首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张玉刚  韩振海 《核农学报》2011,25(2):231-236
为研究笔者前期克隆的MxNas1基因功能,构建了苹果属植物小金海棠MxNas1基因正义和反义两种表达载体,并用农杆菌介导的叶盘转化法转化了烟草.对转基因烟草分别进行0和1μmol/L Fe处理14d后,转正义载体烟草在缺Fe情况下叶片没有黄化,表现出较强的抗缺Fe能力;转反义载体植株比对照烟草幼叶提前出现黄化现象,表现...  相似文献   

2.
To study the effects of progressive drought stress on photosystem II behavior of wild type (Spantaneum) and cultivated barley (Morocco), different levels of soil water availability, including control, moderate, mild, and severe water stress (70%, 50%, 30%, and 10% water holding capacity of soil, respectively) and rehydration were used. Polyphasic OJIP fluorescence transient of Morocco plants exhibited a considerable increase in fluorescence intensity at O, J, and I steps under mild and severe stress relative to slight increase in wild barley. Values of fluorescence parameters and quantum efficiencies, including minimal fluorescence, relative variable fluorescence at phase J and I, maximal quantum yield of photosystem II (PSII), performance index, electron transport yield, and excitation transfer efficiency were influenced by water stress in both genotypes. These parameters were significantly less affected in wild type barley by progressive drought stress compared to Morocco. After re-watering, both genotypes were able to restore from severe drought in most of the traits. Based on our findings, highly correlated values of relative water content (RWC) and independent JIP-test parameters (P < 0.01) indicate that the chlorophyll a fluorescence induction technique is sensitive to plant water status and performance index represent an accurate and reliable indicator for early stress detection and also explore plant vitality under water stress.  相似文献   

3.
反义乙烯受体LeETR2基因对番茄的转化和功能分析   总被引:1,自引:0,他引:1  
摘要:采用根癌农杆菌(Agrobacterium tumefaciens)介导法将LeETR2的部分反义序列导入番茄(Lycopersicon esculentum)子叶外植体,经抗性筛选和组织培养获得再生植株。通过对转基因植株中插入序列的PCR检测和Southern杂交,证明转化番茄成功。通过对LeETR2的功能的初步研究结果表明, 转基因植株顶端优势丧失、极端矮化和番茄果实的内源乙烯合成量增加。这提示此基因在植物乙烯信号感受与转导系统中起着负调控的作用。  相似文献   

4.
随着全球气候变暖,干旱胁迫成为限制番茄等蔬菜作物安全生产的重要因素之一。前期研究发现嫁接贵州本土半野生番茄GZ-01砧木其可以提高植株的耐旱性。为探究野生番茄GZ-01增强植株耐旱性的分子机理,以半野生番茄GZ-01砧木和红果番茄为试验材料,结合形态生理学和分子生物学,比较嫁接番茄和自嫁接番茄植株对干旱胁迫的响应。结果表明,干旱胁迫下,与自嫁接植株R/R相比,GZ-01/R嫁接植株细胞膜的损伤显著降低,植株的抗氧化能力、干物质累积量、CO2同化率和水分利用率显著提高,离体叶片失水率显著降低,下气孔闭合比率显著提高,脱落酸(ABA)合成相关基因表达量和ABA含量显著提高。嫁接植株GZ-01/R可能通过调控ABA的合成来影响气孔开闭,调控叶片失水率,提高植株水分利用率,从而影响植株对干旱胁迫的响应。本研究为开发利用贵州本土半野生番茄资源奠定了基础,为增强干旱胁迫和分子调控网络途径提供了理论支撑。  相似文献   

5.
Ascorbate peroxidases (APX), localized in the cytosol, peroxisome, mitochondria, and chloroplasts of plant cells, catalyze the reduction of H2O2 to water by using ascorbic acid as the specific electron donor. To determine the role of peroxisomal type ascorbate peroxidase (pAPX), an antioxidant enzyme, in protection against salt-induced oxidative stress, transgenic Arabidopsis thaliana plant carrying a pAPX gene (HvAPX1) from barley (Hordeum vulgate L.) was analyzed. The transgenic line pAPX3 was found to be more tolerant to salt stress than the wild type. Irrespective of salt stress, there were no significant differences in Na^+, K^+, Ca^2+, and Mg^2+ contents and the ratio of K^+ to Na^+ between pAPX3 and the wild type. Clearly, the salt tolerance in pAPX3 was not due to the maintenance and reestablishment of cellular ion homeostasis. However, the degree of H2O2 and lipid peroxidation (measured as the levels of malondialdehyde) accumulation under salt stress was higher in the wild type than in pAPX3. The mechanism of salt tolerance in transgenic pAPX3 can thus be explained by reduction of oxidative stress injury. Under all conditions tested, activities of superoxide, glutathione reductase, and catalase were not significantly different between pAPX3 and the wild type. In contrast, the activity of APX was significantly higher in the transgenic plant than in wild type under salt stress. These results suggested that in higher plants, HvAPX1 played an important role in salt tolerance and was a candidate gene for developing salttolerant crop plants.  相似文献   

6.
番茄SlMIP基因参与转基因拟南芥的渗透调节   总被引:1,自引:1,他引:0  
本实验以野生型(WT)和转番茄SlMIP基因的拟南芥为材料,研究NaCl胁迫条件下对二者体内渗透调节特征的影响。结果发现, 在NaCl胁迫下,转SlMIP基因的拟南芥细胞膜损伤程度较轻,组织渗透势显著降低,并保持较高的组织含水量,生长受抑制程度明显低于野生型植株。转基因植株体内Na+ 含量和Na+/K+ 比值显著低于野生型拟南芥,K+含量虽有所下降但仍显著高于野生型植株,而且在盐胁迫下脯氨酸和可溶性糖含量也高于野生型拟南芥,表明转入番茄SlMIP基因后的拟南芥,通过增加水分子的吸收,减少钠离子的进入,增加了细胞内脯氨酸和可溶性糖的含量,进而影响植物的有机渗透调节能力,与此同时可能通过离子化区隔机制以及与质膜Na+/H+逆向转运蛋白的相互作用更有效地调节细胞内外的无机离子交换能力,使植物更有效地抵御盐害,表明番茄SlMIP水通道蛋白基因在植物盐胁迫下具有重要的渗透调节作用。  相似文献   

7.
几种水生观赏植物对城市污水的生理响应   总被引:5,自引:0,他引:5  
主要研究了石菖蒲、泽泻、菖蒲、黄花鸢尾、千屈菜这5种常见水生观赏植物对城市污水的生理生化变化,分别在第5 d,10 d和15 d对植物叶片膜脂过氧化(MDA、电导率)、体内保护系统酶(CAT、POD)、非酶类(游离Pro)及根系活力等抗性生理指标进行测定,探讨植物抗污水逆境的能力。研究结果表明,不同植物适应污水环境能力不同。其中,黄花鸢尾在污水处理下的抗逆性最强,与对照相比其电导率和丙二醛含量变化不大,而一些植物在实验初期受到污水胁迫,电导率和丙二醛含量较对照有上升的现象;同时,实验初期黄花鸢尾中游离Pro含量、POD和CAT活性及根系活力的增强,菖蒲根系活力的增加,千屈菜POD、CAT酶活性的升高,泽泻根系活力、POD、CAT酶活性的升高,都是水生植物对污水环境的生理适应。黄花鸢尾抗逆性强,是一种值得推荐的净化污水的湿地植物。  相似文献   

8.
过量表达pAPX基因提高水稻对镉胁迫的耐性   总被引:3,自引:0,他引:3       下载免费PDF全文
研究了编码大麦pAPX的基因HvAPXI导入水稻并过量表达后,转pAPX水稻在镉胁迫下的生长状况、生理指标及镉含量。结果发现,由于pAPX基因的过量表达,转基因植株的根系伸长量、生物量、叶绿素含量以及APX活性都明显高于野生型植株。与野生型植株相比,转基因水稻对镉胁迫具有明显的耐性。伴随对镉胁迫耐性的提高,转pAPX水稻对镉的累积量也同时提高。  相似文献   

9.
Progeny of two transgenic tobacco (Nicotiana tabacum L.) lines that expressed an activated form of maize (Zea mays L.) ribosome-inactivating protein (RIP) had varying resistance to the insect species tested. A subset of R(2) plants from the two lines appeared to be more resistant to larvae of the cigarette beetle, Lasioderma serricorne (F.), and the tobacco hornworm, Manduca sexta (L.) than the wild type plants. Progeny (R(3)) of the more resistant R(2) plants were tested more extensively for insect resistance. Resistance to the corn earworm, Helicoverpa zea (Boddie), was most consistent, with significantly decreased feeding often accompanied by increased mortality and reduced weights of survivors fed on leaf disks of the two transgenic lines compared to the wild type. The amount of damage by H. zea was significantly inversely correlated with levels of RIP. Resistance of RIP-producing plants to H. zea was greater than expected on the basis of prior in vitro results using diet-incorporated maize RIP. The R(3) transgenic plant leaf disks were also often more resistant to feeding by larvae of L. serricorne compared to wild type plants. Although reduced feeding by M. sexta was noted when they were fed leaf disks from transgenic compared to wild type plants the first day of exposure, differences were not significant. This information provides further support for maize RIP having a role in resistance to maize-feeding insects.  相似文献   

10.
ABSTRACT

Drought tolerance is a complex trait that involves different biochemical and physiological mechanisms in plants. It was the objective of the present study to evaluate the agronomic and biochemical responses of triticale, tritipyrum, and wheat to drought stress. For this purpose, twenty-seven genotypes were evaluated under two levels (non-stress and drought stress) of irrigation during 2015?2017. The metabolic traits studied included relative water content (RWC), membrane stability index (MSI), chlorophyll a (Chla), chlorophyll b (Chlb), carotenoids (Car), leaf proline content (Pro), leaf soluble carbohydrates (LSC), glycine betaine (GB), malondialdehyde (MDA), hydrogen peroxide (H2O2), seeds per spike (SS), seed weight (SW), biological yield (BY) and seed yield (SY). Drought stress increased Pro, LSC, and GB contents as well as lipid peroxidation through increasing MDA and H2O2 activities. However, both RWC and MSI indices as well as SS, SW, SY and BY reduced as a result of drought treatment although the least decrease of SY was observed at triticale group. During the two years of study, the tritipyrum genotypes exhibited their drought tolerance by accumulation of more LSC and GB as well as lower decrease in SW while the triticale ones responded by maintaining higher levels of RWC but producing less MDA and H2O2. It may, therefore, be concluded that the three species studied exploit different mechanisms to maintain tolerance against drought stress. Finally, correlation analysis indicated the positive effects of LSC on SY under both drought and normal conditions, which is obviously a promising trait in wheat, triticale, and tritipyrum that can be beneficially exploited in drought tolerance improvement programs.  相似文献   

11.
The deduced amino acid variability for the 10 kDa prolamin was determined for 16 Oryza species, both cultivated (rice) and wild. Prolamin, a seed storage protein and site of nitrogen and sulfur accumulation, is sequestered in the subaleurone layer of the starchy endosperm for use during seedling germination. The 10 kDa prolamin amino acid distribution for the cultivated species (O. sativa and O. glaberrima) was determined and compared to those of wild and, hitherto unknown, noncultivated Oryza species. Four wild species (O. granulata, O. australiensis, O. brachyantha, and O. meyeriana) exhibited the greatest residue heterogeneity in both the signal and mature peptide regions. A breakdown of the essential amino acid variance among three Central/South American and one African endemic wild species is also presented and compared with those of rice.  相似文献   

12.
【目的】为更好地了解植物水通道蛋白盐胁迫下的调节作用,对小盐芥质膜内在蛋白TsPIP1;1及液泡膜内在蛋白TsTIP1;1在转基因水稻中的盐胁迫生理响应机制进行探究,旨在为水通道蛋白在耐盐作物分子改良育种中的应用提供理论支撑。【方法】以野生型 (WT) 与 T3 代转 TsPIP1;1 及 TsTIP1;1 基因水稻为材料,进行了水培试验,并设置了 0、100、200 mmol/L NaCl 处理。处理一周后,分别测定水稻的光合参数、株高、生物量、相对含水量、失水率及钾、钠含量。【结果】在盐胁迫处理下,与野生型相比,转基因水稻的生物量和含水量明显增加,渗透势和失水率显著降低。转 TsPIP1;1 及 TsTIP1;1 基因水稻根部及地上部的 Na+ 含量都显著降低,K+ 在转基因株系中的累积显著高于野生型,降低了体内 Na+/K+ 比,并且能够保持更强的净光合速率、气孔导度、蒸腾速率及水分利用效率。在 200 mmol/L NaCl 处理下,与野生型相比,TsTIP-5、TsTIP-7 及 TsPIP-19 的株高分别高出 8.2%、11.6%、4.9%;单株干重分别高出 17.9%、23.9%、16.9%;地上部 Na+/K+ 比分别降低 24.3%、24.4%、24.8%;根部 Na+/K+ 比分别降低 29.6%、27.5%、32.4%;渗透势分别显著降低了 18.3%、19.4%、30.3%;相对含水量分别增加了 5.8%、5.5%、5.4%;净光合速率分别增加了50.4%、 78.5%、56.2%。【结论】TsPIP1;1 及 TsTIP1;1 增强了转基因水稻的光合呼吸作用,通过降低植物体内 Na+/K+ 比,参与植物细胞的渗透调节,提高了细胞持水能力,促进转基因水稻的生长发育,增强了水稻的耐盐性。  相似文献   

13.
乙烯受体基因LeETR1和LeETR4的克隆及在番茄果实中的表达   总被引:2,自引:0,他引:2  
摘要:为研究野生型番茄(Lycopersicon esculentum Mill. cv . Lichun)和转反义ACS 番茄果实中乙烯受体基因LeETR1和LeETR4的表达与乙烯的关系,实验用RT-PCR方法扩增了乙烯受体基因LeETR1和LeETR4片段,用两片段作探针进行Northern 杂交。结果表明:两受体基因的表达在番茄果实成熟进程中变化不明显,LeETR4在同一时期的果实外果皮中表达水平低于其在辐射壁和中柱的表达。转反义ACS番茄果实中LeETR1和LeETR4的表达水平显著低于野生型番茄果实,外源乙烯处理转反义ACS番茄果实,促进两个受体基因的表达。可见果实中LeETR1和LeETR4的表达受乙烯调控的影响。  相似文献   

14.
Polyphenol oxidase (PPO) activity of Russet Burbank potato was inhibited by sense and antisense PPO RNAs expressed from a tomato PPO cDNA under the control of the 35S promoter from the cauliflower mosaic virus. Transgenic Russet Burbank potato plants from 37 different lines were grown in the field. PPO activity and the level of enzymatic browning were measured in the tubers harvested from the field. Of the tubers from 28 transgenic lines that were sampled, tubers from 5 lines exhibited reduced browning. The level of PPO activity correlated with the reduction in enzymatic browning in these lines. These results indicate that expression of tomato PPO RNA in sense or antisense orientation inhibits PPO activity and enzymatic browning in the major commercial potato cultivar. Expression of tomato PPO RNA in sense orientation led to the greatest decrease in PPO activity and enzymatic browning, possibly due to cosuppression. These results suggest that expression of closely related heterologous genes can be used to prevent enzymatic browning in a wide variety of food crops without the application of various food additives.  相似文献   

15.
为探讨番茄(Lycopersiconesculentumvar.cerasiforme)侧根原基发生相关基因RSI-1在形态发育过程中的作用及其在获得具超量侧根的转基因作物的应用前景,研究分析了RSI-1基因在烟草(Nicotianatabacum)中超量、反义抑制和RNA干扰表达后植株形态及转基因植株内侧根发生相关植物激素含量的变化特征。结果显示,RSI-1超量表达后,植株株高下降,叶片数和分支数有明显增加,而RSI-1反义抑制和RNA干扰表达后植株形态及赤霉素、生长素、脱落酸和玉米素及核苷的含量均没有发生显著变化。推测RSI-1的表达可以促进植物分枝的发生,但其在高等植物中的同源性可能较低,利用该基因定向改造弱根系作物时还需结合根特异启动子的应用。  相似文献   

16.
A unique wheat genotype carrying waxy‐type allelic composition at the Wx loci, Gunji‐1, was developed, and its starch properties were evaluated in comparison to parental waxy and wild‐type wheat varieties. Gunji‐1 was null in all three of the Wx genes but exhibited a lower level of Wx proteins than the wild‐type. Starch amylose content and cold water retention capacity were 10.1 and 70.5% for Gunji‐1, 4.2 and 76.6% for waxy, and 27.9 and 65.0% for wild‐type, respectively. No significant differences were observed in microstructure, granule size distribution, and X‐ray diffractograms of the starch granules isolated from Gunji‐1 compared with those of waxy and wild‐type wheat varieties. Starch pasting peak, breakdown, and setback viscosities and peak temperature of Gunji‐1 were intermediate between waxy and wild‐type wheat. In starch gel hardness, Gunji‐1 (1.1 N) was more similar to waxy wheat (0.5 N) than to the wild‐type variety (17.6 N). Swelling power, swelling volume, paste transmittance during storage, and gelatinization enthalpy of Gunji‐1 were lower than those of waxy wheat but greater than those of wild‐type wheat. Retrogradation of starch stored for one week at 4°C expressed with DSC endothermic enthalpy was absent in the waxy wheat variety, whereas Gunji‐1 exhibited both retrogradation of amylopectin and amylose‐lipid complex melting similar to the wild‐type parent, even though enthalpies of Gunji‐1 were much smaller than the wild‐type parent.  相似文献   

17.
MYB类转录因子在植物观赏器官色彩形成中发挥关键作用。为了研究红掌中该类转录因子的种类、表达、作用机理等,本研究从红掌中获得了一个MYB转录因子的基因序列,通过反转录多聚酶链式反应(RT-PCR)、生物信息学软件分析、荧光定量PCR检测、构建超表达载体并异源转化烟草等手段,对该转录因子进行了初步研究。结果表明,该转录因子编码基因包含完整编码区,共计912 bp,编码303个氨基酸残基,序列组成与其他物种同源体具有高度相似性;荧光定量分析显示,Aa MYB1在红掌不同组织部位都有表达,但在苞片中表达量最高;获得了12株阳性转化株,形态观察发现转化株营养器官花色素累积程度随基因表达不同而异,但可使所有转化株花器官颜色显著加深。本研究结果为进一步探究MYB转录因子在红掌中调控花色素合成等信息提供了有益参考。  相似文献   

18.
Components of 29 wild type tea single plants collected from Dayao Mountain, in Guangxi province, South China, were investigated. They included tea polyphenols, free amino acids, catechin, amino acid and alkaloid monomers etc. Genetic diversity and clustering analyses were conducted based on the main biochemical components. Meanwhile, genetic relationships among 6 wild type tea plants representing 3 tea populations of Daoyao Mountain with 15 tea varieties grown in Yunnan, Guangdong, Hunan, Fujian provinces were analyzed by random amplified polymorphic DNA. The results showed that wild type tea plants from Dayao Mountain were of rich genetic diversity. Furthermore, some tea germplasms with high quality, including high contents of amino acids, high epigallocatechin gallate, and high caffeine have been discovered. These wild type tea germplasms are of high values for further development values due to their geographical uniqueness.  相似文献   

19.
Ion relations, water content, leaf water potential, and osmotic adjustment were determined for cultivated barley (cv Harrington) and wild barley grown under mixed sulphate (SO4) salts with varied calcium (Ca) supply using a hydroponic system. Salinity induced significant increases of leaf, stem and root sodium (Na) concentrations in both species. Salt‐stressed wild barley roots accumulated more Na than shoots, and transport of Na from roots to shoots was low compared to Harrington. Cultivated barley had lower Ca concentrations than wild barley, especially in the low Ca salt treatment. Although potassium (K/Na) and Ca/Na ratios were higher in control wild barley plants than in Harrington, they declined under salt stress, irrespective of Ca supply. Major osmotica in wild barley leaves were K, sugars, organic acids, and quaternary ammonium compounds, while in Harrington they were cations, including Na, K and Mg, and anions such as phosphate (PO4) and SO4. Wild barley maintained better water status than Harrington under low Ca salt treatment. Supplemental Ca improved water status more in Harrington than in wild barley. Lack of osmotic adjustment to salinity in wild barley apparently resulted from its ion exclusion. Low Ca salt treatment caused Ca deficiency, Na toxicity, and loss of turgor in Harrington. In the high Ca salt treatment, Harrington had improved water and ion relations, as well as positive turgor.  相似文献   

20.
Crop productivity is impaired by stress factors, biotic or abiotic. The main are pathogens, diseases, insects, cold, heat, salinity, drought, radiation and others. Among these unfavorable conditions, drought is one of the main occurrences and negatively affects crop development. This environmental adversity generally induces the accumulation of reactive oxygen species (ROS). These molecules lead to oxidative stress, and at high levels cause cell effects, like loss of organelle functions, electrolyte leakage, and reduction in metabolic efficiency. High concentration of ROS in cells can still cause molecular damage that include damage in proteins, amino acids, and lipids, and even lead to cell death. To neutralize these damages, plants increase enzymatic antioxidant activity and non-enzymatic antioxidant contents. ROS are essential to life in plants, and at basal levels performs cellular functions, such as signaling and defense responses. Here, we focus on the ROS production, the involvement and damages of these species in water deficit condition, changes in activity of antioxidant enzymes and non-enzymatic antioxidant contents in plants under drought stress. In addition, the signaling reactions of ROS under stress water restriction, changes on yield components of species under water deficit and the antioxidant genes involved in plant responses to stress were also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号