首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Bondaruk    S. Johnson    A. Degafu    P. Boora    P. Bilodeau    J. Morris    W. Wiehler    N. Foroud    R. Weselake    S. Shah 《Plant Breeding》2007,126(2):186-194
A cDNA encoding palmitoyl‐acyl carrier protein (ACP)‐desaturase from cat's claw (Doxantha unguis‐cati L.) was expressed in Arabidopsis thaliana and Brassica napus L. with the goal of decreasing the saturated fatty acid (FA) content of the seed oil. In general, transformation of Arabidopsis resulted in a greater change in the FA composition of the seed oil than for B. napus. An increase in palmitoleic acid (16:1cisΔ9) was obtained in transgenic lines, suggesting that the 16:0‐ACP‐desaturase cDNA was expressed in the manner originally intended. Other effects on lipid metabolism, however, were observed in the seed of transgenic plants. In Arabidopsis, there was a large increase in the proportions of cis‐vaccenic acid (18:1cisΔ11) and cis‐13‐eicosenoic acid (20:1cisΔ13), possibly generated through elongation of 16:1cisΔ9. Elongation of 18:1cisΔ11 to 20:1cisΔ13, however, was not observed in B. napus indicating that certain aspects of lipid metabolism in the model plant, Arabidopsis, may not apply to B. napus. As well, the appearance of 18:1cisΔ11 was accompanied by a decrease in the proportion of oleic acid (18:1cisΔ9). Although the introduced ACP‐desaturase resulted in synthesis of some unsaturated FAs, the overall saturated FA content was maintained at similar levels to the control or was enhanced. Increased levels of saturation were mainly associated with an increase in stearic acid, which unlike 16:0, is considered non‐atherogenic. The results suggest that a mechanism exists further downstream in oil biosynthesis to counteract the decrease in saturation brought about by the 16:0‐ACP‐desaturase action.  相似文献   

2.
J. Tang  R. Scarth 《Plant Breeding》2004,123(3):254-261
Acyl‐acyl carrier protein (ACP) thioesterase (TE) is involved in the biosynthetic fatty acid pathway of plants. Conventional canola lines transformed individually with the bay‐TE (Uc FatB1), elm‐TE (Ua FatB1), nutmeg‐TE (Mf FatB1) or Cuphea‐TE transgene (Ch FatB1), produce seed oil with modified fatty acid compositions. This study assessed the effects of genetic background, cytoplasm, maternal parent, and interaction of different TE transgenes, on the target fatty acids using F1 seeds and double haploid (DH) lines. The F1 seeds were produced by crossing four TE transgenic parental lines and three non‐transgenic cultivars with distinct fatty acid compositions. The DH lines were developed from microspores of F1 plants. DH lines from different crosses showed that genetic background does not have an effect on the relative levels of the target fatty acids of the same TE, indicating the stability of the substrate specificity of the TE within canola. However, significant effects of genetic background on the content of the major target fatty acids, lauric acid (C12:0) or palmitic acid (C16:0) depending on the TE, were observed. Expression of the TE in low erucic acid (C22:1) genotypes resulted in higher target fatty acid levels than expression in high C22:1 genotypes. Reciprocal crosses showed maternal effects, but not cytoplasmic effects. In addition, co‐expression of two different TE transgenes in the same seeds was observed. These results indicate the importance of selection for appropriate genetic backgrounds in order to maximize the expression of the target fatty acids of TE transgenes, and also indicate potential uses of TE co‐expression in modifying canola seed oil.  相似文献   

3.
4.
△6-脂肪酸脱饱和酶基因种子特异表达载体的构建   总被引:1,自引:0,他引:1  
以napA基因序列设计引物,以甘蓝型油菜中油821基因组总DNA为模板,通过PCR扩增,克隆了种子特异表达napin启动子。序列分析表明,试验得到扩增片段长1148bp,含有其它napin启动子序列共有的高度保守序列。将扩增序列与真菌匍枝根霉Δ6-脂肪酸脱氢酶基因RnD6D连接,构建了RnD6D的种子特异表达载体pCNR,为获得高产γ-亚麻酸的转基因油菜奠定了基础。  相似文献   

5.
以种子特异性表达的大豆凝集素基因启动子、终止子以及棉株体内硬脂酰-ACP△9脱氢酶的基因ghSAD-1进行例位重复基因构建,以农杆菌介导法转化陆地棉品种Coker315,获得了较高的转化频率.PCR、Southern杂交及种子内脂肪酸组分含量分析.结果表明,该倒位重复基因的表达及沉默效应在不同的转基因品系间存在差异,硬脂酸含量分别由对照的2%提高至4%~38.2%,而棕榈酸含量则明显降低.高含硬脂酸的转基因品系可作为棉子油品质改良的基础材料,具有极大的潜在利用价值.  相似文献   

6.
The variability of seed tocopherol content in wild sunflower species, the expressivity of tph1 and tph2 mutations in different lines and the oxidative stability of sunflower oil with altered tocopherol and fatty acid composition were objectives of this research. Near-isogenic lines for three genes, i.e. Tph1, Tph2, and Ol, were developed and investigated. Tocopherol content was determined with TLC and HPLC, as well as fatty acid composition with GC of methyl esters. Rancimat tests were used to estimate the oxidative stability of the oil. The seed tocopherol composition of wild sunflower species was shown to be uniform with a prevailing content of the α-homologue (90-99%). The genetic background of different near-isogenic lines was found to influence expressivity of mutations for tocopherol composition. High content of strong antioxidants, such as β-, γ-, and δ-tocopherols increased oil oxidative stability of linoleic and oleic types of oil by 1.2–3.0 times. The breeding model of sunflower hybrids should include antioxidant and vitamin parameters balanced for oils of different applications.  相似文献   

7.
超长链多不饱和脂肪酸在棉花中的异源合成   总被引:1,自引:0,他引:1  
从球等鞭金藻、眼虫、高山被孢霉和拟南芥中分别克隆到Δ9链延长酶、Δ8去饱和酶、Δ5去饱和酶和Δ15去饱和酶基因,利用我们的多基因聚合方法,将这4个基因聚合到植物表达载体pCambia2300上,其中每个基因都含有独立的CaMV35S启动子和Tnos终止子。利用农杆菌介导法将该表达载体转入棉花,通过卡纳霉素和PCR筛选获得转基因阳性植株,提取转基因阳性植株叶片总脂肪酸,用气相色谱分析法检测到花生四烯酸(AA,20:4Δ5,8,11,14)和二十碳五烯酸(EPA,20:5Δ5,8,11,14,17)含量分别达1.0%和5.0%。表明通过基因代谢工程在棉花中异源合成EPA是可行的,为进一步在棉籽中生产VLCPUFAs奠定了基础。  相似文献   

8.
9.
Microspore derived embryos (MDEs) in Brassica napuscontain large amounts of storage lipids which show a genotype specific fatty acid composition (FAC). One cotyledon of regenerating emblyos can be dissected at an early stage during the in vitro culture and used for fatty acid analysis. Thus, in breeding programmes to modify oil quality, only MDEs having the desired FAC need to be regenerated to plantlets and transferred to the greenhouse. In the present study the applicability of this method for the selection of a high oleic acid content and a low linoleic acid content in the seed oil has been tested by crossing a Brassica napus mutant line having a high oleic acid (C18:1) content in the seed oil (75%) with a wild type doubled haploid line with 62% C18:1 in the seed oil. Microspore culture was applied to the F1 plants. In total 59 MDEs were obtained, from which 31 were cultured with and 28 without 15μM abscisic acid for 3 weeksin vitro. One cotyledon was dissected under aspetic conditions and used for fatty acid analysis. The remaining part of the embryos were further regenerated to plantlets and transferred to the greenhouse to obtain seeds after self pollination. Seeds harvested from the doubled haploid lines in the greenhouse were used for fatty acid analysis and also for growing in the field. The abscisic acid treatment of the MDEs generally improved the correlations for linoleic and oleic acid between the MDEs and the seeds harvested in the greenhouse and the field. The correlations ranged from 0.68** to 0.81**.This indicates that selection for high oleic acid can be started already during an early stage of the in vitro culture. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The genetic base of sunflower elite lines is very narrow, due to many years of selection and breeding. To broaden the genetic diversity of the cultivated sunflower, in 1995 73 wild sunflower populations were crossed with 3 cultivated lines (Testers), and 219 hybrid offspring’s were evaluated in the field. GCA and SCA effects were computed suggesting for all traits a genetic potential for improvement through selection. Study of the hybrids revealed that the wild accessions bear different genetic abilities to combine with the testers for traits of morphological architecture, phenology and yield (seed weight and seed oil). The variance due to GCA and SCA showed that gene action was additive for days to flowering, branching and plant height. Genotypes derived from the same geographic origin may have either good or poor general combing ability. The correlation between GCA and per se genotype performance was positive for all traits except for seed oil content. This was the first attempt to evaluate wild-cultivated hybrids in sunflower on a large scale and will be the starting point for the management of hybrid Helianthus annuus populations for breeding. GCA and SCA estimations will facilitate the definition of strategies to manage and exploit the natural diversity for this crop.  相似文献   

11.
Temporal and seasonal water deficit is one of the major factors limiting crop yield on the Canadian prairie. Selection for low carbon isotope discrimination (Δ13C) or high water‐use efficiency (WUE) can lead to improved yield in some environments. To understand better the physiology and WUE of barley under drought conditions on the Canadian prairie, 12 barley (Hordeum vulgare L.) genotypes with contrasting levels of leaf Δ13C were investigated for performance stability across locations and years in Alberta, Canada. Four of those genotypes (‘CDC Cowboy’, ‘Niobe’, ‘170011’ and ‘Kasota’) were also grown in the greenhouse under well‐watered and water‐deficit conditions to examine genotypic variations in leaf Δ13C, WUE, gas exchange parameters and specific leaf area (SLA). The water‐deficit treatment was imposed at the jointing stage for 10 days followed by re‐watering to pre‐deficit level. Genotypic ranking in leaf Δ13C was highly consistent, with ‘170011’, ‘CDC Cowboy’ and ‘W89001002003’ being the lowest and ‘Kasota’‘160049’ and ‘H93174006’ being the highest leaf Δ13C. Under field and greenhouse (well‐watered) conditions, leaf Δ13C was significantly correlated with stomatal conductance (gs). Water deficit significantly increased WUE, with ‘CDC Cowboy’– a low leaf Δ13C genotype with significantly higher WUE and lower percentage decline in assimilation rate (A) and gs than the other three genotypes (‘Niobe’, ‘170011’ and ‘Kasota’). We conclude that leaf Δ13C is a stable trait in the genotypes evaluated. Low leaf Δ13C of ‘CDC Cowboy’ was achieved by maintaining a high A and a low gs, with comparable biomass and grain yield to genotypes showing a high gs under field conditions; hence, selection for a low leaf Δ13C genotype such as ‘CDC Cowboy’ maybe important for maintaining productivity and yield stability under water‐limited conditions on the Canadian prairie.  相似文献   

12.
13.
Typical soybean oil is composed of palmitic, stearic, oleic, linoleic and linolenic acids. High oleic acid content in soybean seed is a key compositional trait that improves oxidative stability and increases oil functionality and shelf life. Using a marker‐assisted selection method, near‐isogenic lines (NILs) of G00‐3213 for the high oleic trait were developed and yield tested. These NILs have various combinations of FAD2‐1A and FAD2‐1B alleles that were derived from the same backcrossing populations. The results indicated that G00‐3213 NILs with both homozygous mutant FAD2‐1A and FAD2‐1B alleles produced an average of 788 g/kg oleic acid content. The results also demonstrated that possessing these mutant alleles did not cause a yield reduction. Furthermore, seed germination tests across 12 temperatures (12.8–32.0°C) showed that modified seed composition for oleic acid in general did not have a major impact on seed germination. However, there was a possible reduction in seed germination vigour when high oleic seeds are planted in cold soil. The mutant FAD2‐1A and FAD2‐1B alleles did not hinder either seed or plant development.  相似文献   

14.
Concerns regarding the safety of transgenic foods have been raised because of possibility of undesirable effects development during genetic engineering. Analysis of phenotypic traits can increase the likelihoods of identifying those unintended effects in dietary composition of the GM crops. Objective of this study was to compare the transgenic lines with their non‐transgenic counterpart. Different vegetative and reproductive traits as well as antioxidant properties were considered to evaluate the transgenic (HV8 and HV23) lines containing CaMsrB2 gene and their non‐transgenic (Ilmi) parent line. Grain size and weight, seed germination, root length, root and shoot dry weight, length and width of flag leaf, plant height, and ligule, stamen and carpel length were not significantly different. Onset and completion of heading in each line occurred almost during the same period. The antioxidant properties in terms of DPPH (1,1‐diphenyl‐2‐picrylhydrazyl) radical scavenging activity and polyphenol content were not statistically different under same treatment condition. The results suggested that the transgenic rice lines containing CaMsrB2 gene were equivalent to their non‐transgenic counterpart without any visible unintended effects.  相似文献   

15.
S. Ronicke    V. Hahn  W. Friedt 《Plant Breeding》2005,124(4):376-381
Cultivation of sunflower (Helianthus annuus L.) is strongly affected by Sclerotinia sclerotiorum. To identify new sources of genetic diversity for sunflower breeding 25 sunflower inbred lines were analysed using eight Amplified Fragment Length Polymorphism (AFLP) primer combinations and their genetic similarities (GS) were estimated. Data were used to develop a Unweighted Pair Group Method using Arithmetic Averages (UPGMA) dendrogram. GS values of 0.58‐0.98 were observed but with no separate groupings dependant on oil quality. The inbred lines were screened for their reaction to inoculation with Sclerotinia sclerotiorum (Lib.) de Bary. Sunflower heads were artificially inoculated with S. sclerotiorum in three environments. Head infection was monitored after 1 week (lesion length) and 2 weeks (head rot). The F5 generation of a cross between a resistant (SWS‐B‐04) and a susceptible inbred line (SWS‐B‐01) was also tested for sclerotinia reaction across three environments. Significant differences in sclerotinia resistance, moderate heritabilities and a high correlation between the two assessments were observed. Inbred lines with a high level of resistance could be identified. These lines can be used for further breeding to improve sunflower sclerotinia resistance and to develop superior new hybrids.  相似文献   

16.
17.
官梅  李栒  官春云 《作物学报》2010,36(6):968-978
采用基因芯片技术对甘蓝型油菜高油酸(71.71%)和低油酸(55.6%)材料进行分析,探索油酸的差异表达基因。结果检测到差异表达基因562个,其中上调表达基因194个,下调表达基因368个。以基因芯片中油菜上调基因NM_100489和下调基因NM_130183为材料,用实时荧光定量方法验证基因芯片的结果,二者完全相符。根据基因芯片的实验结果,采用Go注释系统和数据库查询对562个差异表达基因进行功能注释表明,主要为各种酶类、结合功能、转录调控、代谢等,还有的功能未知或与糖代谢及脂肪酸合成相关,其中丙酮酸激酶、果糖二磷酸、酰基传递/酰基ACP硫脂酶、作用于酯键的水解酶、Δ9硬脂酰-乙酰载体蛋白去饱和酶(ADS1)、Δ9酰基-油脂减饱和酶2(ADS2)、ω-3脂肪酸减饱和酶(fad3)等被鉴定为差异表达基因。  相似文献   

18.
Forty-five accessions of sunflower collected from different countries were screened for salinity tolerance after 2 weeks growth in sand culture salinized with 150 meq l?1 of NaCl2+ CaCl2 (1:1 ratio equivalent wt. basis) in half strength Hoagland's nutrient solution. The results for plant biomass of 45 accessions show that there was considerable variation in salinity tolerance. In a further greenhouse experiment, the salinity tolerance of three tolerant (HO-1, Predovik, Euroflor) and two sensitive (SMH-24, 9UO-985) lines (selected on the basis of their performance in the seedling experiment) was assessed at the adult stage to evaluate the consistency of salinity tolerance at different growth stages. All three salt tolerant accessions produced significantly greater plant biomass, seed yield and seed oil content than the salt sensitive accessions. The tolerant accessions accumulated less Cl? and more K+ in the leaves under saline conditions compared with the salt sensitive accessions. The salt tolerant accessions also maintained relatively high leaf K:Na ratio and K+ versus Na+ selectivity. Although statistically nonsignificant, all three tolerant accessions had greater soluble carbohydrates, soluble proteins, total free amino acids and proline in the leaves than the sensitive accessions. A field trial conducted in a salt-affected field confirmed the greenhouse results of the selected accessions. This study shows that salinity tolerance of sunflower does not vary with stage of plant cycle, so selection for increased salt tolerance can be carried out at the initial growth stage. Secondly, it is found that there is great variation of salt tolerance in sunflower. Low uptake of Cl?, high uptake of K+, and maintenance of high K:Na ratios and K+ versus Na+ selectivity in the leaves and possibly the accumulation of organic osmotica such as soluble carbohydrates, soluble proteins, proline and free amino acids seem to be the important components of salt tolerance in sunflower.  相似文献   

19.
Commercial application of nuclear genetic male sterility has been improved recently by a novel technique, Seed Production Technology (SPT), which incorporates transgenic maintainer lines capable of propagating non‐transgenic nuclear male‐sterile lines for use as female parents in hybrid production. Here, we identified a rice nuclear male‐sterile mutant, Oswbc11, with abnormal pollen development and lipid transport. We finely mapped the Oswbc11 gene into a 12.5‐kb region on chromosome 10 and found one candidate gene, which had a base substitution (C to T) resulting in a premature stop codon and was functionally confirmed by CRISPR/Cas9 technology. Gene OsWBC11 encodes a sub‐family member of adenosine triphosphate‐binding cassette transporter, which participates in the active transport of a wide range of molecules across membranes. Moreover, the agronomic traits of Oswbc11 mutants showed no significant differences compared to the wild‐type control except for the seed setting rate. These results indicated that Oswbc11 gene could be used in rice hybrid breeding as a recessive nuclear male‐sterile gene combined with CRISPR/Cas9 and the SPT technology and applied in different rice varieties.  相似文献   

20.
We report the field evaluation of second generation of transgenic cotton expressing Bacillus thuringiensis (Bt) genes cry1Ac and cry2A under CaMV 35S promoter. Sixty-five transgenic lines were grown under RCBD design. Transgenic plants exhibited inherent ability to resist target insect (p < 0.05 and 0.01). Morphological studies showed significant reduction in plant height making them favorable for breeding. Yield was significantly increased for the transgenic lines. Fiber analysis showed improved gin turn out 40% for transgenic lines in comparison to 32% for non-transformed lines. Fibre quality of transgenic lines was not affected when compared with non transgenic lines. Inheritance pattern for transgenic lines suggests the need of further studies to understand the complex molecular mechanisms for resistance management and biosafety studies to develop new Bt cotton varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号