首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 985 毫秒
1.
Habitat isolation can affect the distribution and abundance of wildlife, but it is an ambiguous attribute to measure. Presumably, isolation is a characteristic of a habitat patch that reflects how spatially inaccessible it is to dispersing organisms. We identified four isolation metrics (nearest-neighbor distance, Voronoi polygons, proximity index, and habitat buffers) that were representative of the different families of metrics that are commonly used in the literature to measure patch isolation. Using simulated data, we evaluated the ability of each isolation metric to predict animal dispersal. We examined the simulated movement of organisms in two types of landscapes: an artificially-generated point-pattern landscapes where patch size and shape were consistent and only the arrangement of patches varied, and realistic landscapes derived from a geographic information system (GIS) of forest-vegetation maps where patch size, shape, and isolation were variable. We tested the performance of the four isolation metrics by examining the strength of the correlation between observed immigration rate in the simulations and each patch isolation metric. We also evaluated whether each isolation metric would perform consistently under varying conditions of patch size/shape, total amount of habitat in the landscape, and proximity of the patch to the landscape edge. The results indicate that a commonly-used distance-based metric, nearest-neighbor distance, did not adequately predict immigration rate when patch size and shape were variable. Area-informed isolation metrics, such as the amount of available habitat within a given radius of a patch, were most successful at predicting immigration. Overall, the use of area-informed metrics is advocated despite the limitation that these metrics require parameterization to reflect the movement capacity of the organism studied.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

2.
Most world drylands are used as graziny lands and undergo degradation of their vegetation cover. The plant cover is typically structured in patchy arrangements, inducing fertility islands critical to maintenance of ecosystem properties. The characteristics of patch structure (size of patches, connectivity-continuity of patch units, etc.) are indicators of the degree of dryland deterioration. We characterized changes in patch structure induced by sheep grazing at a landscape scale using monochromatic low-altitude imagery digitized to a spatial resolution of about 1 m with standard techniques of harmonic analysis applied to develop Fourier signatures. The signatures developed on image line transects were tested with ground samples and mathematical models of plant cover in several dryland fields where spatial deterioration gradients existed. The sensitivity and errors associated to long-wave noise introduced by the geometry of the camera-field-sun spatial arrangement and to high frequency noise introduced by the digitizing process were evaluated by applying suitable filters in the frequency domain. Fourier signatures developed on monochromatic low-altitude imagery proved to be indicative of changes in the patching arrangements of plant cover. We concluded that adequately filtered, high spatial resolution monochromatic images can be used to evaluate the degree of deterioration of dryland landscapes through the computation of selected Fourier signatures in their frequency domain. At comparable cost, aerial photography allows inspecting the landscape at higher spatial resolutions than those attainable with satellite imagery. Also, aerial photos of many areas are available for earlier dates than images from remote sensors, which would allow better inspection of long-term ecosystem changes.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

3.
Studies on the distribution of mammalian carnivores in fragmented landscapes have focused mainly on structural aspects such as patch and landscape features; similarly, habitat connectivity is usually associated with landscape structure. The influence of food resources on carnivore patch use and the important effect on habitat connectivity have been overlooked. The aim of this study is to evaluate the relative importance of food resources on patch use patterns and to test if food availability can overcome structural constraints on patch use. We carried out a patch-use survey of two carnivores: the beech marten (Martes foina) and the badger (Meles meles) in a sample of 39 woodland patches in a fragmented landscape in central Italy. We used the logistic model to investigate the relative effects on carnivore distribution of patch, patch neighbourhood and landscape scale variables as well as the relative abundance of food resources. Our results show how carnivore movements in fragmented landscapes are determined not only by patch/landscape structure but also by the relative abundance of food resources. The important take-home message of our research is that, within certain structural limits (e.g. within certain limits of patch isolation), by modifying the relative amount of resources and their distribution, it is possible to increase suitability in smaller/relatively isolated patches. Conversely, however, there are certain thresholds above which an increase in resources will not achieve high probability of presence. Our findings have important and generalizable consequences for highly fragmented landscapes in areas where it may not be possible to increase patch sizes and/or reduce isolation so, for instance, forest regimes that will increase resource availability could be implemented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Among the major challenges of landscape ecologists is to develop relatively simple models to quantify ecological processes over large areas. Application of such models can be well demonstrated in fragmented semi-arid ecosystems where competition over resources is intense due to habitat loss, however, only a few studies have done so. Our aim was to model and study the integrated effect of spatial variation in potential soil moisture and patch size and shape on shrub–grass ratio (SGR) in a semi-arid fragmented environment. We specifically ask: (i) what factors most strongly relate to SGR in large remnant patches (> 1.6 ha), and (ii) do different factors more strongly relate to SGR in small patches (< 1.6 ha)? The study was carried out using 60 patches within a semi-arid fragmented environment in the Northern Negev of Israel. Aerial photographs and digital elevation models were used to map six environmental variables: wetness index, aspect, rock cover, rock pattern, patch area, and patch shape. The variables were designed in GIS and were modeled using fuzzy logic procedures to predict SGR, and these predictions were compared to shrub cover maps extracted using maximum likelihood classification of aerial photographs taken in September 2003. We found that in the study area, factors indicating potential soil moisture are most strongly related to SGR in large patches, whereas patch geometric attributes are more strongly relate to SGR in small patches.  相似文献   

5.
Rainfall in drylands is erratic. Topographic features of landscapes can dampen or amplify temporal variability by spatially influencing patterns of water loss and accumulation. The extent to which portions of a landscape may differentially capture or retain scarce water and nutrient resources is an important determinant of vegetation patterns, particularly with respect to the distribution of woody plants. We therefore hypothesized that historic changes in woody cover on landscapes experiencing similar climate and disturbance regimes would vary with catena-to-catena (hillslope-to-hillslope) variation in topography-based hydrologic features. We tested this hypothesis by comparing topographic wetness index (TWI) values on replicate landscapes where woody plant abundance has increased over the past 100 yr. These landscapes are characterized by savanna parklands on coarse-textured upland portions of catenas that grade (1–3% slopes) into closed-canopy woodlands on fine-textured (lowland) portions of catenas. TWI values for woody and herbaceous communities were comparable within uplands, suggesting factors unrelated to surface/subsurface hydrology determine patterns of woody cover in these catena locations. TWI values for upland savanna parklands were significantly lower than those of closed-canopy woodlands occupying catena footslopes. Furthermore, uplands adjoining historically static woodland boundaries had lower TWI values than those where woodland boundaries had moved upslope 2.1 m yr−1 from 1976 to 1995. Results suggest runoff–runon relationships influence patterns of woody plant cover and change at the catena scale and may override constraints imposed by soil texture. As a result, changes in woody cover potentially accompanying changes in disturbance regimes, climate or atmospheric chemistry are likely to be constrained by topoedaphic settings. Models of vegetation dynamics may therefore need to explicitly account for rainfall–topography–soil texture relationships and associated scale-dependent mechanisms to accurately predict rates and patterns of change in woody and herbaceous plant abundance.  相似文献   

6.
Forest bird species exhibit noticeable seasonal behavioral changes that might lead to contrasting effects of landscape pattern upon species abundance and performance. We assessed if the effect of patch and habitat attributes on the landscape use of thorn-tailed rayaditos (Aphrastura spinicauda), a forest bird in a relict patchy forest in northern Chile, varied temporally in association with changes in the behavior of individuals linked to breeding vs. non-breeding conditions. We also assessed the relationship between nest success and patch and habitat attributes, as nest success might be associated to the density rayaditos during the breeding season. We found that density of rayaditos was affected by patch size and functional connectivity but not by habitat structure and that the magnitude of the effect of patch size was greater during the non-breeding season, thus supporting the existence of a temporally variable effect of landscape pattern. Similarly, the nest success of rayaditos was positively affected by functional connectivity and negatively by structural connectivity. We hypothesize that these results emerged from the interaction among territorial behavior, resource limitation and predation risk. Despite the variable intensity of the effect of patch size upon density, however, this landscape attribute, in addition to connectivity, is essential for the persistence of rayaditos at this relict patchy forest landscapes.  相似文献   

7.
Fire and grazing are ecological processes that frequently interact to modify landscape patterns of vegetation. There is empirical and theoretical evidence that response of herbivores to heterogeneity is scale-dependent however the relationship between fire and scale of heterogeneity is not well defined. We examined the relationship between fire behavior and spatial scale (i.e., patch grain) of fuel heterogeneity. We created four heterogeneous landscapes modeled after those created by a fire–grazing interaction that differed in grain size of fuel patches. Fire spread was simulated through each model landscape from 80 independent, randomly located ignition points. Burn area, burn shape complexity and the proportion of area burnt by different fire types (headfire, backfire and flankfire) were all affected by the grain of fuel patch. The area fires burned in heterogeneous landscapes interacted with the fuel load present in the patch where ignition occurred. Burn complexity was greater in landscapes with small patch grain than in landscapes with large patch grain. The proportion of each fire type (backfire, flankfire and headfire) was similar among all landscapes regardless of patch grain but the variance of burned area within each of the three fire types differed among treatments of patch grain. Our landscape fire simulation supports the supposition that feedbacks between landscape patterns and ecological processes are scale-dependent, in this case spatial scale of fuel loading altering fire spread through the landscape.  相似文献   

8.
Acknowledgment that the matrix matters in conserving wildlife in human-modified landscapes is increasing. However, the complex interactions of habitat loss, habitat fragmentation, habitat condition and land use have confounded attempts to disentangle the relative importance of properties of the landscape mosaic, including the matrix. To this end, we controlled for the amount of remnant forest habitat and the level of fragmentation to examine mammal species richness in human-modified landscapes of varying levels of matrix development intensity and patch attributes. We postulated seven alternative models of various patch habitat, landscape and matrix influences on mammal species richness and then tested these models using generalized linear mixed-effects models within an information theoretic framework. Matrix attributes were the most important determinants of terrestrial mammal species richness; matrix development intensity had a strong negative effect and vegetation structural complexity of the matrix had a strong positive effect. Distance to the nearest remnant forest habitat was relatively unimportant. Matrix habitat attributes are potentially a more important indicator of isolation of remnant forest patches than measures of distance to the nearest patch. We conclude that a structurally complex matrix within a human-modified landscape can provide supplementary habitat resources and increase the probability of movement across the landscape, thereby increasing mammal species richness in modified landscapes.  相似文献   

9.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

10.
We formulated and tested models of relationships among determinants of vegetation cover in two agroforested landscapes of eastern North America (Haut Saint-Laurent, Quebec, Canada) that differed by the spatial arrangement of their geomorphic features and intensity of agricultural activities. Our landscape model compared the woody plots of each landscape in terms of the relative influence of environmental attributes, land use history (1958 – 1997), and spatial context (i.e., proximity of similar or contrasting land cover). Our vegetation model evaluated the relative contribution of the same sets of variables to the distributions of herbs, trees, and shrubs. Relationships were assessed using partial Mantel tests and path analyses. Significant environmental and contextual differences were found between the vegetation plots of the two landscapes, but disturbance history was similar. Our vegetation model confirms the dominant effect of historical factors on vegetation patterns. Whereas land-use history overrides environmental and contextual control for trees, herbaceous and shrub species are more sensitive to environmental conditions. Context is determinant only for understory species in older, less-disturbed plots. Results are discussed in relevance to vegetation dynamics in a landscape perspective that integrates interactions between environmental and human influences.  相似文献   

11.
Landscape pattern indices are common tools of landscape ecologists, affording comparisons of different study areas, or the same study area at different times. Since the advent of popular index-calculating software, more landscapes can be analyzed in short amounts of time, yet the behaviour of landscape pattern indices can vary for different contexts or data characteristics, complicating interpretation. I applied a selected set of landscape pattern indices to fine-resolution (3 m) data representing a highly fragmented landscape – Corn Belt Iowa agriculture – to investigate the performance of landscape pattern indices. Indices measured pattern attributes that affect the viability of small mammal populations, namely habitat proportion and connectivity and landscape grain size and heterogeneity. Results showed that the performance of indices for fine-resolution data can be highly variable, depending upon data and contextual issues like the presence of linear elements and the amount of habitat. For these Corn Belt landscapes good habitat proportions and patch sizes were small (commonly less than 10% and less than 1 ha, respectively), and connectivity was variable depending on the measure. Aggregation and mean nearest neighbour indices performed better than other connectivity indices. Fine-resolution data representing highly fragmented landscapes can raise difficulties for indices of landscape configuration. Landscape pattern indices require improvement to perform better for increasingly available fine-resolution data representing common landscape types.  相似文献   

12.
In fragmented landscapes, the likelihood that a species occupies a particular habitat patch is thought to be a function of both patch area and patch isolation. Ecologically scaled landscape indices (ESLIs) combine a species’ ecological profile, i.e., area requirements and dispersal ability, with indices of patch area and connectivity. Since their introduction, ESLIs for area have been modified to incorporate patch quality. ESLIs for connectivity have been modified to incorporate niche breadth, which may influence a species’ ease in crossing the non-habitat matrix between patches. We evaluated the ability of 4 ESLIs, the original and modified indices of area and connectivity, to explain patterns in patch occupancy of 5 forest rodents. Occupancy of eastern gray squirrels (Sciurus carolinensis), North American red squirrels (Tamiasciurus hudsconicus), fox squirrels (Sciurus niger), white-footed mice (Peromyscus leucopus), and eastern chipmunks (Tamias striatus) was modeled at 471 sites in 35 landscapes sampled from the upper Wabash River basin in Indiana. Models containing ESLIs received support for gray squirrels, red squirrels, and chipmunks. Modified ESLIs were important in models for red squirrels. However, none of the models demonstrated high predictive ability. Incorporating habitat quality and using surrogate measures of dispersal can have important effects on model results. Additionally, different responses of species to area, isolation, and habitat quality suggest that generalizing patterns of metapopulation dynamics was not justified, even across closely related species.  相似文献   

13.
Landscape indices describing a Dutch landscape   总被引:56,自引:0,他引:56  
The data set of a human modified Dutch landscape was used to evaluate whether landscape pattern indices developed in the United States are fit to describe a Dutch landscape. The grid based data set contains the development of land use over the period 1845–1982. The indices were divided in two groups: pattern indices and change indices. In the first group the proportion of each land use type (P), patch number (N), mean patch size (A) and two indices of patch shape (S1 and S2) were tested; in the second group the rate of change (C) was tested.Not all indices considered in this case study are suitable for the Dutch landscape. The dominance index (D) seems not to be sensitive enough to respond in a clear way to changes in the landscape studied. Shape index seems to be a complicated index, particularly in a human modified landscape like the Dutch, where the shape of natural patches is fixed by their man-made neighbours. The trends observed in the two shape indices considered in this study are not satisfactory since each index considers another aspects of shape (either the interior-to-edge ratio or the complexity of the patch perimeter).None of the indices appears to give information on changes in the geographical position of the patches, which implies that nothing can be induced with respect to the real landscape dynamics.The indices have to be considered in combination to produce meaningful information. The combination of proportion of each land use (P) and the data of the transitions shows how the development in land use has been. Number of patches (N) together with the mean size of patches (A) gives a good indication of the pattern development.Further research is necessary to develop a useful method how to quantify the change in landscape pattern and to give an ecological meaning to the index value in relation to the process of changing pattern.  相似文献   

14.
Habitat availability—or how much habitat species can reach at the landscape scale—depends primarily on the percentage of native cover. However, attributes of landscape configuration such as the number, size and isolation of habitat patches may have complementary effects on habitat availability, with implications for the management of landscapes. Here, we determined whether, and at which percentages of native cover, the number, size and isolation of patches contribute for habitat availability. We quantified habitat availability in 325 landscapes spread across the state of Rio de Janeiro, in the Atlantic Forest hotspot, with either high (>50 %), intermediate (50–30 %), low (30–10 %) or very low (<10 %) percentage of native cover, and for six hypothetical species differing in inter-patch dispersal ability. Above 50 % of native cover, the percentage of cover per se was the only determinant of habitat availability, but below 50 % the attributes of landscape configuration also contributed for habitat availability. The number of patches had a negative effect on habitat availability in landscapes with 50–10 % of native cover, whereas patch size had a positive effect in landscapes with <10 % of native cover. The different species generally responded to the same set of landscape attributes, although to different extents, potentially facilitating decision making for conservation. In landscapes with >50 % of native cover, conservation actions are probably sufficient to guarantee habitat availability, whereas in the remaining landscapes additional restoration efforts are needed, especially to reconnect and/or enlarge remaining habitat patches.  相似文献   

15.
In mobile animals, movement behavior can maximize fitness by optimizing access to critical resources and minimizing risk of predation. We sought to evaluate several hypotheses regarding the effects of landscape structure on American marten foraging path selection in a landscape experiencing forest perforation by patchcut logging. We hypothesized that in the uncut pre-treatment landscape marten would choose foraging paths to maximize access to cover types that support the highest density of prey. In contrast, in the post-treatment landscapes we hypothesized marten would choose paths primarily to avoid crossing openings, and that this would limit their ability to optimally select paths to maximize foraging success. Our limiting factor analysis shows that different resistant models may be supported under changing landscape conditions due to threshold effects, even when a species’ response to landscape variables is constant. Our results support previous work showing forest harvest strongly affects marten movement behavior. The most important result of our study, however, is that the influence of these features changes dramatically depending on the degree to which timber harvest limits available movement paths. Marten choose foraging paths in uncut landscapes to maximize time spent in cover types providing the highest density of prey species. In contrast, following landscape perforation by patchcuts, marten strongly select paths to avoid crossing unforested areas. This strong response to patch cutting reduces their ability to optimize foraging paths to vegetation type. Marten likely avoid non-forested areas in fragmented landscapes to reduce risk of predation and to benefit thermoregulation in winter, but in doing so they may suffer a secondary cost of decreased foraging efficiency.  相似文献   

16.
Human activities and natural disturbances create spatial heterogeneity within forested landscapes, leading to both sharp and gradual boundaries in vegetation and abiotic attributes, such as rocks. Those boundaries may affect the detailed delineation of avian territories (independently of their general location), but their role is largely unknown. We tested, using a spatial analysis approach, whether spatial heterogeneity of vegetation and abiotic attributes were associated with territory boundaries of ten black-throated blue warblers (Dendroica caerulescens) and 14 ovenbirds (Seiurus aurocapillus). The study was conducted during summer 1999 in a mature deciduous forest near Québec City, Canada. Singing males were mapped from repeated surveys at 756 points, 25 m apart, on a 49 ha grid. Spatial heterogeneity was obtained from 27 attributes measured at each point. Boundaries of bird territories, vegetation, and abiotic attributes were delineated using the lattice-wombling boundary detection algorithm. The spatial association between territory and microhabitat boundaries was computed using the spatial overlap statistics. There was significant spatial overlap between territory boundaries and those of 15 and 17 attributes for black-throated blue warbler and ovenbird, respectively. The attributes most strongly associated with territory boundaries were conifer seedling cover, grass and total vegetation cover between 0-2 m high for black-throated blue warbler and fern cover, vegetation-covered rocks and shrub diversity for ovenbird. Complementary to this, a redundancy analysis (RDA) was used to compare attributes associated with the general occurrence of males to those whose boundaries were associated specifically with territory boundaries. Most attributes whose boundaries were associated with territory boundaries did not correspond to resource attributes, i.e., those where birds were detected most frequently. We conclude that soft boundaries associated with spatial heterogeneity may help shape forest bird territories by providing landmarks not necessarily related to resources used within territories.  相似文献   

17.
Land-use change is forcing many animal populations to inhabit forest patches in which different processes can threaten their survival. Some threatening processes are mainly related to forest patch characteristics, but others depend principally on the landscape spatial context. Thus, the impact of both patch and landscape spatial attributes needs to be assessed to have a better understanding of the habitat spatial attributes that constraint the maintenance of populations in fragmented landscapes. Here, we evaluated the relative effect of three patch-scale (i.e., patch size, shape, and isolation) and five landscape-scale metrics (i.e., forest cover, fragmentation, edge density, mean inter-patch isolation distance, and matrix permeability) on population composition and structure of black howler monkeys (Alouatta pigra) in the Lacandona rainforest, Mexico. We measured the landscape-scale metrics at two spatial scales: within 100 and 500 ha landscapes. Our findings revealed that howler monkeys were more strongly affected by local-scale metrics. Smaller and more isolated forest patches showed a lower number of individuals but at higher densities. Population density also tended to be positively associated to matrices with higher proportion of secondary forests and arboreal crops (i.e. with greater permeability), most probably because these matrices can offer supplementary foods. The immature-to-female ratio also increased with matrix permeability, shape complexity, and edge density; habitat characteristics that can increase landscape connectivity and sources availability. The prevention of habitat loss and isolation, and the increment of matrix permeability are therefore needed for the conservation of this endangered Neotropical mammal.  相似文献   

18.
We documented land cover and landscape pattern changes in an area of northwestern Oklahoma, USA using aerial photography from 1965, 1981, and 1995. This region of the southern Great Plains is fragmented by agricultural activity, and in recent years many remnant native grasslands have experienced extensive invasion by woody juniper (Juniperus virginiana L.). Concurrently, many cropland areas are being planted into perennial forage grasses and converted to intensively managed introduced grasslands as part of the U.S. Conservation Reserve Program (CRP). Our objectives were to document land cover and landscape pattern changes in the region relative to the expansion of juniper and CRP activity. We then examined how local landscape dominance by either anthropogenic or woody vegetation patches affected landscape pattern indices. Land cover changes from 1965 to 1995 included substantial increases in juniper woodlands and mixed woodlands that resulted from juniper encroachment into deciduous woodlands. Introduced grasslands also increased in many areas as a result of CRP implementation. Changes in landscape pattern generally reflected the influx of juniper into many areas. Landscapes dominated by woody vegetation had significantly more patches, smaller patches and patch core areas, more total edge, and higher patch diversity than landscapes dominated by anthropogenic cover types. Results indicate that expanding juniper is exacerbating the fragmentation process initiated by previous human activity, and represents a serious threat to the continued integrity and conservation of remaining southern Great Plains grasslands.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

19.
A Practical Map-Analysis Tool for Detecting Potential Dispersal Corridors   总被引:1,自引:0,他引:1  
We describe the Pathway Analysis Through Habitat (PATH) tool, which can predict the location of potential corridors of animal movement between patches of habitat within any map. The algorithm works by launching virtual entities that we call `walkers' from each patch of habitat in the map, simulating their travel as they journey through land cover types in the intervening matrix, and finally arrive at a different habitat `island.' Each walker is imbued with a set of user-specified habitat preferences that make its walking behavior resemble a particular animal species. Because the tool operates in parallel on a supercomputer, large numbers of walkers can be efficiently simulated. The importance of each habitat patch as a source or a sink for a species is calculated, consistent with existing concepts in the metapopulation literature. The manipulation of a series of contrived artificial landscapes demonstrates that the location of potential dispersal corridors and relative source and sink importance among patches can be purposefully altered in expected ways. Finally, potential dispersal corridors are predicted among remnant woodlots within three actual landscape maps. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号