首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Avian intestinal spirochaetosis (AIS) is an infection of the caeca and/or colo-rectum of laying and meat breeder hens caused by anaerobic intestinal spirochaetes of the genus Brachyspira. AIS can result in a variety of symptoms, including delayed and/or reduced egg production, and increased faecal water content. The two most commonly reported Brachyspira species involved in AIS are Brachyspira pilosicoli and Brachyspira intermedia, and their detection and identification can be difficult and time consuming. In the current study a two-step nested duplex PCR (2S-N-D-PCR) was developed for the detection of these two species, using DNA extracted from washed chicken faeces. In the first step, a duplex PCR (D-PCR) amplifying Brachyspira genus-specific portions of the 16S rRNA and NADH oxidase (nox) genes was undertaken on the washed faeces. In the second step, a nested D-PCR was used that amplified species-specific portions of the 16S rRNA gene of B. pilosicoli and the nox gene of B. intermedia from the amplicons produced in the first step. The 2S-N-D-PCR was rapid and specific, and could be used to detect approximately 10(3) cells of each spirochaete species per gram of washed faeces. When tested on 882 chicken faecal samples from infected flocks, it detected 4-5% more positive faecal samples than did the standard method of selective anaerobic culture followed by individual species-specific PCR assays conducted on the growth on the primary plate. The application of this new technique should improve diagnostic capacity, and facilitate further studies on AIS.  相似文献   

2.
Sixty-nine intestinal spirochetes isolated from pigs and poultry in eastern Australia were selected to evaluate the effectiveness of a species-specific PCR-based restriction fragment length polymorphism (RFLP) analysis of the Brachyspira nox gene. For comparative purposes, all isolates were subjected to species-specific PCRs for the pathogenic species Brachyspira hyodysenteriae and Brachyspira pilosicoli, and selected isolates were examined further by sequence analysis of the nox and 16S ribosomal RNA genes. Modifications to the original nox-RFLP method included direct inoculation of bacterial cells into the amplification mixture and purification of the PCR product, which further optimized the nox-RFLP for use in a veterinary diagnostic laboratory, producing sufficient product for both species identification and future comparisons. Although some novel profiles that prevented definitive identification were observed, the nox-RFLP method successfully classified 45 of 51 (88%) porcine and 15 of 18 (83%) avian isolates into 5 of the 6 recognized species of Brachyspira. This protocol represents a significant improvement over conventional methods currently used in veterinary diagnostic laboratories for rapid specific identification of Brachyspira spp. isolated from both pigs and poultry.  相似文献   

3.
Several species of intestinal spirochaetes, Brachyspira (B.) alvinipulli, B. intermedia and B. pilosicoli, may cause reduced egg production and faecal staining of eggshells in chickens. The aim of this study was to characterize potentially pathogenic and presumably non-pathogenic Brachyspira spp. from commercial laying hens. Selective culture, phenotyping, PCR and 16S rRNA gene sequencing were used and clinical data were collected. Phenotypic profiles were obtained for 489 isolates and 351 isolates obtained after subculture, and 30 isolates were selected for molecular characterization. Seven isolates were positive by a B. intermedia-specific PCR based on the nox gene, and two were positive in a B. hyodysenteriae-specific 23S rRNA gene based PCR. By comparative phylogenetic analysis in combination with PCR and phenotyping, seven isolates were identified as B. intermedia, eight isolates as B. innocens, five as B. murdochii, and three isolates each as B. alvinipulli and "B. pulli". The remaining four isolates could not be assigned to any presently recognized species. Co-infection with several species or genetic variants of Brachyspira spp. were detected in some flocks and samples, suggesting a high level of diversity. Organic flocks with access to outdoor areas were at higher risk (RR=2.3; 95% CI 1.5-3.6) for being colonized than chickens in other housing systems. No significant differences between colonized and non-colonized flocks were found regarding clinical parameters, i.e. mortality, egg production, faecally contaminated eggshells, and wet litter. Our results show that a combination of traditional laboratory diagnostics, molecular tests and phylogeny is needed for identification of Brachyspira sp. from chickens.  相似文献   

4.
The survival of Brachyspira hyodysenteriae and Brachyspira pilosicoli was investigated at 10 degrees C in laboratory microcosms consisting of soil, porcine faeces, and in soil mixed with 10% porcine faeces, respectively. By plate spreading, survival of B. hyodysenteriae was found to be 10, 78 and 112 days in soil, soil mixed with 10% faeces, and in porcine faeces, respectively. The identities of the colonies on the plates were confirmed using PCR targeting 23S rDNA for specific detection of B. hyodysenteriae. A positive PCR signal could be obtained up to 112 days in all microcosms by direct extraction of DNA from microcosms followed by PCR.The survival time for B. pilosicoli was 119 days in pure soil and 210 days in soil mixed with 10% porcine faeces and in pure faeces, respectively, as determined by plate spreading followed by PCR. On the other hand, by direct extraction of DNA followed by specific detection by PCR. B. pilosicoli could be detected up to 330 days in all microcosms.Dot blot hybridisation with digoxigenin-labelled specific oligonucleotide probe targeting rDNA could not be used for direct detection of Brachyspira spp. from microcosms due to low sensitivity. However, it was used for confirmation of the identity of colonies and proved to be a useful technique.These results show that the two Brachyspira species may survive in outdoor environment for the times shown in these investigations using laboratory microcosms.  相似文献   

5.
A cross-sectional study was conducted on a commercial egg-producing farm with a history of wet litter. A total of 600 fresh caecal faecal samples were obtained from under cages of laying hens in three sheds each containing flocks of approximately 5400 hens. Samples were cultured for intestinal spirochaetes, and growth on the primary isolation plate was observed under a phase contrast microscope and subjected to PCRs specific for the intestinal spirochaetes Brachyspira intermedia and Brachyspira pilosicoli. Spirochaete isolates obtained in pure culture were assessed for their ability to cause haemolysis on blood agar and to produce indole, and were typed using pulsed field gel electrophoresis (PFGE). A 1250 base pair portion of the 16S rRNA gene of three B. intermedia and five unidentified isolates was sequenced, and the sequences compared with those of other Brachyspira species. Overall, 121 (20.2%) of the faecal samples contained spirochaetes as determined by growth on the plate and microscopy. Using PCR on the primary growth from these positive samples, 43 (7.2% overall) were shown to contain B. intermedia, 8 (1.3%) to contain B. pilosicoli, and 70 (11.7%) were PCR negative. Only 24 isolates of B. intermedia and five isolates of unknown species were obtained in pure culture. Comparative analysis of the 16S rRNA gene sequence identified the non-B. intermedia isolates as belonging to the proposed species "Brachyspira pulli". PFGE analysis of the B. intermedia strains identified them as having four major banding patterns. Individual patterns were found in hens from different flocks, suggesting cross-transmission of strains between flocks. No environmental sources of infection were identified. The youngest flock had a significantly lower level of colonisation with B. intermedia than the flock of intermediate age (P = 0.004), suggesting that following initial infection of individual young hens on this farm there was amplification and transmission of infection amongst members of the flock.  相似文献   

6.
The distribution of many genes encoding virulence and virulence life-style (VL-S) factors in Brachyspira (B.) hyodysenteriae and other Brachyspira species are largely unknown. Their knowledge is essential e.g. for the improvement of diagnostic methods targeting the detection and differentiation of the species. Thus 121 German Brachyspira field isolates from diarrhoeic pigs were characterized down to the species level by restriction fragment length polymorphism analysis of the nox gene and subsequently subjected to polymerase chain reaction detecting VL-S genes for inner (clpX) and outer membrane proteins (OMPs: bhlp16, bhlp17.6, bhlp29.7, bhmp39f, bhmp39h), hemolysins (hlyA/ACP, tlyA), iron metabolism (ftnA, bitC), and aerotolerance (nox). For comparison, B. hyodysenteriae reference strains from the USA (n=7) and Australia (2) were used. Of all genes tested only nox was detected in all isolates. The simultaneous presence of both the tlyA and hlyA/ACP was restricted to the species B. hyodysenteriae. The hlyA infrequently occurred also in weakly hemolytic Brachyspira. Similarly to tlyA and hlyA all B. hyodysenteriae strains contained the ferritin gene ftnA which was also found in two Brachyspira intermedia isolates. OMP encoding genes were present in B. hyodysenteriae field isolates in rates of 0% (bhlp17.6, bhmp39h), 58.1% (bhlp29.7), and 97.3% (bhmp39f). Since the study revealed a high genetic heterogeneity among German B. hyodysenteriae field isolates differentiating them from USA as well as Australian strains, targets for diagnostic PCR were limited to the nox gene (genus specific PCR) as well as to the species specific nox(hyo) gene and the combination of hlyA and tlyA which allow to specifically detect B. hyodysenteriae.  相似文献   

7.
The Brachyspira (formerly Serpulina) species rrl gene encoding 23S ribosomal RNA (rRNA) was used as a target for amplification of a 517bp DNA fragment by polymerase chain reaction (PCR). The primers for PCR amplification had sequences that were conserved among Brachyspira 23S rRNA gene and were designed from nucleotide sequences of Brachyspira hyodysenteriae, Serpulina intermedia, Brachyspira innocens and Brachyspira pilosicoli available from the GenBank database. Digestion of PCR-generated products from reference and field isolates of swine intestinal spirochetes with restriction enzymes Taq I and Alu I revealed five restriction fragment length polymorphism (RFLP) patterns. Each RFLP pattern corresponded to previously established genetic groups including B. hyodysenteriae (I), S. intermedia/B. innocens (II), Brachyspira murdochii (III), B. pilosicoli (IV) and B. alvinipulli (V). The 23S rRNA PCR/RFLP provided a relatively simple genotypic method for identification of porcine pathogenic B. hyodysenteriae and B. pilosicoli.  相似文献   

8.
Brachyspira infections are significant causes of enterocolitis in pigs. In order to differentiate pathogenic species (Brachyspira (Br.) hyodysenteriae, Brachyspira pilosicoli) from less pathogenic or non-pathogenic species (Brachyspira intermedia, Brachyspira innocens, Brachyspira murdochii) in paraffin-embedded tissue samples a polymerase chain reaction (PCR) protocol allowing identification of Brachyspira at species level in archival material was developed. This approach was complemented by sequencing of the PCR amplification products. All seven cases presented with clinical and morphological Brachyspira-associated enterocolitis. Br. hyodysenteriae was not identified in any of the cases, while Br. pilosicoli was identified in a single case in conjunction with Br. murdochii. One case each was found positive for Br. innocens and Br. intermedia. Interestingly, the majority of cases presented as single or double infections with Br. murdochii. In some of the pigs other pathogens, like porcine circovirus-2 or Lawsonia intracellularis were present. These observations point at the possibility that under certain conditions even Brachyspira species of low pathogenicity can multiplicate extensively and lead to Brachyspira-associated enterocolitis.  相似文献   

9.
"Actinobacillus porcitonsillarum" is a newly suggested commensal species colonizing porcine tonsils. In the diagnostic laboratory the sole difference to the porcine lung pathogen Actinobacillus pleuropneumoniae is a negative mannitol reaction. In order to substantiate and improve this important differentiation a PCR test was developed using the relevant reference strains including Actinobacillus minor. The practicability of the test was confirmed on 20 clinical isolates of Actinobacillus spp. cultured from 100 tonsil samples originating from 18 farms in Thailand. Applying the newly developed PCR test 10 isolates were identified as A. pleuropneumoniae, and 10 as "A. porcitonsillarum" with one of them being mannitol-positive in biochemical testing. Subsequent 16S rRNA sequencing confirmed classification of all 10 strains as "A. porcitonsillarum"/A. minor. These results emphasize that suspected A. pleuropneumoniae isolates, particularly from porcine tonsils, should be confirmed by PCR in order to prevent false positive diagnoses.  相似文献   

10.
Multilocus enzyme electrophoresis (MLEE) was used to identify, examine genetic relationships and look at disease associations of a collection of 53 intestinal spirochaete isolates previously recovered from the faeces of adult hens on 14 farms in Qld, Australia. The MLEE results were compared with those previously obtained using species-specific PCR amplifications. The isolates were divided into five Brachyspira species groups by MLEE: Brachyspira murdochii (n=17), B. intermedia (n=15), B. pilosicoli (n=14), B. innocens (n=2) and "B. pulli" (n=1). Three new MLEE groups each containing single isolates also were identified. The results of the PCR assay for B. pilosicoli were concordant with the MLEE results, but the 23S rDNA-based PCR for B. intermedia had failed to detect 8 of the 15 isolates. The B. innocens/B. murdochii nox-based PCR had correctly identified all the isolates of B. murdochii, but did not identify either of the two B. innocens isolates. Using MLEE, isolates from two farms (14%) were identified as B. murdochii, whilst the pathogenic species B. intermedia and B. pilosicoli were present in hens from eight (57%) and five (36%) farms, respectively, and were identified together in four (29%) farms. All seven of the farms with production problems or wet litter were colonised with B. intermedia and/or B. pilosicoli. Six farms had multiple spirochaete isolates available for examination. Two broiler breeder farms both had five isolates of B. pilosicoli that shared the same MLEE electrophoretic type (ET), whilst one laying hen farm had three isolates of B. intermedia that all belonged to the same ET. Hence on each of these farms a predominant strain of a pathogenic species was present. On the other farms isolates of the same species were more diverse and belonged to different ETs. These results show that the epidemiology of intestinal spirochaetal infections in broiler breeder and laying hen flocks can vary considerably between farms, although the reasons for these differences were not established.  相似文献   

11.
Feral pigs are recognized as being a potential reservoir of pathogenic microorganisms that can infect domestic pigs and other species. The aim of this study was to investigate whether feral pigs in Western Australia were colonized by the pathogenic enteric bacteria Lawsonia intracellularis, Brachyspira hyodysenteriae and/or Brachyspira pilosicoli. A total of 222 feral pigs from three study-populations were sampled. DNA was extracted from faeces or colonic contents and subjected to a previously described multiplex PCR for the three pathogenic bacterial species. A subset of 61 samples was cultured for Brachyspira species. A total of 42 (18.9%) of the 222 samples were PCR positive for L. intracellularis, 18 (8.1%) for B. hyodysenteriae and 1 (0.45%) for B. pilosicoli. Four samples were positive for both L. intracellularis and B. hyodysenteriae. Samples positive for the latter two pathogens were found in pigs from all three study-sites. A strongly haemolytic B. hyodysenteriae isolate was recovered from one of the 61 cultured samples. Comparison of a 1250-base pair region of the 16S rRNA gene amplified from DNA extracted from the isolate and five of the B. hyodysenteriae PCR positive faecal samples helped confirm these as being from B. hyodysenteriae. This is the first time that B. hyodysenteriae has been detected in feral pigs. As these animals range over considerable distances, they present a potential source of B. hyodysenteriae for any domesticated pigs with which they may come into contact.  相似文献   

12.
There is no ring test for quality assessment available in Europe for diagnostics and antimicrobial susceptibility testing of the fastidious, anaerobic bacteria of the genus Brachyspira. Therefore, an international ring test for Brachyspira spp. was performed once a year during 2002-2004. Two sets of coded samples were prepared and distributed on each occasion. One set comprised six swabs dipped in pig faeces spiked with Brachyspira spp. intended for diagnostics. The other set comprised two pure strains intended only for susceptibility testing. All methods used were in-house methods. The species used were Brachyspira hyodysenteriae, Brachyspira pilosicoli, Brachyspira innocens, Brachyspira murdochii and Brachyspira intermedia. In most cases, the correct Brachyspira spp. were detected. However, the results showed that Brachyspira spp. could be difficult to identify, especially if two Brachyspira spp. were mixed or if the concentration of Brachyspira in faeces was low. Additionally, some laboratories reported Brachyspira growth in control samples that were not seeded with any spirochaetes. The lowest detection level was 10(2) bacteria/ml faeces for both B. hyodysenteriae and B. pilosicoli. The susceptibility tests performed showed that disc diffusion was not recommendable for Brachyspira spp. Extended antimicrobial dilution series gave most congruent results. The diversity of the results highlights the importance of ring tests for a high quality of diagnostics and antimicrobial susceptibility tests for Brachyspira spp. This is the first ring test described for Brachyspira spp.  相似文献   

13.
Different Brachyspira (B.) species colonize the porcine intestinal tract, some of which are pathogens of significant clinical and economic importance. In 2002 we published a novel molecular method for differentiation of Brachyspira species from pigs based on the amplification of the nox-gene and the generation of species-specific restriction patterns (nox-RFLP) using the enzymes BfmI and DpnII (Rohde et al., 2002). We applied this method for identification in addition to biochemical testing in doubtful cases until 2008. Since 2009 we have used it as the first line method of identification. The current study documents the results of examining 2050 Brachyspira isolates collected from January 2009 to December 2011. In addition to identifying isolates with previously described patterns, four novel restriction fragment length patterns were observed, and isolates with these patterns could be assigned to the species B. intermedia and the B. innocens/murdochii complex on the basis of their phenotypic properties and by nox-sequence analysis. In 2007 a potentially new Brachyspira species, "B. suanatina", was described in Swedish pigs (R?sb?ck et al., 2007). From the published nox-gene sequence it could be expected that this Brachypira species should show a new restriction pattern making nox-RFLP a suitable technique for identification of "B. suanatina". In this study the new restriction fragment length pattern could be demonstrated in one of the strains described by R?sb?ck et al. (AN4859/03). Nevertheless, no isolates with this new pattern corresponding to "B. suanatina" were identified amongst the 2050 Brachyspira isolates examined from northern Germany.  相似文献   

14.
The aim of this study was to compare and evaluate the time required to isolate Brachyspira hyodysenteriae and Brachyspira pilosicoli from porcine faeces. This was done using previously described selective media (spectinomycin) S400, (colistin, vancomycin and spectinomycin) CVS and (spectinomycin, vancomycin, colistin, spiramycin and rifampin with swine faecal extract) BJ, compared with the method based on blood agar modified medium, with spectinomycin and rifampin (BAM-SR), including a pre-treatment step. Fourteen spirochaetal strains were obtained in pure cultures after 5 days (48 h in BAM-SR primary plate and three passages every 24 h in brain heart infusion (BHI) without antibiotics) pre-treating simulated samples in brain heart infusion broth with spectinomycin (400 microg/ml) and rifampin (15 microg/ml), before streaking on the selective BAM-SR medium. Spirochaetes from samples in S400, CVS and BJ, with and without pre-treatment, were obtained in pure cultures only after repeatedly transferring on plates of the same selective medium requiring 15-18 days according to the strain. BAM-SR used after the pre-treatment step showed a detection limit ranging from 3.5 x 10(2) to 6.7 x 10(7) cells/g faeces and was the only method able to support the growth of spirochaetes after 48 h.  相似文献   

15.
Routine necropsies of 27 asymptomatic juvenile chinchillas revealed a high prevalence of gastric ulcers with microscopic lymphoplasmacytic gastroenteritis and typhlocolitis. Polymerase chain reaction (PCR) analysis using Campylobacter genus‐specific partial 16S rRNA primers revealed the presence of Campylobacter spp. DNA in the faeces of 12 of 27 animals (44.4%). Species‐specific partial 16S rRNA PCR and sequencing confirmed that these animals were colonized with Campylobacter lanienae, a gram‐negative, microaerophilic bacterium that was first identified on routine faecal screening of slaughterhouse employees and subsequently isolated from faeces of livestock. Campylobacter lanienae was isolated from the faeces of six PCR‐positive animals and identified with species‐specific PCR and full 16S rRNA sequencing. Phylogenetic analysis showed that these isolates clustered with C. lanienae strain NCTC 13004. PCR analysis of DNA extracted from gastrointestinal tissues revealed the presence of Clanienae DNA in the caecum and colon of these chinchillas. Gastrointestinal lesions were scored and compared between C. lanienae‐positive and C. lanienae‐negative animals. There was no correlation between colonization status and lesion severity in the stomach, liver, duodenum, or colon. Possible routes of C. lanienae infection in chinchillas could include waterborne transmission and faecal–oral transmission from wild mice and rats or livestock. Based on these findings, the authors conclude that C. lanienae colonizes the lower bowel of chinchillas in the absence of clinical disease. This is the first report of C. lanienae in any rodent species. Campylobacter lanienae isolates from different mammalian species demonstrate heterogeneity by 16S rRNA sequence comparison. Analysis using rpoB suggests that isolates and clones currently identified as C. lanienae may represent multiple species or subspecies.  相似文献   

16.
17.
Isospora suis and Eimeria are frequent coccidian parasites of pigs. The unsporulated oocysts of Eimeria species and of I. suis are difficult to differentiate. Therefore, a species-specific PCR was developed. PCR products were amplified from Eimeria polita, Eimeria porci, and Eimeria scabra using primers from the conserved 18S rRNA regions and were subsequently sequenced. Based on variable sequence regions, primers were constructed for the differentiation of the three Eimeria species and I. suis. Using a combination of PCRs detecting one or two species, all four coccidian species were detected (theoretical lower detection level: DNA content of 250 oocysts of each Eimeria species or 25 oocysts of Isospora in 1microl) and differentiated. The PCR-based differentiation of the above mentioned species provides a useful alternative to microscopy.  相似文献   

18.
Conventional serological methods for the identification of canine mycoplasma isolates depend on the availability of a panel of species-specific diagnostic antisera and are not always reliable in terms of specificity. To enable simultaneous identification of field isolates, PCR-RFLP analysis of the 16S-23S rRNA intergenic spacer region was used to characterize the type strains of the 12 currently described canine mycoplasmas of the Genus Mycoplasma which represent the "classic" non-hemotropic species. The use of 16S-23S rDNA PCR in the first step of this analysis revealed specific size differences of amplicons which allowed to classify these 12 canine Mycoplasma species into three groups. Depending on the length of the amplicon, subsequent RFLP analysis of PCR products using two restriction endonucleases in a single digest (ApoI/DdeI or TaqI/VspI) generated unique banding patterns. For further evaluation of the 16S-23S rDNA PCR-RFLP assay system as identification and differentiation tool, a total of 262 field isolates collected from the canine genital tract were tested. PCR-RFLP results for 251 field isolates correlated with traditional serological test results. The remaining 11 isolates had an RFLP pattern distinct from the type strains included in this study and were identified by 16S rDNA sequencing as closely related to M. sp. HRC689. The PCR-RFLP assay established in this study enabled a rapid, accurate and easily performed identification and differentiation of all 12 currently described non-hemotropic canine Mycoplasma species.  相似文献   

19.
Four genetic Mycoplasma gallisepticum (MG) polymerase chain reactions (PCRs) (16s rRNA PCR, three newly developed PCR methods that target surface protein genes [mgc2, LP (nested) and gapA (nested)]) were compared for analytical specificity and sensitivity and for diagnostic sensitivity (Se) and specificity of detection from tracheal swabs. The licensed MG DNA Test Kit Flock Chek test (IDEXX, Laboratories, Inc., Westbrook, ME) was as well evaluated for the diagnostic specificity and sensitivity of detection from tracheal swabs. Analytical specificity was evaluated for the four generic PCR methods using a panel of DNA samples from microorganisms that may be isolated from the trachea of commercial poultry and other fowl. PCR methods mgc2, nLP, and ngapA only amplified DNA from MG, whereas 16S rRNA PCR amplified DNA from MG and Mycoplasma imitans. The analytical sensitivity of the four generic PCR methods expressed in color-changing units (CCU)/amplification reaction was estimated for each PCR method and ranged from 4 to 400 CCU/reaction; the sensitivities of single PCR methods 16S rRNA and mgc2 were estimated at 40 CCU/reaction, the nLP at 400 CCU/reaction, and the ngapA at 4 CCU/reaction. The diagnostic sensitivity and specificity of MG detection from tracheal swab pools, as compared to isolation from choanal cleft swabs, was evaluated for the five PCR methods using three groups of birds exposed to vaccine strains ts-11 and 6/85 and to challenge strain R. All PCR methods were able to detect the vaccine strains and the challenge strain R directly from tracheal swabs, indicating that PCR primers from the different methods amplified divergent MG strains. Isolation and PCR results correlated satisfactorily among the three experimentally infected groups, with agreement values (k) ranging from 0.52 to 1.00. The ngapA, IDEXX, and mgc2 PCRs showed the best sensitivity (Se) ratios for detection of M. gallisepticum strains as compared to isolation. Compared to the ngapA and IDEXX PCR methods, the mgc2 PCR has a faster turnaround time, since this test consists of a single amplification reaction and the amplification product is detected by gel electrophoresis. Therefore, among the PCR methods evaluated in this study, the mgc2 PCR is the method of choice to further validate in the field.  相似文献   

20.
Two unusual Actinobacillus isolates were recovered from pigs with no clinical signs, no lesions and no history of swine pleuropneumonia. Two representative strains (9953L55 and 0347) analyzed in this study were initially biochemically and antigenically identified as A. pleuropneumoniae serotypes 1 and 9, respectively, by traditional identification methods. Both strains presented, however, negative results with three A. pleuropneumoniae-specific PCR tests and revealed in particular the absence of the apxIV toxin genes. However, both strains produced and secreted ApxII toxin although they only harbored the toxin genes apxIICA, which is an uncommon feature for any of the known A. pleuropneumoniae serotypes. Upon experimental inoculation of pigs, these strains proved to be totally non-pathogenic. Animals infected with one of the strains produced antibodies that cross-react with A. pleuropneumoniae serotypes 1-9-11-specific LC-LPS ELISA. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that these strains form a separate phylogenetic group that is distinct from other Actinobacillus species and is particularly different from A. pleuropneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号