) were individually fed 7.5% forage diets containing 0, 1, 2, or 4% BT. Addition of BT increased (linear, P = .10) G/F. In summary, fat addition to DRC finishing diets fed to yearling cattle did not consistently affect gain/feed, feed intake, and ADG.  相似文献   

6.
We hypothesized that feeding steers ground high-moisture ensiled corn (HMC) in lieu of dry-rolled corn (DRC) would reduce the amount of starch being excreted in the manure and the associated odorous compound production. One hundred forty-eight crossbred steers (363 +/- 33 kg of BW) were fed a DRC-or HMC-based diet in a feeding trial, and 8 Charolais-sired steers (447 +/- 22 kg of BW) were used in a nutrient balance study. Steers fed HMC tended to have a slightly lower DMI (P = 0.09), ADG (P = 0.06), and yield grade, but G:F, final HCW, and quality grade did not differ (P > or = 0.23) between treatments. Compared with feeding DRC, feeding HMC decreased (P = 0.02) starch intake from 5,407 to 4,846 g/d, decreased (P < 0.01) fecal excretion of starch from 448 to 292 g/d, and increased (P = 0.03) starch digestibility from 91.7 to 94.1%. Nitrogen intake was greater (P < 0.01) for steers fed DRC than HMC in both studies, but N retention did not differ (P = 0.55). Heat production and energy retention did not differ between the 2 treatments (P > or = 0.55). In manure slurries incubated for 35 d with soil and water, total VFA concentration was lower (P < 0.01) in manure from steers fed HMC (1,625 micromol/g of DM) compared with steers fed DRC (3,041 micromol/g of DM). Lower initial (d 0) starch concentrations and greater initial pH was also observed in the slurries from the HMC manure. By d 3 of slurry incubation, there was an increase (P < 0.01) in free glucose and l-lactic acid in the DRC slurries but not in the HMC slurries. During manure incubation, alcohol and VFA content increased (P < 0.01) and pH declined, but to a lesser extent (P < 0.01) in the HMC slurries. However, branched-chain VFA increased more (P < 0.01) in the HMC slurries than in the DRC slurries. These data suggest that feeding HMC instead of DRC decreased fecal starch and production of some potentially odorous compounds in a finishing cattle system but had little impact on animal productivity.  相似文献   

7.
Six ruminally and duodenally cannulated yearling steers (523 kg) were used in a replicated 3 x 3 Latin square design experiment to study the effects of corn processing on nutrient digestion, bacterial CP production, and ruminal fermentation. Dietary treatments consisted of 90% concentrate diets that were based on dry-rolled (DRC), high-moisture (HMC), or steam-flaked (SFC) corn. Each diet contained 2.0% urea (DM basis) as the sole source of supplemental nitrogen. Each period lasted 17 d, with d 1 through 14 for diet adaptation and d 15 through 17 for fecal, duodenal, and ruminal sampling. Dry matter and OM intakes were similar for DRC and SFC but were approximately 15% higher (P < 0.05) for HMC. True ruminal OM digestibilities were 18 and 10% greater (P < 0.05) for HMC than for DRC or SFC, respectively. Ruminal starch digestibilities were similar between HMC and SFC and were approximately 19% greater (P < 0.05) than DRC. Postruminal OM digestibility was similar among treatments; however, postruminal starch digestibility was 15% greater (P < 0.05) for SFC than for DRC or HMC, which were similar. Total-tract DM and OM digestibilities were similar between HMC and SFC and were 4% greater (P < 0.05) than DRC. Likewise, total-tract starch digestibilities were similar between HMC and SFC and were 3% greater (P < 0.05) than DRC. Bacterial CP flow to the duodenum was 29% greater (P < 0.05) for HMC than for DRC or SFC, which were similar. Bacterial N efficiencies were similar among treatments. Based on bacterial CP flow from the rumen, we estimate that dietary DIP requirements are approximately 12% higher for HMC-based diets than for DRC or SFC-based diets, which were similar.  相似文献   

8.
Twelve ruminally cannulated crossbred Angus steers were used to evaluate ruminal fermentation characteristics and diet digestibility when 30% (DM) corn dried distillers grains with solubles (DDGS) containing 0.42 or 0.65% (DM) of dietary S was incorporated into finishing diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC). The study was a replicated, balanced randomized incomplete block design with a 2 × 2 factorial arrangement of treatments. Factors consisted of dietary S concentration (0.42 and 0.65% of DM; 0.42S and 0.65S, respectively) and grain processing method (SFC or DRC). The 0.65S concentration was achieved by adding H(2)SO(4) to DDGS before mixing rations. Steers were assigned randomly to diets and individual, slatted-floor pens, and fed once daily for ad libitum intake. Two 15-d experimental periods were used, each consisting of a 12-d diet adaptation phase and a 3-d sample collection phase. Samples were collected at 2-h intervals postfeeding during the collection phase. Ruminal pH was measured immediately after sampling, and concentrations of ruminal ammonia and VFA were determined. Fecal samples were composited by steer within period and used to determine apparent total tract digestibilities of DM, OM, NDF, CP, starch, and ether extract. Feeding 0.65S tended (P = 0.08) to decrease DMI but resulted in greater apparent total tract digestibilities of DM (P = 0.04) and ether extract (P = 0.03). Ruminal pH increased (P < 0.05) in steers fed 0.65S diets, which may be attributable, in part, to decreased (P = 0.05) VFA concentrations and greater (P < 0.01) ruminal ammonia concentrations when 0.65S was fed, compared with feeding 0.42S. These effects were more exaggerated in steers fed DRC (interaction, P < 0.01), compared with steers fed SFC. Steers fed DRC-0.65S had greater (P < 0.01) acetate concentration than steers fed DRC-0.42S, but acetate concentration was not affected by S concentration when SFC was fed. Propionate concentration was decreased (P < 0.01) in steers fed SFC-0.65S compared with steers fed SFC-0.42S, but dietary S concentration had no effect on propionate concentration when DRC was fed. Butyrate concentration was less (P < 0.01) in steers fed 0.65S diets than in steers fed 0.42S. Lactate concentrations tended (P = 0.06) to decrease in steers fed 0.65S diets. Feeding DDGS with increased S concentration may decrease feed intake and ruminal VFA concentration but increase ruminal ammonia concentration.  相似文献   

9.
Crossbred yearling steers (n=80; 406 ± 2.7 kg of BW) were used to evaluate the effects of S concentration in dried distillers grains with solubles (DDGS) on growth performance, carcass characteristics, and ruminal concentrations of CH(4) and H(2)S in finishing steers fed diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC) and containing 30% DDGS (DM basis) with moderate S (0.42% S, MS) or high S (0.65% S, HS). Treatments consisted of SFC diets containing MS (SFC-MS), SFC diets containing HS (SFC-HS), DRC diets containing MS (DRC-MS), or DRC diets containing HS (DRC-HS). High S was achieved by adding H(2)SO(4) to DDGS. Ruminal gas samples were analyzed for concentrations of H(2)S and CH(4). Steers were fed once daily in quantities that resulted in traces of residual feed in the bunk the following day for 140 d. No interactions (P ≥ 0.15) between dietary S concentration and grain processing were observed with respect to growth performance or carcass characteristics. Steers fed HS diets had 8.9% less DMI (P < 0.001) and 12.9% less ADG (P=0.006) than steers fed diets with MS, but S concentration had no effect on G:F (P=0.25). Cattle fed HS yielded 4.3% lighter HCW (P = 0.006) and had 16.2% less KPH (P=0.009) than steers fed MS. Steers fed HS had decreased (P=0.04) yield grades compared with steers fed MS. No differences were observed among treatments with respect to dressing percentage, liver abscesses, 12th-rib fat thickness, LM area, or USDA quality grades (P ≥ 0.18). Steers fed SFC had less DMI (P < 0.001) than steers fed DRC. Grain processing had no effect (P > 0.05) on G:F or carcass characteristics. Cattle fed HS had greater (P < 0.001) ruminal concentrations of H(2)S than cattle fed MS. Hydrogen sulfide concentration was inversely related (P ≤ 0.01) to ADG (r=-0.58) and DMI (r=-0.67) in cattle fed SFC, and to DMI (r=-0.40) in cattle fed DRC. Feeding DDGS that are high in dietary S may decrease the DMI of beef steers and compromise the growth performance and carcass characteristics of feedlot cattle.  相似文献   

10.
In four feeding trials with beef steers, corn silage (CS), alfalfa hay (AH), and alfalfa silage (AS) were compared as roughage sources in dry-rolled (DRC); dry whole (DWC); ground, high-moisture (GHMC); and whole, high-moisture corn (WHMC) fattening diets. In processed corn diets (DRC and GHMC), steers fed CS had lower DMI (P less than .05) and feed:gain ratios (P less than .10) than steers fed AS as the roughage source. In a separate trial, greater gains (P less than .10) and lower feed:gain ratios (P less than .05) were found during the initial feeding period, which included the adaptation phase, for steers fed CS vs steers fed AH as the roughage source. Over the entire feeding period, lower (corn type x roughage source interaction, P less than .05) feed:gain ratios were found in GHMC diets when CS was fed as the roughage source; feed:gain ratios were similar in steers fed DRC diets containing either CS or AH. Over the entire feeding period, similar performance was found among steers fed the various roughage sources in DWC diets; however, with WHMC diets, steers fed AS as the roughage source had lower feed:gain ratios than did steers fed AH (P less than .05) or CS (P greater than .10). In the processed corn diets, high correlations were found between diet NDF digestibility and gain (r = .80), intake (r = .68), and feed:gain ratios (r = -.66); similar trends were found in WHMC diets but not in DWC diets. These results suggest that the ideal roughage source to complement finishing diets may depend on corn processing method and feeding period (adaptation vs finishing).  相似文献   

11.
Three experiments evaluated the lipids in distillers grains plus solubles compared with corn or other sources of lipid in finishing diets. Experiment 1 utilized 60 individually fed yearling heifers (349 +/- 34 kg of BW) fed treatments consisting of 0, 20, or 40% (DM basis) wet distillers grains plus solubles (WDGS), or 0, 2.5, or 5.0% (DM basis) corn oil in a finishing diet based on high-moisture corn (HMC) and dry-rolled corn. Cattle fed 20 and 40% WDGS had greater (P < 0.10) G:F than cattle fed 0% WDGS. Cattle fed the 5.0% corn oil had less overall performance than cattle fed the other diets. Results from Exp. 1 indicated that adding fat from WDGS improves performance, whereas supplementing 5.0% corn oil depressed G:F, suggesting that the fat within WDGS is different than corn oil. Experiment 2 used 234 yearling steers (352 +/- 16 kg of BW) fed 1 of 5 treatments consisting of 20 or 40% (DM basis) dry distillers grains plus solubles, 1.3 or 2.6% (DM basis) tallow, or HMC. All diets contained 20% (DM basis) wet corn gluten feed as a method of controlling acidosis. No differences between treatments for any performance variables were observed in Exp. 2. The dry distillers grains plus solubles may be similar to tallow and HMC in finishing diets containing 20% wet corn gluten feed. Experiment 3 used 5 Holstein steers equipped with ruminal and duodenal cannulas in a 5 x 5 Latin square design. Treatments were a 40% WDGS diet, 2 composites, one consisting of corn bran and corn gluten meal; and one consisting of corn bran, corn gluten meal, and corn oil; and 2 dry-rolled corn-based diets supplemented with corn oil or not. Cattle fed the WDGS diet had numerically less rumen pH compared with cattle fed other treatments. Cattle fed WDGS had greater (P < 0.10) molar proportions of propionate, decreased (P < 0.10) acetate:propionate ratios, greater (P < 0.10) total tract fat digestion, and a greater (P < 0.10) proportion of unsaturated fatty acids reaching the duodenum than cattle fed other treatments. Therefore, the greater energy value of WDGS compared with corn may be due to more propionate production, greater fat digestibility, and more unsaturated fatty acids reaching the duodenum.  相似文献   

12.
Seven crossbred, abomasally fistulated yearling steers (400 kg) were used in two digestion trials (crossover design) to study the effect of processing sorghum grain on the site and extent of feed and microbial protein digestion. Steers were fed an 81.5% sorghum grain diet in which the grain was either dry-rolled (DR; four steers) or steam-processed, flaked (SPF; three steers). At the end of the first trial steers were switched to the opposite treatment. Dysprosium (21 to 23 micrograms/g of feed) was used as a digesta marker. Feed, abomasal contents and fecal grab samples were collected at 12-h intervals during a 6-d total fecal collection period. Organic matter (OM) intake for SPF and DR grain diets averaged 6,426 and 6,787 g/d, respectively. Compared with DR, SPF increased (P less than .05) the apparent total digestibility and ruminal digestibility of OM. Trichloroacetic acid precipitable protein consumed by the steers was lower (P less than .05) for SPF than the DR treatment. Processing method had no effect on ruminal digestion of crude protein (CP), bacterial protein (BP) synthesis, quantity of CP entering the small intestine or on total digestion of feed protein. There was a trend for increased total and post-ruminal digestion of CP with the SPF diet. Post-ruminal digestion of BP was increased (P less than .05) by SPF grain as compared with DR. Percentage of non-BP digested ruminally, post-ruminally or in the total tract was not significantly affected by processing method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Three trials were conducted to evaluate the effects of degree of barley and corn processing on performance and digestion characteristics of steers fed growing diets. Trial 1 used 14 (328 +/- 43 kg initial BW) Holstein steers fitted with ruminal, duodenal, and ileal cannulas in a completely randomized design to evaluate intake, site of digestion, and ruminal fermentation. Treatments consisted of coarsely rolled barley (2,770 microm), moderately rolled barley (2,127 microm), and finely rolled barley (1,385 microm). Trial 2 used 141 crossbred beef steers (319 +/- 5.5 kg initial BW; 441 +/- 5.5 kg final BW) fed for 84 d in a 2 x 2 factorial arrangement to evaluate the effects of grain source (barley or corn) and extent of processing (coarse or fine) on steer performance. Trial 3 investigated four degrees of grain processing in barley-based growing diets and used 143 crossbred steers (277 +/- 19 kg initial BW; 396 +/- 19 kg final BW) fed for 93 d. Treatments were coarsely, moderately, and finely rolled barley and a mixture of coarsely and finely rolled barley to approximate moderately rolled barley. In Trial 1, total tract digestibilities of OM, CP, NDF, and ADF were not affected (P > or = 0.10) by barley processing; however, total tract starch digestibility increased linearly (P < 0.05), and fecal starch output decreased linearly (P < 0.05) with finer barley processing. In situ DM, CP, starch disappearance rate, starch soluble fraction, and extent of starch digestion increased linearly (P < 0.05) with finer processing. In Trial 2, final BW and ADG were not affected by degree of processing or type of grain (P > or = 0.13). Steers fed corn had greater DMI (P = 0.05) than those fed barley. In Trial 3, DMI decreased linearly with finer degree of processing (P = 0.003). Gain efficiency, apparent dietary NEm, and apparent dietary NEg increased (P < 0.001) with increased degree of processing. Finer processing of barley improved characteristics of starch digestion and feed efficiency, but finer processing of corn did not improve animal performance in medium-concentrate, growing diets.  相似文献   

14.
Wheat and high-moisture corn (HMC) were fed singly and in three combinations using dry-rolled wheat (DRW) (ratios of 75:25, 50:50, and 25:75, respectively, Trial 1), or singly and in two combinations using steam-rolled wheat (SRW) (ratios of 67:33 and 33:67, respectively, Trial 2) to finishing beef cattle fed a high-concentrate diet. In situ rate of starch digestion (Trial 3) was measured on grains used in Trial 1 (excluding the 25 HMC: 75 DRW mixture) and ground dry corn. In Trial 1 (132 d), gain/feed did not differ (P greater than .10); however, final weight, hot carcass weight, and ADG decreased linearly (P less than .05) and DMI exhibited a cubic response (P less than .05) as the percentage of wheat in the diet increased. Carcass characteristics were not different. In Trial 2 (113 d), there were no differences attributable to treatment for ADG, DMI, gain/feed, or carcass characteristics. Positive associative responses for gain efficiency (gain/feed) were greatest for the first increment of wheat addition (25% DRW and 33% SRW in Trials 1 and 2, respectively) and for the early portion of the feeding period (57 and 28 d for Trials 1 and 2, respectively), indicating a more rapid diet adaptation and(or) less propensity for subacute acidosis. In Trial 3, the treatment grains or mixtures did not differ in rate of starch digestion. Although the differences were not statistically significant, starch in the 100% wheat diet was digested twice as fast as the 100 or 75% HMC mixtures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Six ruminally cannulated steers (345 +/- 20 kg initial BW) were used in a 6 x 6 Latin square to evaluate effects of diet and antibiotics on ruminal protein metabolism. Two diets and three antibiotic treatments were arranged factorially. One diet contained (DM basis) 72% dry-rolled corn, 12% soybean meal, 10% alfalfa hay, and 4% molasses (SBM), and the other contained 63% dry-rolled corn, 30% wet corn gluten feed, and 5% alfalfa hay (WCGF). Antibiotic treatments included control, virginiamycin (175 mg/d; VM), and monensin/tylosin (250 and 100 mg/d, respectively; MT). Steers were fed at 12-h intervals at a rate of 2.4% of empty BW daily. Each period included 18 d of adaptation and 3 d of ruminal fluid collections. Samples were collected at 0, 2, 4, 6, 8, and 10 h after the morning feeding on d 19 and 20. On d 21, rumens were dosed 2 h after the morning feeding with 350 g of solubilized casein to evaluate in vivo ruminal protease and deaminase activities. Ruminal fluid samples were collected 1, 2, 3, 4, and 6 h after the casein dose. On d 19 and 20, antibiotics had no effect on ruminal pH or concentrations of VFA, lactate, ammonia, ciliated protozoa, alpha-amino nitrogen (AAN), or peptide N, but VM reduced (P < 0.01) the concentration of isovalerate compared to MT and control. After casein dosing (d 21), peptide N concentration was unaffected by antibiotics, but AAN were higher (P < 0.01) for VM than MT and control. Relative to MT and control, VM reduced ruminal isovalerate (P = 0.05) and increased ruminal propionate (P < 0.01) on d 21. Ruminal pH was lower (P < 0.01) in steers fed SBM than in steers fed WCGF, but lactate concentrations were unaffected by diet. Steers fed SBM had higher (P < 0.05) ruminal concentrations of total VFA and propionate. Ammonia concentrations were lower before feeding and higher after feeding for steers fed WCGF (P < 0.01). Steers fed WCGF had higher counts of total ciliated protozoa than steers fed SBM (P < 0.05) due to greater Entodinium sp. (P < 0.05). Steers fed WCGF had higher (P < 0.01) ruminal AAN and peptide N concentrations than those fed SBM on d 19 and 20. After casein dosing, ruminal peptide N concentrations were similar, but AAN were lower (P < 0.01) for WCGF than SBM. Overall, VM appeared to depress ruminal deaminase activity, and MT had minimal effects on ruminal fermentation products. The protein in WCGF appeared to be more readily degradable than that in SBM.  相似文献   

16.
Effects of dry corn gluten feed (DCGF) on feedlot cattle performance and fiber digestibility were investigated. In Trial 1, 120 growing steers were fed corn silage-based diets containing 0, 40, 60 or 80% DCGF. Increasing levels of DCGF resulted in a curvilinear response in gain (P less than .05) and a linear increase in feed/gain (P less than .01). When the same steers subsequently were fed the same levels of DCGF in corn-based diets (Trial 2), increasing the percentage of dietary DCGF resulted in a linear decrease in gain (P less than .01) and a linear increase in feed/gain (P less than .01). In Trial 3, 46 crossbred steers were fed individually in a 2 x 2 factorial design to determine effects of 60 or 80% dietary high-moisture corn (HMC) or DCGF on feedlot cattle performance. Steers fed HMC had faster (P less than .08) and more efficient (P less than .05) gains than those fed DCGF, which had greater feed intakes (P less than .05). In Trial 4, 120 Angus crossbred steers were used to compare effects of 20 or 40% dietary HMC or DCGF on feedlot performance. Steers fed diets containing 40% HMC or DCGF had greater gains (P less than .01) and feed intakes (P less than .01) than those fed 20% diets. Steers fed HMC gained more efficiently than those fed DCGF (P less than .01). In an in situ trial, 0, 40, 60 or 80% dietary DCGF did not affect in situ DCGF DM or NDF disappearance. When DCGF was fermented in vitro in combination with corn silage, increasing the level of DCGF from 0 to 100% resulted in a linear increase (P less than .01) in 24 and 48 h NDF disappearance. These results suggest that at high dietary levels DCGF will support feedlot cattle gains that are nearly equal to those of cattle fed corn silage but somewhat less than those fed corn.  相似文献   

17.
To determine the effects of blends of high-moisture harvested sorghum grain (HMS) and dry-rolled corn (DRC) on site and extent of digestion, high-grain diets were fed to Angus-Hereford heifers (315 kg) in a 5 x 5 latin square. The grain portion consisted of ratios (HMS:DRC) of 0:100, 25:75, 50:50, 75:25 and 100:0. Heifers were equipped with ruminal, duodenal and ileal T-type cannulas. Digestibilities of OM (P less than .05) and non-ammonia nitrogen (NAN; P less than .01) in the total tract declined linearly as HMS replaced DRC. Chyme flow (liters/d) through the duodenum increased linearly (P less than .01), and true ruminal OM disappearance tended to decline linearly (P less than .10) as HMS replaced DRC. A quadratic response (P less than .05) in extent of starch disappearance (g/d) in the rumen was noted; blends were lower than either individual grain. Ruminal escape of feed N tended to be quadratic (P less than .10); values for individual grain types were greater than blends. Microbial efficiency increased linearly (P less than .05) as HMS replaced DRC. Extent of starch digestion in the rumen averaged 82.7% compared to only 2.9% in the small intestine and 5.7% in the large intestine. Altering the ratio of HMS to DRC appeared to have more effect on ruminal fermentation than on digestion in the small intestine; most starch and nitrogen responses were quadratic. Increases in ruminal pH and chyme flow, potentially caused by increased salivary flow, may cause non-linear changes in the solubility of proteins in HMS and DRC, when fed as blends, altering the digestibility of protein and starch from values predicted from the individual grains.  相似文献   

18.
An experiment was conducted to evaluate the effects of grain processing and lipid addition to finishing diets on cattle performance, carcass characteristics, and meat quality. Eighty Hereford x Angus steers (384 kg +/- 17 kg of BW) were fed diets containing steam-flaked corn (SFC) or dry-rolled corn (DRC) with and without the addition of tallow (SFC/Fat and DRC/Fat) or steam-flaked corn with ground flaxseed (SFC/Flax). Ribeye steaks from steers fed SFC, SFC/Fat, or SFC/ Flax were used to evaluate the effects of fat source on meat quality. Cattle fed SFC and SFC/Fat tended to have greater ADG, G:F, HCW, and USDA yield grade, compared with those fed DRC and DRC/Fat (P < 0.10). Steaks from steers fed SFC/Flax developed a detectable off-flavor (P < 0.05) compared with steaks from steers fed SFC and SFC/Fat, and steaks from steers fed SFC retained desirable color longer than those from steers fed SFC/Flax (P < 0.05). Feeding SFC/Flax increased deposition of alpha-linolenic acid in muscle tissue compared with feeding SFC or SFC/Fat (P < 0.01). Dietary treatment did not cause differences in tenderness, juiciness, or flavor intensity. Ground flaxseed can replace tallow in finishing diets without loss in performance, but flax may affect flavor and color stability of beef. Feeding flaxseed can effectively alter composition of carcass tissues to yield beef that is high in n-3 fatty acids.  相似文献   

19.
Beef finishing and dairy lactation experiments were conducted to evaluate the nutritional value of distillers grains (DG) from sorghum or corn fermentation, in both wet (35.4% DM) and dry (92.2% DM) form (dairy trial only). In the finishing experiment, 60 yearling steers were used in a completely randomized design with three diets that were fed for 127 d: 1) control diet with 86% (DM basis) dry-rolled corn and no DG; 2) 30% of ration DM as wet corn DG in place of dry-rolled corn; and 3) 30% of ration DM as wet sorghum DG in place of dry-rolled corn. All diets contained a minimum of 6.8% degradable intake protein and 13.0% CP. Steers fed DG had 10% greater ADG (< 0.01) and 8% greater efficiency of gain (P < 0.01) than steers fed the control diet. Wet corn and sorghum DG resulted in similar ADG and efficiency of gain. Hot carcass weights, fat thickness, and yield grades were greater for steers fed DG than for controls (P < 0.07). Improvements in ADG and feed efficiency observed when DG replaced dry-rolled corn indicated that the NEg content of wet DG is approximately 29% greater than that of dry-rolled corn. In the dairy lactation experiment, 16 lactating Holstein cows (eight multiparous, including four fistulated) were used in a replicated 4 x 4 Latin square design with 4-wk periods. Corn and sorghum DG were fed at 15% of the ration DM in either wet or dry form. Diets were fed as total mixed rations that contained 50% of a 1:1 mixture of alfalfa and corn silages, 24.3% ground corn, and 9.1% soybean meal (DM basis). There was no effect of source or form of DG on DMI, ruminal pH and VFA, or in situ digestion kinetics of NDF from DG. Efficiency of milk production was unaffected by diet. Corn and sorghum DG resulted in relatively similar performance when fed to beef or dairy cattle in this study.  相似文献   

20.
Two finishing trials and a metabolism trial were conducted to evaluate the effect of forage source and particle size in dry-rolled corn finishing diets. In Exp. 1, 224 crossbred yearling steers (BW = 342+/-11 kg) were used in a randomized complete block design consisting of seven treatments. Treatments were an all-concentrate diet or diets containing equal NDF levels provided by alfalfa hay or wheat straw (three treatments each) with each forage source ground to pass through a .95-, 7.6-, or 12.7-cm screen. Steers fed diets containing forage had greater (P < .05) DMI than steers fed an all-concentrate diet. Steers fed alfalfa diets gained faster (P < .05) with a greater (P < .05) concentrate efficiency than steers fed either all-concentrate or straw diets. In Exp. 2, 120 crossbred yearling steers (BW = 307+/-2 kg) were used in a completely randomized design and fed dry-rolled corn diets containing 10% alfalfa ground to pass through either a .95- or 7.6-cm screen. Alfalfa particle size had no effect on performance or carcass measurements. In Exp. 3, six ruminally fistulated steers (BW = 508+/-34 kg) were used in a 6 x 6 Latin square design and fed an all-concentrate diet or diets containing equal NDF levels provided by alfalfa hay, wheat straw, or ground corncobs with alfalfa and straw ground to pass through either a 2.54- or 12.7-cm screen. Steers fed straw diets spent more time (P < .10) chewing than those receiving the other diets. In conclusion, forage particle size had no effect on finishing cattle performance or ruminal metabolism data. However, cattle consuming different forage sources in dry-rolled corn finishing diets may not respond similarly in animal performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号