首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In tomato plants, α-tomatine, a steroidal glycoalkaloid saponin, inhibits fungal growth. Tomato pathogens that produce host-specific toxins, Alternaria alternata tomato pathotype causing Alternaria stem canker and Corynespora cassiicola causing Corynespora target spot, were investigated for sensitivity to α-tomatine. Although spore germination of A. alternata pathogenic and nonpathogenic to tomato and of C. cassiicola pathogenic to tomato was not affected by 0.1 mM α-tomatine, spore germination of C. cassiicola nonpathogenic to tomato was significantly inhibited. This result showed that A. alternata, regardless of its pathogenicity, and only the C. cassiicola pathogenic to tomato are resistant to α-tomatine. Germinating spores of A. alternata and C. cassiicola resistant to α-tomatine detoxified α-tomatine by degrading it to a less polar product. After inoculation of tomato leaves, spores of A. alternata and C. cassiicola nonpathogenic to tomato germinated and formed appressoria, but did not form infection hyphae in host tissues. When a host-specific toxin (CCT-toxin) produced by C. cassiicola pathogenic to tomato was added to nonpathogenic spores, colonization within leaves was observed in A. alternata, but not in C. cassiicola. On the other hand, when spores of C. cassiicola nonpathogenic to tomato were suspended in spore germination fluid of nonpathogenic A. alternata with α-tomatine detoxification activity, the fungus could be induced to colonize leaves in the presence of CCT-toxin. These results indicate that A. alternata tomato pathotype and C. cassiicola pathogenic to tomato detoxify α-tomatine during infection and that this detoxification is essential for host colonization by pathogens that produce host-specific toxins.  相似文献   

2.
A necrotrophic pathogen, the tomato pathotype of Alternaria alternata (Aa) causes Alternaria stem canker on tomato. Its pathogenicity depends on the production of host-specific AAL-toxin. Pre-inoculation with nonpathogenic Aa or pretreatment an elicitor prepared from Aa reduced disease symptoms by the pathogen. Salicylic acid (SA)- and jasmonic acid (JA)-dependent defense responses in tomato are not involved in the resistance to the pathogen induced by nonpathogenic Aa. The results suggest that an alternative and unknown signaling pathway independent of SA- and JA-signaling might modulate the induced resistance by activating the expression of the multiple defense genes.  相似文献   

3.
Fungi inhabiting Japanese pear were isolated from internal tissues of cv. Nijisseiki, and culture filtrates (CFs) of 100 isolates were evaluated for their inhibitory activity against infection by Alternaria alternata Japanese pear pathotype. CFs of 11 isolates inhibited lesion formation on the pear by the pathogen. Among these isolates, CFs of five isolates inhibited spore germination. CFs of the six other isolates inhibited appressorial formation, infection hypha formation, AK-toxin production, or a combination of these actions. Analysis of sequence homology in the rDNA ITS1 regions of these isolates showed that most isolates had high homology with some fungal endophytes.  相似文献   

4.
Fistupyrone (FP), a metabolite from Streptomyces sp. TP-A0569, inhibited the in vivo infection of Chinese cabbage seedlings by Alternaria brassicicola. To detect the possible action sites of FP, the effect of FP on the infection behavior of A. brassicicola and A. alternata was investigated. When spores of A. brassicicola were suspended in FP solution and inoculated on host leaves, FP at 0.1ppm significantly inhibited spore germination, appressorial formation, and infection hypha formation of A. brassicicola. Host-specific AB-toxin production and lesion formation by A. brassicicola spores were also reduced significantly by treatment with FP 1ppm. The effect of FP seemed to be irreversible because significant washing of FP-treated spores with distilled water (DW) did not change the inhibitory effects. In contrast, A. alternata isolates such as Japanese pear pathotype, apple pathotype, and saprophyte behaved almost equally in both FP- and DW-treated spores. Mycelial dry weight in potato dextrose broth and mycelial diameters on potato dextrose agar, gelatin glucose agar, and Czapek solution agar of both A. brassicicola and A. alternata were not different with or without addition of FP. These results indicate that FP at low concentrations has a fungicidal effect on spores of A. brassicicola but not on spores of A. alternata; FP also does not affect the vegetative phase of these fungi.  相似文献   

5.
The susceptibility of Fortune (Citrus clementina × Citrus reticulata), Citrus paradisi and Citrus limon fruits to Alternaria alternata pv. citri was investigated using different artificial inoculation methods. The results obtained reveal that the C. paradisi and C. limon fruits are less susceptible to A. alternata pv. citri than Fortune fruits, although all showed symptoms of Alternaria brown spot when the cuticle was broken and the flavedo or flavedo + albedo was removed. Furthermore, it was seen that susceptibility to the fungus decreased as the age of the fruit increased. There was a positive correlation between the susceptibility of the different Citrus fruits to A. alternata pv. citri and their “in vivo” ethylene levels, the most susceptible fruit (Fortune) producing more ethylene during growth than the less susceptible C. limon and C. paradisi. This suggests that ethylene may well be considered as a possible marker of Citrus fruit susceptibility to A. alternata pv. citri. Disease development increased when the Fortune fruits were treated with 1 mM ACC (a precursor of ethylene biosynthesis) or 1 mM Ethephon (an ethylene-releasing compound) prior to inoculation with A. alternata pv. citri. The role of ethylene as a factor involved in disease development is discussed.  相似文献   

6.
To analyze the genetics of host-specific toxin production and its relation to the specific pathogenicity of a mitosporic fungus Alternaria alternata, we developed a protoplast fusion system. Protoplasts of drug-resistant transformants of the A. alternata tomato pathotype (AAL-toxin producer) and A. alternata strawberry pathotype (AF-toxin producer) were fused by electrofusion. Of five fusion strains examined, two strains were pathogenic on both tomato and strawberry host plants, whereas the rest of the fusion strains were pathogenic only on tomato. Pulsed-field gel electrophoresis analysis demonstrated that the hybrid strains pathogenic on both tomato and strawberry carry 1.0- and 1.05-Mb conditionally dispensable (CD) chromosomes derived, respectively, from the parental strains of the tomato and strawberry pathotypes. On the other hand, the fusion strains appeared to maintain only a single homologous chromosome derived from one of the parental strain in the case of essential chromosomes (A chromosomes). The results suggest that fusion strains between two different pathotypes of A. alternata might be haploid resulting from the deletion of extra sets of essential chromosomes in the fused nuclei, whereas the CD chromosomes derived from each parental strain could be maintained stably in a new genetic background with an expanded range of pathogenicity. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank database under the accession numbers AB469331to AB469354.  相似文献   

7.
8.
Hot water was dripped into the rhizosphere of Japanese pear trees (Pyrus serotina Rehd. grafted on P. betulifolia Bunge.) infested with the white root rot fungus Rosellinia necatrix Prillieux, to destroy the fungus. Isolates of R. necatrix from diseased roots of Japanese pear were vulnerable to water at temperatures above 35°C, and the fungus was eradicated from the colonized substrate when water at 35°C was provided for 3 days. The time required to eradicate R. necatrix decreased exponentially with increasing temperature. Japanese pear trees tolerated a temperature of 45°C without reduction in vigor. Field experiments demonstrated the practical use of hot water drip irrigation (HWD). HWD at 50°C completely destroyed white root rot mycelia on diseased roots, and many rootlets grew after the treatment. HWD at this temperature caused no injury to the trees. HWD of diseased orchard trees was assessed in Takamori and Iida in southern Nagano, Japan. The fungus recurred in two of four trees 28 months after treatment in Takamori and in two of ten trees 16 months after treatment in Iida. The new mycelia emerged on thick roots deep within the soil. Although there is a possibility of recurrence, HWD treatment is a practical control measure for white root rot.  相似文献   

9.
Host-specific AAL-toxins and mycotoxin fumonisins are structurally related and were originally isolated from the tomato pathotype of Alternaria alternata and from Fusarium verticillioides, respectively. Previous reports on the production of fumonisin derivatives by the tomato pathotype suggested a possible involvement in the pathogenicity of the pathogen. Here, we have evaluated the role of fumonisin in A. alternata–tomato interactions. The results indicate that highly pathogenic isolates of A. alternata tomato pathotype produce AAL-toxin as the sole toxin, strongly implicating it as a pathogenicity factor. The related compound, fumonisin, is also toxigenic and has infection-inducing activity on susceptible tomato plants.  相似文献   

10.
A disease caused by Alternaria alternata occurred on the leaves of European pear cultivar Le Lectier in Niigata Prefecture, Japan, and was named black spot of European pear. In conidial inoculation tests, the causal pathogen induced not only small black lesions on the leaves of European pear cultivar Le Lectier, but severe lesions on the leaves of apple cultivar Red Gold, which is susceptible to the A. alternata apple pathotype (previously called A. mali) causing Alternaria blotch of apple. Interestingly, the apple pathotype isolate showed the same pathogenicity as the European pear pathogen. HPLC analysis of the culture filtrates revealed that A. alternata causing black spot of European pear produced AM-toxin I, known as a host-specific toxin of the A. alternata apple pathotype. AM-toxin I induced veinal necrosis on leaves of Le Lectier and General Leclerc cultivars, both susceptible to the European pear pathogen, at 5?×?10?7 M and 10?6 M respectively, but did not affect leaves of resistant cultivars at 10?4 M. PCR analysis with primers that specifically amplify the AM-toxin synthetase gene detected the product of expected size in the pathogen. These results indicate that A. alternata causing black spot of European pear is identical to that causing Alternaria blotch of apple. This is the first report of European pear disease caused by the A. alternata apple pathotype. This study provides a multiplex PCR protocol, which could serve as a useful tool, for the epidemiological survey of these two diseases in European pear and apple orchards.  相似文献   

11.
12.
13.
Phialophora gregata f. sp. adzukicola, a causal agent of brown stem rot in adzuki beans, produces phytotoxic compounds: gregatins A, B, C, D, and E. Gregatins A, C, and D cause wilting and vascular browning in adzuki beans, which resemble the disease symptoms. Thus, gregatins are considered to be involved in pathogenicity. However, molecular analyses have not been conducted, and little is known about other pathogenic factors. We sought to isolate nonpathogenic and gregatin-deficient mutants through Agrobacterium tumefaciens-mediated transformation (ATMT) for cloning of pathogenicity-related genes. The co-cultivation of P. gregata and A. tumefaciens for 48 h at 20°C with 200 μM acetosyringone resulted in approximately 80 transformants per 106 conidia. The presence of acetosyringone in the A. tumefaciens pre-cultivation period led to an increase in T-DNA copy number per genome. Of 420 and 110 transformants tested for their pathogenicity and productivity of gregatins, one nonpathogenic and three gregatin-deficient mutants were obtained, respectively. The nonpathogenic mutant produced gregatins, whereas the gregatin-deficient mutants had pathogenicity comparable to the wild-type strain. This is the first report of ATMT of P. gregata. Further analysis of these mutants will help reveal the nature of the pathogenicity of this fungus including the role of gregatin in pathogenesis.  相似文献   

14.
A conventional PCR and a SYBR Green real-time PCR assays for the detection and quantification of Phytophthora cryptogea, an economically important pathogen, have been developed and tested. A conventional primer set (Cryp1 and Cryp2) was designed from the Ypt1 gene of P. cryptogea. A 369 bp product was amplified on DNA from 17 isolates of P. cryptogea. No product was amplified on DNA from 34 other Phytophthora spp., water moulds, true fungi and bacteria. In addition, Cryp1/Cryp2 primers were successfully adapted to real-time PCR. The conventional PCR and real-time PCR assays were compared. The PCR was able to detect the pathogen on naturally infected gerbera plants and on symptomatic artificially infected plants collected 21 days after pathogen inoculation. The detection limit was 5 × 103 P. cryptogea zoospores and 16 fg of DNA. Real-time PCR showed a detection limit 100 times lower (50 zoospores, 160 ag of DNA) and the possibility of detecting the pathogen in symptomless artificially infected plants and in the re-circulating nutrient solution of closed soilless cultivation systems.  相似文献   

15.
Graft unions of nursery stock of grapevine (Vitis vinifera L.) collected in Japan yielded pathogenic and nonpathogenic strains of Agrobacterium. On the basis of classical diagnostic tests, a sequence analysis, and a multiplex polymerase chain reaction method previously reported, the pathogenic strain was identified as Agrobacterium tumefaciens biovar 3, whereas the nonpathogenic strains were assigned to Agrobacterium radiobacter biovar 3. Stems of tomato (Lycopersicon esculentum Mill.) seedlings were inoculated with both A. tumefaciens biovar 3 strain G-Ag-27 as a pathogen and one of the control strains isolated from grapevine or A. radiobacter biovar 2 strain K84 as competitors to assay the suppression of gall formation caused by the pathogen. In a test with a 1 : 1 pathogen/nonpathogen cell ratio, all A. radiobacter biovar 3 strains reduced gall incidence and size compared to that of the positive control inoculated only with the pathogen. Strain VAR03-1 was especially effective in reducing the incidence of gall formation on grapevine and reduced gall size by 84%–100% of those on the positive control. Many tested nonpathogenic biovar 3 strains were bacteriocinogenic, causing an inhibition zone against A. tumefaciens biovar 3 strains on YMA medium. Strain VAR03-1 was the most effective against indicator strains and appears to be a promising agent for controlling crown gall of grapevine.  相似文献   

16.
It has been reported that Alternaria brassicae, the causal agent of gray leaf spot in Brassica plants, produces a host-specific or host-selective toxin (HSTs) identified as destruxin B. In this study, the role of destruxin B in infection of the pathogen was investigated. Destruxin B purified from culture filtrates (CFs) of A. brassicae induced chlorosis on host leaves at 50–100 μg ml−1, and chlorosis or necrosis on non-host leaves at 250–500 μg ml−1. Destruxin B was detected in spore germination fluids (SGFs) on host and non-host leaves, but not in a sufficient amount to exert toxicity to host plants. When spores of non-pathogenic A. alternata were combined with destruxin B at 100 μg ml−1 and inoculated on the leaves, destruxin B did not affect the infection behavior of the spores. Interestingly, SGF on host leaves allowed non-pathogenic spores to colonize host leaves. Moreover, a high molecular weight fraction (>5 kDa) without destruxin B obtained by ultrafiltration of SGF had host-specific toxin activity and infection-inducing activity. From these results, we conclude that destruxin B is not a HST and does not induce the accessibility of the host plant which is essential for colonization of the pathogen. In addition, the results with SGF imply that a high molecular weight HST(s) is involved in the host–pathogen interaction.  相似文献   

17.
Leaf blight disease was found on Gloriosa superba L. (Liliaceae), an endangered, herbaceous, perennial, climbing lily that produces colchicine, in West Bengal, India in 2004. Small brownish spots on leaves developed into concentric rings, which eventually darkened and coalesced to blight the entire leaf. The causal fungus was morphologically identified as Alternaria alternata (Fr.) Keissler. This is the first record of A. alternata on G. superba.  相似文献   

18.
The sterol biosynthesis inhibitors bromuconazole and difenoconazole and tank mixes of each fungicide with captan were applied to apples and evaluated as controls for moldy-core and fruit decay caused by Alternaria alternata. Effectiveness of a mixture of bromuconazole and captan in controlling colonization by the fungus was also evaluated. Decay formation by A. alternata on mature detached fruits was partially inhibited by bromuconazole at 0.5 μg ml−1 and was completely inhibited at 50 μg ml−1; it was significantly affected by either bromoconazole at 5 μg ml−1 or captan at 1,250 μg ml−1, and was completely inhibited by their mixture. In general, three foliar applications of bromuconazole or difenoconazole in the field, during the bloom period, reduced the numbers of infected fruits by 40–60% compared with untreated control trees. However, tank mixes of either fungicide with captan improved control of moldy-core in fruits at harvest. Tank mixtures of bromuconazole and captan also significantly reduced the percentage of fruits colonized by A. alternata when sampled at various days after full bloom. Artificial inoculations in the orchard at full bloom did not change the inhibitory effects of the tank mixtures. Large-scale demonstration trials in commercial orchards supported these findings. The inhibitory effects of tank mixes on decay development in detached fruits, and on moldy-core in the field indicate that a control programme based on mixtures of either bromuconazole or difenoconazole with captan during the bloom period can effectively reduce moldy-core on Red Delicious apples.  相似文献   

19.
Plant recognition of elicitors derived from pathogens induces various resistant reactions, including production of reactive oxygen species, hypersensitive cell death and accumulation of phytoalexins. Previously, we isolated a ceramide elicitor from Phytophthora infestans, which activates O2 production of potato suspension-cultured cells. In this study, we employed nine ceramide-related chemicals to test their elicitor activity. Although, none of the tested chemicals induced O2 production, N,N-dimethylsphingosine (DMS) induced accumulation of phytoalexin in potato tubers. In potato, tobacco and Nicotiana benthamiana, DMS also induced rapid cell death. DMS-treated potato cells stained with 4′,6-diamidino-2-phenylindole (DAPI) showed chromatin condensation, and isolated DNA from DMS-treated cells had ladder pattern, confirming that DMS-induced plant cell death is a hypersensitive reaction-like programmed cell death. Involvement of ceramide signaling in induction of plant defense reactions is discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Wasabi (Wasabia japonica) is grown for its highly-valued rhizome which is used as a condiment in Japanese food. Symptoms of vascular blackening in the rhizome were first observed in 2005 in plants grown in British Columbia, Canada. Microscopic observations and microbial isolation from infected tissues revealed that most of the xylem tracheid cells were blackened and bacteria were consistently associated with symptomatic plants. The bacterium most frequently recovered was identified as Pectobacterium carotovorum subsp. carotovorum (Pcc) using BioLog™ and sequencing of a specific ~510 bp IGS region. Pathogen-free plants obtained using meristem-tip micropropagation were inoculated with a wasabi isolate of Pcc. Vascular blackening symptoms developed in the rhizome after 8 weeks when the rhizome was first wounded by stabbing or cutting, or if the roots were pre-inoculated with Pythium species isolated from rhizome epidermal tissues, followed by inoculation with Pcc at 1 × 108 cells ml−1. Xylem tracheid cells were blackened and Pcc was reisolated from all diseased tissues. The highest frequency of rhizome vascular blackening occurred at 22°C and 27°C and these tissues occasionally succumbed to soft rot at higher temperatures, but not when inoculated tissues were incubated at 10°C. The rooting medium used by growers for vegetative propagation of wasabi was shown to contain Pcc but the pathogen was not recovered from the irrigation water. Entry of Pcc through wounds on wasabi rhizomes and the host tissue response result in symptoms of vascular blackening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号