首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
坚强芽孢杆菌(Bacillus firmus)PC024是一株分离自中国明对虾(Fenneropenaeus chinensis)养殖环境,且能够提高对虾免疫力和抗病力的益生菌。本研究优化其发酵豆粕的工艺条件,单因素优化结果:最佳接种量为2×10~6 CFU/g,最佳料水比为1∶0.8,最佳发酵时间为90 h,最佳发酵温度为37℃。在单因素实验结果的基础上,采用响应面法对4个因素进行了优化,最终确定最佳发酵条件:发酵温度为39.0℃,发酵时间为100 h 18 min,料水比为1∶0.96,接种量为3.84×10~6 CFU/g。经此条件发酵后,发酵产物中的菌浓度可达1.23×10~(10) CFU/g,验证值与预测值相差5.13%,优化模型可靠。豆粕经发酵后发生感官变化,豆粕发酵的得率为(93.89±0.01)%,可溶性蛋白含量由发酵前的(39.16±0.01)%增加到(58.80±4.54)%,豆粕粗蛋白质由发酵前的50.71%增加到55.03%,15种氨基酸的总含量增加到原来的132.30%,增加比例最大的5种为精氨酸(168.60%)、赖氨酸(157.20%)、丝氨酸(152.50%)、苏氨酸(139.04%)和甘氨酸(138.40%)。经SDS-PAGE显示,蛋白大分子得到有效降解。本研究可为益生菌的利用和对虾疾病防控提供新思路。  相似文献   

2.
采用三种益生菌菌联合固态发酵法以生产出高蛋白含量的豆粕。实验探讨了菌液接种量、发酵温度、发酵时间和料水比对发酵豆粕粗蛋白质含量的影响,得出高含量粗蛋白质豆粕的最佳生产工艺。正交试验表明,三种益生菌联合固态发酵法的最适条件为:菌液量300∶1、发酵温度32℃、料水比为1∶1. 1和发酵时间72 h。发酵豆粕的粗蛋白质含量为53. 06 g/(100 g),比发酵前提高9. 51%。  相似文献   

3.
对一株有脱氮作用的巨大芽孢杆菌(Bacillus megaterium)进行简易发酵,以对虾饲料及赤砂糖为培养基,通过正交实验及发酵条件优化,在对虾饲料3 g/L、赤砂糖6g/L、接种量1×108 CFU/ml、发酵温度31℃、装液量40%条件下,发酵24 h可获得活菌数为1.16× 1010 CFU/ml的发酵产物.使用发酵得到的巨大芽孢杆菌进行凡纳滨对虾(Litopenaeus vannamei)生物絮团养殖实验.结果显示,添加芽孢杆菌和赤砂糖的增强絮团组的絮团形成速度较添加赤砂糖的絮团组及传统养殖的对照组明显提升(P<0.05),整体上增强絮团组的亚硝酸氮水平与絮团组和对照组差异显著(P<0.05).养殖结束时,添加巨大芽孢杆菌组的对虾体长、体重水平均显著高于另2组.本研究建立了一种简单可行的功能益生菌发酵方式,并验证添加功能益生菌可提高生物絮团技术在对虾养殖中的效果.  相似文献   

4.
对一株有脱氮作用的巨大芽孢杆菌(Bacillus megaterium)进行简易发酵,以对虾饲料及赤砂糖为培养基,通过正交实验及发酵条件优化,在对虾饲料3 g/L、赤砂糖6 g/L、接种量1×10~8 CFU/ml、发酵温度31℃、装液量40%条件下,发酵24 h可获得活菌数为1.16×10~(10) CFU/ml的发酵产物。使用发酵得到的巨大芽孢杆菌进行凡纳滨对虾(Litopenaeus vannamei)生物絮团养殖实验。结果显示,添加芽孢杆菌和赤砂糖的增强絮团组的絮团形成速度较添加赤砂糖的絮团组及传统养殖的对照组明显提升(P0.05),整体上增强絮团组的亚硝酸氮水平与絮团组和对照组差异显著(P0.05)。养殖结束时,添加巨大芽孢杆菌组的对虾体长、体重水平均显著高于另2组。本研究建立了一种简单可行的功能益生菌发酵方式,并验证添加功能益生菌可提高生物絮团技术在对虾养殖中的效果。  相似文献   

5.
本研究分别对中国对虾野生群体(Wild-Fenneropenaeus chinensis, W-Fc)、中国对虾选育群体‘黄海2号’(Selected-Fenneropenaeus chinensis, S-Fc)和凡纳滨对虾商业一代苗种(Commercial- Litopenaeus vannamei, C-Lv)采用单尾定量口饲感染白斑综合征病毒(WSSV),比较W-Fc、S-Fc及C-Lv对WSSV的敏感性差异。结果显示,感染同等含量WSSV后,W-Fc、S-Fc和C-Lv的平均存活时间分别为(124.11±39.49) h、(166.79±51.54) h和(136.90±41.99) h,3组对虾间的平均存活时间存在显著性差异(P<0.05)。3组对虾在感染期间的死亡趋势:W-Fc在96 h达到死亡高峰,并且一直持续到216 h;S-Fc和C-Lv在144 h出现死亡高峰。另外,分别在感染后的3、6、12、24、36、48、72、144 h共8个时间点对3组对虾进行活体取样,利用实时荧光定量RT-PCR技术对其进行了病毒载量检测,从对虾存活时间和体内肌肉组织病毒载量的角度比较不同对虾抗病性能的差异,结果如下:48 h时,W-Fc、S-Fc和C-Lv3对虾体内肌肉组织的病毒载量分别为(1.22×106±6.14×105)、(7.10×103±7.26×102)和(1.50×104± 4.19×103) copies/ng DNA;144 h时,3组对虾体内肌肉组织病毒载量分别为(8.44×106±1.25×106)、(3.21×106±8.21×105)和(1.49×106±6.59×105) copies/ng DNA。实验结果显示,3组对虾对WSSV敏感性从高到低依次为中国对虾野生群体、凡纳滨对虾商业苗种、中国对虾选育群体,表明中国对虾选育群体‘黄海2号’在人工感染WSSV条件下表现出了良好的抗病性能。  相似文献   

6.
以基础饲料为对照组,在基础饲料中分别添加坚强芽孢杆菌活菌(Bacillus firmus)、坚强芽孢杆菌活菌(1.0×108 CFU/g)+美人鱼发光杆菌(Photobacterium damsela)灭活菌(1%)、坚强芽孢杆菌活菌(1.0×108 CFU/g)+溶藻弧菌(Vibrio alginolyticus)灭活菌(1%)配制3种免疫饲料.每组3个重复,对个体质量为(3.2±0.26)g的凡纳滨对虾(Litopenaeus vannamei)进行了为期30d的养殖实验.每5d取样,以血清中的酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、一氧化氮合酶(NOS)、超氧化物歧化酶(SOD)和溶菌酶(UL)活性为免疫指标,探讨了肠道益生菌及其灭活菌体作为免疫制剂对凡纳滨对虾非特异性免疫水平的影响;在投喂免疫饲料后的第16天,按0.9 g/10尾剂量,直接投喂感染白斑综合征病毒(wssV)对虾病料,计算各实验组每天的累计死亡率,分析肠道益生菌及其灭活菌体作为免疫制剂对凡纳滨对虾病毒感染能力的影响.结果显示:添加益生菌的实验组对虾血清中SOD、ACP、AKP和NOS活性明显高于对照组(P<0.05),特别是显著提高了对虾抗WSSV感染的能力.其中坚强芽孢杆菌活菌(1.0× 108 CFU/g)和美人鱼发光杆菌灭活菌(1%)实验组的抗病毒感染能力最强,感染WSSV 14 d后累计死亡率为10.71%;而对照组为64.28%.结论认为,饲料中添加肠道益生菌及其灭活菌体能提高凡纳滨对虾非特异性免疫水平和抵抗疾病的能力,有望作为新型对虾免疫增强剂应用于对虾养殖业.  相似文献   

7.
枯草芽孢杆菌的培养条件及对水质的净化作用   总被引:19,自引:3,他引:16  
研究了枯草芽孢杆菌(Bacillus subtilis Cohn,1872)(菌株编号:LB-B3)的培养条件及其在净化对虾养殖池水样方面的效果。实验分别设置了9个不同的pH值梯度(pH 2~10)和6个不同接种量梯度(0.3%、0.5%、1%、3%、5%和7%),以吸光值(OD)为生长指标,进行了枯草芽孢杆菌培养条件的优化实验;同时又设置了5个不同接种浓度(0 CFU/mL、5.2×104CFU/mL、1.04×105CFU/mL、1.56×105CFU/mL和2.08×105CFU/mL)接种待处理水样,测定了96 h内化学耗氧量、亚硝酸氮、氨态氮和溶氧等4个水质指标的变化情况。结果表明:pH=7.0、接种量为7.0%时,OD值最大;枯草芽孢杆菌能显著净化水质,但使用后会暂时性增加耗氧。  相似文献   

8.
对采自天津、浙江和山东等养殖场5个凡纳滨对虾Litopenaeus vannamei)群体的442尾个体进行虾肝肠胞虫(Enterocytozoon hepatopenaei,EHP)的TaqMan探针荧光定量PCR检测,并测量各群体每尾对虾的生物学体长和体重.引入医学上的劳累尔(Rohrer)体重指数(Ponderal index,PI,W/L3)关系建立对虾体重(W)和体长(L)关系函数.结果显示,4个凡纳滨对虾的EHP阳性群体[平均体长为(5.37±1.19) cm]的体重指数PI平均值为(5.19±0.26)×10-3 g/cm3,EHP阴性群体的凡纳滨对虾群体[平均体长为(2.49±0.21)cm]为(7.96±0.51)×10-3 g/cm3,根据PI=a·L(b-3)的函数矫正EHP阴性和阳性群体的体长差异引起的PI差值后,同等体长EHP阳性群体的PI值为阴性群体的(70.5±8.7)%,表明同样大小的个体,EHP阳性群体的平均体重比阴性群体平均体重低30%;EHP阳性群体中凡纳滨对虾体长和体重的变异系数是EHP阴性群体的(2.39±0.93)和(2.05±0.86)倍,表现为对虾EHP阳性群体个体大小不均匀;EHP阳性群体体重偏差率是EHP阴性群体的2.34-3.45倍,体长相同时,EHP阳性的体重波动变大.  相似文献   

9.
斑节对虾血淋巴细胞对鳗弧菌的清除作用   总被引:2,自引:0,他引:2       下载免费PDF全文
通过检测注入斑节对虾(Penaeus monodon)血淋巴内的鳗弧菌(Vibrio anguillarumH)浓度、血淋巴细胞浓度和血淋巴细胞的组成变化,研究斑节对虾血淋巴细胞对进入体内细菌的清除作用。实验显示,斑节对虾能够迅速清除注入其体内的鳗弧菌。注射鳗弧菌悬液(107~108CFU/mL)5 min后,血淋巴中可检测到的鳗弧菌浓度是(1.4±0.6)×106CFU/mL,而2 h后所检测到的鳗弧菌的浓度仅相当于前者的3.1%。7天后,仅在部分个体的血淋巴中检测到少量鳗弧菌。伴随着血淋巴液内鳗弧菌的减少,对虾的血淋巴细胞浓度发生变化。鳗弧菌注入对虾体内5 min后,血淋巴细胞浓度为(3.51±1.69)×107/mL,注射后2 h时达到最低值,为(2.39±1.76)×107/mL,然后逐步恢复,注射后48 h达到(3.97±1.60)×107/mL。对照组血淋巴细胞浓度起初略微降低,然后逐步增加,在2 h达到最大值后又逐渐降低;除注射后48 h外,对照组血淋巴细胞浓度始终高于实验组。鳗弧菌注射入斑节对虾体内后,不同的细胞种类呈现出不同的变化规律:在注射后2 h,对照组透明细胞占总细胞数的比例显著高于实验组,对照组半颗粒细胞的含量低于实验组。注射鳗弧菌后10 min,血淋巴中颗粒细胞的相对含量显著降低,此时实验组的颗粒细胞相对含量也低于对照组。而对于降解细胞细胞核的相对含量,实验组和对照组表现出了显著不同的变化趋势。在对照组中,24 h内其含量一直在降低,而后恢复;而对照组却在注射10 min时达到最高值,而后遵循对照组类似的变化。[中国水产科学,2006,13(1):28-32]  相似文献   

10.
石斑鱼配合饲料中发酵豆粕和豆粕部分替代白鱼粉的研究   总被引:33,自引:2,他引:33  
罗智 《水产学报》2004,28(2):175-181
在浮式海水网箱(1.5m×1m×1.5m)中养殖石斑鱼幼鱼(9.4±0.1g),在等氮(52% CP)基础上进行以发酵豆粕和普通豆粕替代鱼粉的实验, 为期56天.结果显示在石斑鱼饲料中添加14%发酵豆粕,其增重率、特定生长率(SGR)、饲料效率和蛋白质效率与对照组没有显著性差异(P>0.05),以后随着发酵豆粕添加量的上升,这些指标都显著下降(P<0.05).在同样替代水平下,添加21%发酵豆粕组,增重率,SGR,饲料效率和蛋白质效率都比添加20%豆粕组高(P<0.05),表明对海水肉食性鱼类来说,发酵豆粕是一种比豆粕更优良的蛋白源.用折线模型分析增重率随白鱼粉替代水平的变化关系,结果表明在石斑鱼配合饲料中,发酵豆粕替代白鱼粉的最适量为10%.从实际生产的经济效益出发,建议在饲料中添加14%发酵豆粕,对石斑鱼的生长和鱼体组成不会造成显著影响.  相似文献   

11.
Litopenaeus vannamei were stocked in 25 clear‐water 500‐L tanks at 100 shrimp m?2 and in 25 green‐water 1000‐L tanks at 60 animals m?2. Four diets were formulated to include krill meal at 10, 50 or 110 g kg?1; or krill oil at 25 g kg?1 by replacing fish meal, fish oil, soybean lecithin and cholesterol. Diets had similar levels of crude protein, total energy and essential amino acids. After 72 days, shrimp reared in clear and green water showed no differences in performance among diets. In clear water, shrimp attained 13.1 ± 0.59 g body weight, 1.00 ± 0.06 g week?1 growth, 81.4 ± 7.3% survival, 780 ± 118 g m?2 yield, 16.9 ± 1.8 g shrimp?1 apparent feed intake (AFI), and 2.18 ± 0.29 food conversion ratio (FCR). In green water, shrimp attained 14.3 ± 0.81 g body weight, 1.04 ± 0.09 g week?1 growth, 91.4 ± 5.4% survival, 569 ± 69 g m?2 yield, 20.9 ± 3.2 g shrimp?1 AFI, and 2.22 ± 0.34 FCR. Diets containing krill meal or krill oil were able to fully replace the protein and lipid value of fish meal, fish oil, soybean lecithin and cholesterol at no cost to performance.  相似文献   

12.
The feasibility of substituting soybean meal for fishmeal diets for juvenile white shrimp Litopenaeus schmitti (0.35±0.01 g) was evaluated, and an adequate substitution level was determined. Five diets were evaluated using 46%, 59%, 75%, 88% and 100% substitution levels. Pellet water stability was significantly affected by dietary soybean content (P<0.05). Increased soybean content produced lower pellet stability, ranging from a dry matter loss of 14–22% after a 2‐h immersion, and 20–33% after an 8‐h immersion. After 52 days, significant differences (P<0.05) were found in shrimp weight, feed conversion ratio and protein efficiency ratio. The values were 0.64–1.06 g, 2.8–7.9 and 0.45–1.21, respectively, for the three measurements. Overall, better results were obtained with diets where soybean meal was substituted for fishmeal up to 75%. The 100% soybean meal diet resulted in poor growth performance of shrimp. Survival rates were acceptable for all treatments (90% or higher) and no significant differences were found in survival between treatments. Regression analysis using the broken‐line methodology indicated that 76.5±2% is an optimum soybean substitution level in diets that contained fishmeal and soybean as the major protein sources for grow‐out of juvenile white shrimp.  相似文献   

13.
A 15‐week growth trial was conducted with juvenile, Pacific white shrimp Litopenaeus vannamei to study the efficacy of using algal meals as a source of highly unsaturated fatty acids in practical diets that are designed to contain no marine protein or oil sources. Based on previous study, a practical diet was designed containing co‐extruded soybean poultry by‐product meal with egg supplement and soybean meal as the primary protein sources for formulations containing 350 g kg?1 crude protein and 100 g kg?1 lipid. To further refine the diets, the fish oil in two of the diets was completely substituted with plant oils and oil originating from microbial fermentation products rich in docosahexanoic acid (DHA) and arachidonic acid (ArA). A commercial shrimp feed was also included in the trial for comparison. The mean values for shrimp final weight (17.8 g), yield (537.7 g m?2 or 703.2 g m?3), survival (98.5%) and feed conversion ratio (1.4 : 1) showed no statistically significant differences between diets. The results suggest that co‐extruded soybean poultry by‐product meal and oil from heterotrophic microalgal fermentation sources can be potential candidates for fish meal and marine oil replacement in shrimp diets.  相似文献   

14.
This study compared the feed preference and growth response of Litopenaeus vannamei to chemoattractants. A diet with 3% fishmeal was supplemented with either 3% salmon meal (POS), 3% soy protein concentrate (NEG), 3% krill meal (KRM), 3% squid meal (SQM), 3% shrimp head meal (SHM), 3% shrimp meal (SM), 3% squid liver meal (SLM), or 5% liquid sardine hydrolysate (SAH). Shrimp with a body weight (BW) of 0.99 ± 0.08 g were stocked at 100 animals/m2 in 56 tanks of 1 m3 and fed 10 times daily for 74 days. Feed preference was evaluated by feeding shrimp of 10.87 ± 1.82 g in excess twice a day for 10 days in two separate feeding trays allocated in 50 tanks of 0.5 m3. Survival reached 93.3 ± 5.80% and was unaffected by supplementation. Final BW was the highest for shrimp fed the KRM‐supplemented diet (11.97 ± 0.93 g), followed by POS (11.11 ± 0.77 g) and SQM (11.01 ± 1.17 g). Diets SHM, SM, SLM, and NEG showed a lower shrimp BW than POS, but were not statistically different among them. Shrimp fed the SAH diet achieved the lowest BW (10.06 ± 1.02 g). The highest gained yield was obtained with diets KRM and POS. No statistical difference was observed in shrimp yield among other diets. The lowest feed conversion ratio (FCR) was achieved with shrimp fed KRM (1.31 ± 0.05) when compared to diets SHM (1.47 ± 0.05), SAH (1.47 ± 0.07), and SLM (1.45 ± 0.17). Two‐by‐two comparisons indicated that shrimp preferred SHM and KRM, except when these were compared to SQM and SLM. No difference in feed preference was found between diets with SQM and SLM. SAH was the least preferred raw material in all comparisons. Results indicated that KRM acts as a powerful feeding effector and growth enhancer in fishmeal‐challenged diets for whiteleg shrimp. A dietary supplementation with 3% KRM is more effective than the same dose of any other chemoattractant evaluated.  相似文献   

15.
The effect of partial substitution of dietary fish meal with a high‐value soybean meal (HVS) and a commercial soybean meal (CSM) on the growth performance in juvenile Japanese seabass (8.3±0.2 g body weight) was determined. Nine isonitrogenous (crude protein 44%) and isoenergetic (20 kJ g?1) practical diets replacing 0 (the control), 15%, 30%, 45% and 60% fish meal protein by soybean meal protein (HVS or CSM) were formulated. Each diet was randomly assigned to four replicate cages (1.5 × 1.5 × 2.0 m). Fish were fed twice daily for 10 weeks. Growth was significantly reduced with increased soybean inclusion in fish fed both the soybean sources. Independent of the soybean source used, increased inclusion of soybean meal decreased the growth performance. When the substitution level was 45% or more in CSM and 60% in HVS, the specific growth rate (SGR) and the feed efficiency ratio (FER) were significantly lower compared with the control. These results indicated that CSM protein could substitute for 30% fish meal protein, while the substitution level of HVS protein could be 45%, which did not influence the growth of juvenile Japanese seabass. The higher substitution level for HVS compared with CSM was probably due to better nutritional values.  相似文献   

16.
This study was designed to evaluate the efficacy of eight sources (designated A–H) of soybean meal (SBM) which included six new non‐genetically modified soya varieties in practical feed formulation for Pacific white shrimp, Litopenaeus vannamei, using both growth and digestibility trials. A soybean meal‐based reference diet was formulated using conventional soybean meal (527 g kg?1 diet), which was then replaced on an isonitrogenous basis with various other experimental soybean meals. In a 6‐week growth trial, shrimp in four replicate tanks per dietary treatment (10 shrimp per tank, initial weight 0.52 ± 0.04 g) were cultured in a recirculating system. There were no significant differences with respects to per cent weight gain and survival across all dietary treatments; however, final weights and feed conversion ratio (FCR) were lower in shrimp offered diet 3. Apparent digestibility coefficients for the eight (A–H) different soybean meals were determined in L. vannamei for dry matter (ADMD), gross energy (ADE) and crude protein (ADP) using 10 g kg?1 chromic oxide as inert marker with 70 : 30 replacement techniques. Coefficients ranged from 71.3% to 88.3%, from 76.6% to 91.3% and from 93.6% to 99.8%, for ADMD, ADE and ADP, respectively. Improved digestibility values were observed in soybean C which was characterized by crude protein (471 g kg?1), crude fat (97 g kg?1), low cooking temperature (180 °C), higher nitrogen solubility index (689 g kg?1) and protein dispersibility index (619 g kg?1). This indicates that new lines of soybean meal can be used to improve digestibility coefficients in shrimp feeds.  相似文献   

17.
This work evaluated the performance of Litopenaeus vannamei to low fish meal diets supplemented with 2‐hydroxy‐4‐(methylthio)butanoic acid (HMTBa). A basal diet with 150.0 g kg?1 of anchovy fish meal was designed. Two positive control diets were formulated to reduce fish meal at 50% and 100% with 1.0 and 2.0 g kg?1 of MERA? MetCa (calcium salt with 84% HMTBa activity), respectively. Two nearly equivalent diets acted as negative controls, without HMTBa supplementation. A total of 50 clear‐water tanks of 500 L were stocked with 2.22 ± 0.19 g shrimp under 70 animals m?2. Shrimp survival (92.3 ± 5.1% and 81.4 ± 8.0%), yield (808 ± 12 and 946 ± 17 g m?2) and FCR (2.17 ± 0.19 and 3.12 ± 0.37) showed no differences among diets after 72 or 96 days, respectively. A significantly higher shrimp body weight and weekly growth were observed for those fed with the basal diet or diets supplemented with HMTBa compared with non‐supplemented ones. This study has shown that L. vannamei growth, body weight, survival, yield and FCR were supported by HMTBa supplementation when 150.0 g kg?1 of fish meal was replaced by soybean meal and other ingredients, at 50% and 100%.  相似文献   

18.
Apparent digestibility coefficients of dry matter (DM), crude protein, crude lipid, gross energy, phosphorus and amino acids in Peruvian fish meal (FM), fermented soybean meal, extruded soybean meal, soybean meal, peanut meal, wheat gluten meal, corn gluten meal, shrimp byproduct meal, meat and bone meal (MBM), poultry meat meal and plasma protein meal (PPM) were determined for white shrimp (Litopenaeus vannamei). A reference diet (RF) and test diets (consisting of 70% RF diet and 30% of the feedstuff) were used with 0.5% chromic oxide as an external indicator. A total of 1440 shrimp (initial mean body weight 1.05 ± 0.01 g) were randomly stocked into thirty‐six 500‐L fibreglass tanks with 40 shrimp per tank and three tanks per diet. Faeces were collected from triplicate groups of shrimp by a faecal collection vessel attached to the shrimp‐rearing tank. The shrimp were fed to apparent satiation four times a day and the feeding experiment lasted for 6 weeks. Statistics indicate that apparent DM digestibilities for white shrimp (L. vannamei) were the highest for FM, ranged 52.83–71.23% for other animal products and 69.98–77.10% for plant products. The protein and lipid from plant and animal sources were well digested by white shrimp. Apparent protein and lipid digestibility were in the range 87.89–93.18% and 91.57–95.28%, respectively, in plant products, and 75.00–92.34% and 83.72–92.79%, respectively, for animal products. The white shrimp demonstrated a high capacity to utilize phosphorus in the ingredients. The apparent phosphorus digestibility ranges of animal feedstuffs and plant feedstuffs were 58.90–71.61% and 75.77–82.30% respectively. Amino acid availability reflected protein digestibility, except that in MBM, for which the availability of some amino acid was lower, possibly due to protein damage during processing. Digestibility information could promote the use of ingredient substitution in least‐cost formulated diets for white shrimp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号