首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two experiments were conducted to determine if the secretory patterns of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) and serum concentrations of progesterone change immediately preceding induced puberty in gilts. To help predict when prepubertal gilts would attain puberty, gilts were induced into puberty by relocation from confinement housing to an outdoor lot and exposure to mature boars. In Exp. 1, 17 prepubertal gilts were bled on two successive days from 0800 to 1200 h before relocation and boar exposure and until the second day of estrus or for 8 d in gilts that failed to exhibit estrus. Blood samples were collected from indwelling cannulas at 20-min intervals for 4 h. In Exp. 2, blood samples were collected from 20 prepubertal gilts at 20-min intervals from 0800 to 1200 h and from 2000 to 2400 h until the second day of estrus or for 6 d if the gilt failed to exhibit estrus. In each experiment, 11 gilts exhibited pubertal estrus 3 to 6 d after relocation and boar exposure. When the frequency of LH spikes in each gilt was normalized to the day of her preovulatory surge of LH (d 0), a decline in the frequency of LH secretory spikes was observed as gilts approached puberty. However, neither the average magnitude of LH spikes nor mean LH concentrations were different among these days. Mean serum concentrations, frequency of spikes or average magnitude of secretory spikes of FSH or PRL did not change on the days preceding the preovulatory peak of LH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Two experiments were conducted to determine the effect of exogenous gonadotropins on follicular development in gilts actively immunized against gonadotropin releasing hormone (GnRH). Four gilts, which had become acyclic after immunization against GnRH, and four control gilts were given 1,000 IU pregnant mare serum gonadotropin (PMSG), while four additional control gilts were given saline. Control animals were prepuberal crossbred gilts averaging 100 kg body weight. Control gilts given saline had ovaries containing antral follicles (4 to 6 mm in diameter). Control gilts given PMSG exhibited estrus and their ovaries contained corpora hemorrhagica and corpora lutea. PMSG failed to stimulate follicular growth in gilts immunized against GnRH, and ovaries contained regressed corpora albicantia and small antral follicles (less than 1 mm in diameter). Concentrations of luteinizing hormone (LH) and estradiol-17 beta (E2) were non-detectable in gilts immunized against GnRH and given PMSG. In the second experiment, five gilts actively immunized against GnRH were given increasing doses of PMSG every third day until unilateral ovariectomy on d 50. PMSG failed to stimulate follicular growth, and concentrations of follicle stimulating hormone (FSH), E2 and LH were not detectable. Six weeks later, gilts were given a booster immunization and then were given 112 micrograms LH and 15 micrograms FSH intravenously every 6 h for 9 d. The remaining ovary was removed on d 10. Although LH and FSH concentrations were elevated, administration of gonadotropins did not stimulate follicular growth or increase E2 concentrations. These results indicate that neither PMSG or exogenous LH and FSH can induce E2 synthesis or sustain follicular development in gilts actively immunized against GnRH.  相似文献   

3.
This experiment was conducted to determine the changes in secretion of LH, FSH, estrogen and progesterone during follicle maturation. Ovaries were recovered from 11 non-treated (control) gilts, three on day 13, four on day 16, and four on day 19 of the estrous cycle, and from four altrenogest-treated gilts on day 19. Altrenogest, a progesterone agonist, was fed at a dose of 20 mg once daily from days 13 to 18 to block spontaneous follicle maturation. Gilts were bled daily from day 12 until slaughter. For control gilts, the number of follicles/gilt 1-6 mm in diameter decreased (P less than .05) from 93.5 on day 13 to 21.5 on day 19, and the number of large (greater than 6 mm) follicles increased (P less than .05) from 5.3 to 13.2. Altrenogest treatment blocked loss of small follicles and growth of large follicles between days 13 and 19. Plasma progesterone decreased (P less than .001) between days 12 and 16 in both control and altrenogest-treated gilts. Plasma FSH decreased (P less than .05) between days 12 and 16 only in control gilts. Plasma LH was not significantly affected by day or altrenogest treatment. Plasma estrogen increased (P less than .05) between days 15 and 19 only in control gilts. These results indicate that 1) no increased LH secretion was detected in conjunction with emergence of ovulatory follicles, and 2) atresia of nonovulatory follicles was associated with decreased secretion of FSH. Both atresia and decreasing FSH secretion began before estrogen concentration increased in the systemic circulation.  相似文献   

4.
Plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) were determined over a 24-h period using radioimmunoassay in sheep injected with corn oil (control) or various doses of zeranol or estradiol-17 beta. Injection of .333, 1 or 10 mg of zeranol caused dose-related increases (P less than .01) in plasma PRL (peak levels at 12 to 18 h) and LH (peak levels at 12 to 20 h) in ovariectomized ewes. Similarly, PRL and LH increased following doses of 33 or 100 microgram of estradiol. Before the LH surge, plasma LH levels were significantly depressed (4 to 8 h). Plasma FSH levels were significantly decreased 4 to 8 h after zeranol and estradiol injection. Slight surges of FSH were observed at times similar to those of LH, but the peak level was never greater than control levels. Injection of 1 mg of zeranol or 100 microgram of estradiol into wethers resulted in a 24-h pattern of PRL secretion not significantly different of LH concentration and significantly prolonged inhibition of FSH secretion. These results indicate similarities in the effects of zeranol and estradiol on anterior pituitary hormone secretion within groups of animals of the same sex or reproductive state. Differences in secretion and plasma concentrations of LH, FSH and PRL due to underlying sexual dimorphism are maintained and expressed even when animals are challenged with structurally different compounds of varying estrogenic potencies.  相似文献   

5.
To determine whether recombinant porcine somatotropin (rpST) alters reproduction, 40 crossbred gilts weighing 59.1 +/- .5 kg at 125 +/- 1 d of age were assigned randomly to an experiment arranged as a 2 x 2 factorial. Eight gilts were given daily injections of diluent until they reached 104 kg BW (DW), and eight received diluent injections until puberty (DP). Twelve gilts were given rpST (4 mg/d) until 104 kg BW (PW) and 12 were given rpST injections until puberty (PP). All gilts were individually fed on an ad libitum basis an 18% CP corn-soybean meal diet (1.2% lysine and 3.1 Mcal/kg of ME). Beginning at 5 mo of age, gilts were exposed 20 min daily to mature boars. Serum concentrations of progesterone were measured weekly from 5 to 8 mo of age to verify age of puberty. Gilts observed in pubertal estrus were mated to two different boars 10 h apart. At 47 +/- 1 d of gestation, gilts were slaughtered to assess fetal development. After 60 d of treatment, serum LH and FSH profiles were determined in blood samples drawn at 20-min intervals for 4 h from eight diluent- and eight rpST-treated gilts fitted with indwelling jugular catheters. By 28 d, feed intake, feed/gain, and blood urea nitrogen were decreased (P less than .005) by rpST. Treatments did not affect (P greater than .05) the proportion of gilts attaining first ovulation (DW = 6/6; DP = 10/10; PW = 7/9; PP = 14/14) or conception rate (DW = 5/6; DP = 7/10; PW = 4/6; PP = 11/12).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Effects of an increased level of dietary energy (flushing) on plasma concentrations of FSH, LH, insulin, progesterone and estradiol-17 beta and ovulation rate were studied in 16 gilts. Gilts received 5,400 kcal ME/d for one estrous cycle and the first 7 d of a second. On d 8 of the second estrous cycle, gilts received either 5,400 kcal ME/d (control [C], n = 8) or 11,000 kcal ME/d (flushed [F], n = 8) for the remainder of the estrous cycle. Blood was collected daily at 15-min intervals for 6 h from d 8 through estrus. Gilts were examined by laparotomy 6 d after estrus. Ovulation rate was greater (P less than .05) in F than C gilts (16.0 vs 9.4). Mean daily concentrations of FSH were greater (P less than .05) in F gilts at 5 d, 4 d and 3 d prior to estrus compared with C females. In both C and F gilts, FSH decreased (P less than .05) prior to estrus. Mean daily concentrations of LH and LH pulse amplitude were not different (P greater than .05) between treatments. Mean number of LH pulses/6 h at 4 d, 3 d and 2 d prior to estrus were greater (P less than .05) in F than in C gilts. In both treatments, LH pulse amplitude decreased (P less than .05) and pulse frequency increased (P less than .07) prior to estrus. Mean plasma concentrations of insulin tended to be higher (P less than .07) in F than in C females during the 7-d period before estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Crossbred gilts were ovariectomized (OVX) at 120, 150, 180 and 210 d of age to determine whether various characteristics of luteinizing hormone (LH) concentrations are influenced by age and reproductive state (prepuberal vs postpuberal). All 120-d-old gilts were prepuberal and all 210-d-old animals were postpuberal, whereas gilts 150 and 180 d old included both prepuberal and postpuberal animals. Blood was collected at 15-min intervals for 2 h, 2 d before OVX (d -2), and 2 (d +2), 8 (d +8) and 14 (d +14) d after OVX. Mean LH concentrations for prepuberal gilts were similar among age groups (P greater than .05) on d -2 and +2; however, LH increased (P greater than .05) from d -2 to +2. No change in LH secretion was found in postpuberal gilts during these two periods. After OVX, LH increased from d +2 to +14 in both prepuberal and postpuberal gilts in all age groups. In postpuberal gilts, LH increased linearly (P less than .05) between d +2 and +14; rate of increase accelerated with advancing age (P less than .01). In prepuberal gilts, LH increased in a nonlinear manner, but it did not increase between d +2 and +8. The increase observed in prepuberal and postpuberal gilts after OVX resulted primarily from an increase in magnitude of peak concentrations of LH. Implants of estradiol-17 beta (E2) were used to determine whether the postovariectomy increase in LH is affected differently by E2 in prepuberal and postpuberal gilts during advancing ages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Four pregnant, primiparous, crossbred gilts and six gilts from the same population that had been ovariectomized (OVX) for approximately 3 wk were placed in individual pens in an enclosed building. Blood samples were collected every 30 min for 12 h from all gilts via an indwelling jugular vein cannula when the pregnant gilts were at d 30, 50, 70, 90, and 110 of gestation. Serum was quantified for LH and prolactin (PRL) by RIA. The OVX gilts served as controls to ensure that any variations in serum LH and PRL concentrations observed in the pregnant animals were not due to environmental factors unrelated to pregnancy. Within the pregnant gilts, mean serum LH concentrations, mean basal serum LH concentration, and mean serum LH peak height were similar on all days; however, number of LH peaks on d 30, 50, and 70 were greater (P < .05) than on d 90 and 110, and number of LH peaks on d 50 was greater (P < .05) than that on d 70. Within the pregnant gilts, mean serum PRL concentration, mean basal serum PRL concentration, and mean PRL peak height were greater (P < .001) on d 110 than on all other days; however, number of PRL peaks were similar among days. Parameters of LH and PRL secretion in the OVX and pregnant gilts varied independently. Results of this study indicated that 1) LH secretion does not vary appreciably throughout pregnancy and 2) PRL secretion does not vary significantly during the first 90 d of pregnancy, after which it increases markedly on or before 110 d.  相似文献   

9.
Fifty crossbred gilts immunized against bovine serum albumin (BSA) or androstenedione conjugated to BSA (AD) were used in three experiments. Primary immunizations were given at 120 d of age and boosters at 148 and 176 d. Gilts were moved to pens containing four to five animals each and exposed to boars beginning at 180 d of age. Immunization against AD did not affect age at puberty, percentage of gilts exhibiting estrus or duration of first estrous cycle. Over the three experiments, ovulation rate was 24% greater for AD-immunized gilts than for controls, and the number of corpora lutea was related positively (r = .82) to the log of the antibody titer. Number of ovulations decreased as interval from booster immunization to onset of estrus increased. During diestrus of the first estrous cycle, gilts immunized against AD had more follicles 5 to 10 mm in diameter, more total ovarian follicles and more total ovarian structures (corpora lutea plus follicles) than controls. Immunization against AD increased the frequency of LH pulses on d 16 but not on d 17 or 18, of the estrous cycle. However, average serum concentrations of LH, FSH and estradiol from 5 d before until 2 d after expected estrus were not different between treatment groups. Concentrations of AD in follicles 4 to 6 and greater than 7 mm in diameter were greater in gilts immunized against AD. Mean serum progesterone was higher on d 9 and 12 after mating in AD immunized gilts than in controls. Immunization against AD had no effect on maintenance of pregnancy or embryo survival rate.  相似文献   

10.
The effects of n-methyl-d,l-aspartate (NMA), a neuroexcitatory amino acid agonist, on luteinizing hormone (LH), prolactin (PRL) and growth hormone (GH) secretion in gilts treated with ovarian steroids was studied. Mature gilts which had displayed one or more estrous cycles of 18 to 22 d were ovariectomized and assigned to one of three treatments administered i.m.: corn oil vehicle (V; n = 6); 10 micrograms estradiol-17 b/kg BW given 33 hr before NMA (E; n = 6); .85 mg progesterone/kg BW given twice daily for 6 d prior to NMA (P4; n = 6). Blood was collected via jugular cannulae every 15 min for 6 hr. Pigs received 10 mg NMA/kg BW i.v. 2 hr after blood collection began and a combined synthetic [Ala15]-h GH releasing factor (1-29)-NH2 (GRF; 1 micrograms/kg BW) and gonadotropin releasing hormone (GnRH; .2 micrograms/kg BW) challenge given i.v. 3 hr after NMA. NMA did not alter LH secretion in E gilts. However, NMA decreased (P < .02) serum LH concentrations in V and P4 gilts. Serum LH concentrations increased (P < .01) after GnRH in all gilts. NMA did not alter PRL secretion in P4 pigs, but increased (P < .01) serum PRL concentrations in V and E animals. Treatment with NMA increased (P < .01) GH secretion in all animals while the GRF challenge increased (P < .01) serum GH concentrations in all animals except in V treated pigs. NMA increased (P < .05) cortisol secretion in all treatment groups. These results indicate that NMA inhibits LH secretion and is a secretagogue of PRL, GH and cortisol secretion with ovarian steroids modulating the LH and PRL response to NMA.  相似文献   

11.
The objectives of the present study were 1) to study potential effects of previous nutritional treatment on developmental competence of early fertilized oocytes in vitro; 2) to study responses to insulin treatment during the period of feed restriction in the late luteal phase which has deleterious effects on subsequent fertility; and 3) to establish the metabolic and endocrine status of gilts during treatment and the subsequent periestrous period. Nineteen trios of littermate gilts were subjected to feed restriction during the first (RH) or second (HR) week of the estrous cycle. A second group of HR gilts received injections of long-acting insulin during their period of feed restriction (HR+I). Intensive sampling was performed in a subgroup of 23 animals on d 15 and 16 of the cycle for analyses of endocrine (gonadotropins and steroid hormones) and metabolic (insulin, IGF-I, leptin, total triiodothyronine [T3], and free T3) variables. Gilts were checked for estrus every 6 h, and time of ovulation was monitored by transcutaneous ultrasonography. Surgeries were performed 12 to 20 h after ovulation, and the early-fertilized oocytes recovered were cultured in vitro under standardized conditions. There was no treatment effect on the developmental competence of fertilized oocytes in vitro; however, ovulation rate was increased in HR+I gilts. No effect of treatment was observed on plasma leptin and IGF-I concentrations on d 15 and 16. However, HR+I gilts had higher (P < 0.05) postprandial insulin and lower (P < 0.05) postprandial total and free T3 on d 15. Plasma concentrations of LH, FSH, and progesterone on d 15 and 16 and plasma estradiol concentrations on d 16 were not affected by previous nutritional or insulin treatment. In the periestrous period, plasma concentrations of LH, FSH, and estradiol were higher (P < 0.05) in RH and HR+I, and the rise in plasma progesterone after the LH surge was lower (P < 0.05), than in HR gilts. No effect of treatment was observed on plasma concentrations of metabolic hormones, except on plasma leptin concentrations, which were higher (P < 0.05) at the time of the LH surge in RH gilts. These results suggest that feed restriction during the late luteal phase may have deleterious effects on ovarian function in the periestrous period, which may be counteracted by insulin.  相似文献   

12.
Purified zearalenone (Z) was added to the diet of gilts from d 2 to 15 postmating. Gilts received either 0, 5, 15, 30, 60 or 90 ppm Z (three to five gilts per dose) in 1.8 kg of feed daily. Serum concentrations of progesterone and estradiol-17 beta were determined weekly. On d 13 to 15 and 40 to 43 postmating, blood samples were drawn from a cannula at 20 min intervals for 4 h and analyzed for luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL). Gilts were killed 40 to 43 d postmating and embryonic development was assessed. Treatment with 5, 15 or 30 ppm Z had no effect on embryonic development when compared with 0 ppm. No fetuses were present in gilts fed 60 to 90 ppm Z, but two gilts given 60 ppm Z had remnants of fetal membranes in the uterus. The histologic appearance of reproductive tract tissues from the gilts given 60 ppm Z was similar to that from pregnant gilts. Tissues from gilts given 90 ppm Z appeared to be stimulated by both estrogen and progesterone. Serum concentrations of progesterone were decreased at 2, 3 and 6 wk postbreeding in gilts fed 60 and 90 ppm Z. Serum concentrations of estradiol-estradiol-17 beta were decreased at 4 wk postbreeding in gilts fed 60 and 90 ppm Z.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Chronic supraphysiological blood levels of growth hormone (GH) may retard sexual maturation in swine. Pigs used in this study included four founder transgenic pigs (two gilts and two boars) expressing a mouse transferrin (TF) promoter fused to a bovine (b) GH structural gene, 13 second- or third- generation transgenic pigs (seven gilts and six boars) expressing a mouse metallothionein (MT) promoter fused to a bGH structural gene and 16 control littermates (eight gilts and eight boars). Blood plasma levels of LH, FSH, estrone and testosterone were measured to determine whether expression of bGH genes altered secretion of hormones between 80 and 180 days of age. Presence of a bGH gene was detected by hybridization of DNA in dot blots of tail biopsies. Expression of a bGH gene was detected by radioimmunoassay of plasma bGH. In four TFbGH founder transgenic pigs bGH ranged from 164 to 1948 ng/ml; in one MTbGH transgenic boar of line 3104 bGH was 1211 ng/ml; and in 12 pigs of line 3706 bGH ranged from 25 to 190 ng/ml. Expression of bGH in transgenic pigs lowered (P = .0192) plasma LH with no significant differences between sexes, had no significant effect on plasma FSH and lowered plasma estrone (P = .0001) and testosterone (P = .0269) in boars (but not gilts). Plasma estrone and testosterone were higher (P = .0001) in boars than in gilts. Plasma FSH was higher (P = .0001) in gilts than boars and decreased (P = .0001) with advancing age in gilts but not in boars.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Thirty-five ovariectomized pony mares were used to study the relationships among luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) concentrations in blood (secretion), in pituitary (storage) and in blood after secretagogue administration, as well as the content of gonadotropin releasing hormone (GnRH) in hypothalamic areas, under various conditions of steroidal and nonsteroidal treatment. Five mares each were treated daily for 21 d with vegetable shortening (controls), testosterone (T; 150 micrograms/kg of body weight, BW), dihydrotestosterone (DHT; 150 micrograms/kg BW), estradiol (E2; 35 micrograms/kg BW), progesterone (P4; 500 micrograms/kg BW), dexamethasone (DEX; 125 micrograms/kg BW) or charcoal-stripped equine follicular fluid (FF; 10 ml). Secretagogue injections (GnRH and thyrotropin releasing hormone, TRH, at 1 and 4 micrograms/kg of BW, respectively) were given one d prior to treatment and again after 15 d of treatment. Relative to controls, treatment with T, DHT and DEX reduced (P less than .05) LH secretion, storage and response to exogenous GnRH, whereas treatment with E2 increased (P less than .05) these same characteristics. Treatment with P4 reduced (P less than .05) only LH secretion. Treatment with T, DHT, E2 and DEX reduced (P less than .05) FSH secretion, whereas treatment with P4 increased (P less than .05) it and FF had no effect (P greater than .1). All treatments increased (P less than .05) FSH storage, whereas only treatment with T and DHT increased (P less than .05) the FSH response to exogenous GnRH. Other than a brief increase (P less than .05) in PRL secretion in mares treated with E2, secretion of PRL did not differ (P greater than .1) among groups. Only treatment with E2 increased (P less than .01) PRL storage, yet treatment with T or DHT (but not E2) increased (P less than .05) the PRL response to exogenous TRH. Content of GnRH in the body and pre-optic area of the hypothalamus was not affected (P greater than .1) by treatment, whereas treatment with T, E2 and DEX increased (P less than .1) GnRH content in the median eminence. For LH, secretion, storage and response to exogenous GnRH were all highly correlated (r greater than or equal to .77; P less than .01). For FSH, only storage and response to exogenous GnRH were related (r = .62; P less than .01). PRL characteristics were not significantly related to one another. Moreover, the amount of GnRH in the median eminence was not related (P greater than .1) to any LH or FSH characteristic.  相似文献   

15.
Cyclic gilts from Control (C, randomly selected, n = 11) and Relax Select (RS, nine generations of selection for increased ovulation rate followed by seven generations of relaxed or random selection, n = 9) lines of the University of Nebraska Gene Pool population (derived from 14 different breeds) were utilized to characterize differences in gonadotropic and ovarian steroid hormones during preovulatory and postovulatory phases of the estrous cycle. Blood samples were collected during four periods (0500, 1100, 1700 and 2300) daily beginning 2 d prior to anticipated estrus (d -2, d 18 of a 20-d estrous cycle), and continuing through d 4 postestrus (d 0 = 1st of standing estrus). Sampling within a period consisted of five blood samples at 15-min intervals. All plasma samples were analyzed for concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH). Neither mean LH nor peak concentration of LH during the preovulatory surge differed between genetic lines (P greater than .10). Concentrations of FSH increased faster (line X period, P less than .05) and tended (P less than .1) to peak at a higher concentration in RS (.88 ng/ml) than in C (.54 ng/ml) gilts (P less than .05) during the 12 h preceding the FSH and LH preovulatory peaks. The second FSH surge began approximately 24 h after the preovulatory FSH peak. Peak FSH concentrations were observed at 42 h in both lines (1.46 vs 1.74 ng/ml for C and RS gilts, respectively). The higher FSH concentration in RS gilts established during the preovulatory surge was maintained through the second FSH surge (P less than .01). No line differences were detected in plasma concentrations of estradiol-17 beta and progesterone.  相似文献   

16.
We investigated the in vivo and in vitro effect of prolactin (PRL) on porcine adrenal cortex function. The in vivo study was performed on 10 multiparous sows. Blood was sampled every 4 h beginning on the 17th day of the estrous cycle and continuing for 6 subsequent days. Plasma was stored at -20 degrees C until steroid hormones analysis was completed. PRL or saline were administered iv for 48 h in 2 h intervals. Injections of PRL began 4-20 h after the preovulatory LH surge. At the end of the sampling period sows were slaughtered and adrenals were immediately dissected. Adrenals were frozen at -70 degrees C for determination of adrenal cortex steroid hormones content. At the end of PRL treatment period mean plasma level of cortisol in control sows was significantly lower than that of PRL-treated sows. Moreover, the area under the mean plasma cortisol concentration curve was significantly higher in PRL-treated sows in comparison to controls. The mean cortisol adrenal content was significantly higher in adrenal cortex of PRL-treated sows than that of controls. PRL did not affect adrenal cortex concentration of androstenedione (A(4)), testosterone (T), dehydroepiandrosterone (DHEA) and estradiol (E(2)). Dehydroepiandrosterone sulfate (DHEAS) was not found in porcine adrenal cortex. In the in vitro experiment adrenal glands were removed immediately after slaughter of 6 crossbred gilts. Dispersed adrenocortical cells were incubated for 8 h with or without porcine PRL. Prolactin stimulated cortisol secretion in a dose-dependent manner. These results suggest that PRL is one of the key factors involved in the regulation of adrenal cortex function in pigs.  相似文献   

17.
1. ISA Brown pullets were transferred at 6, 9, 12, 15, 18 or 20.3 weeks of age from an 8 h photoperiod to an 8, 10, 13 or 16 h photoperiod. Plasma follicle stimulating hormone (FSH) concentration was measured at transfer at 7 and 14 d afterwards, and age at first egg (AFE) was recorded. 2. Plasma FSH concentration in pullets reared on constant 8 h photoperiods generally increased with age but with a trough at 12 weeks. Plasma FSH increased during the first 14 d of photostimulation to a significantly higher concentration, compared with constant 8 h controls, when the photoperiod was increased to 13 or 16 h at 9, 12 or 15 weeks; but for the increase from 8 h to 10 h photoperiods FSH was only significantly higher than controls when the change was made at 12 weeks. 3. The change in plasma FSH concentration 14 d after photostimulation was significantly correlated with mean AFE (reported in Lewis et al., 1997) and appears to be a better predictor of gonadal development than concurrent changes in plasma LH concentration previously reported (Lewis et al., 1994).  相似文献   

18.
1. ISA Brown pullets were transferred from 8 to 14 h or from 14 to 8 h photoperiods at 35 or 56 d of age. Controls were maintained on constant 8 or 14 h photoperiods from day 1. 2. Blood samples were obtained immediately before each daylength change and subsequently at 7 d intervals until 1st egg in the treated groups and at 70 d of age and then at 14 d intervals until 1st egg in the constant photoperiod controls. Plasma luteinising hormone (LH) and follicle stimulating hormone (FSH) concentrations were determined using homologous radioimmunoassays. 3. Prior to 16 weeks, LH was consistently higher in birds on constant 14 h photoperiods than in those on constant 8 h, but was down-regulated as birds approached maturity so that LH concentrations in the 2 groups were similar during the final 10 d before the first egg was laid. FSH concentrations rose steadily with age but with a tendency for concentrations to be higher in the 8 h than in the 14 h treatment. Birds on constant 8 h daylengths matured 18.3 d later than those on constant 14 h photoperiods. 4. A 6 h increment in photoperiod given at 35 d or 56 d, resulted in an increase in LH within 7 d in both cases. FSH concentration did not respond to an increase in photoperiod at 35 d but rose following the same increase at 56 d. This was associated with a 3-week advance in sexual maturity, whilst age at 1st egg in birds photostimulated at 35 d was similar to the age with a constant 14 h photoperiod. 5. LH concentration fell when photoperiod was reduced from 14 to 8 h at either 35 or 56 d and remained below the constant 8 h controls for many weeks before rising to a concentration not significantly different from other groups in the final 10 d before 1st egg. FSH concentrations in birds exposed to a decreased daylength at 35 d, although more oscillatory, were similar to the constant 8 h photoperiod controls. In birds exposed to the same decrease at 56 d, FSH concentration initially tumbled but was similar in the 2 groups during the latter stages of rearing; neither differed significantly from the constant daylength controls during the 60 d before 1st egg. Sexual maturity in both groups given a reduction in photoperiod was delayed by about 2 weeks compared with constant 8 h controls. 6. Change in FSH concentration following an increase in daylength was a better predictor of age at 1st egg than change in LH. However, FSH concentrations after 14 weeks of age were rather similar in short day and long day controls and in the 2 groups given reductions in photoperiod at 35 d and 56 d, despite differences of nearly 5 weeks in mean age at 1st egg amongst these 4 treatments.  相似文献   

19.
Morphine (M), an opioid agonist, was administered to postpartum (PP) Angus cows to investigate opioid modulation of gonadotropin secretion. In Exp. 1, eight PP cows (36.9 +/- 2.3 d) received either M (1 mg/kg; n = 4) or saline solution (S) (n = 4) via i.v. injection 36 h after calf removal. Morphine decreased (P less than .01) the number of serum LH pulses (3.0 +/- 1.1 pre- vs .3 +/- .3 post-pulses/h) and, compared with pretreatment values (3.3 mg/ml), decreased (P less than .05) mean LH at 105 min (2.1 ng/ml) through 270 min 1.9 ng/ml +/- .4). Serum prolactin (PRL) increased (P less than .01) following M from 16.4 ng/ml to a peak of 59.3 ng/ml (+/- 3.9). Serum FSH concentrations were unaffected. In Exp. 2, M (.31 mg/kg i.v. injection followed by .15 mg/(kg.h) infusion; n = 6) or S (n = 6) treatments were given for 7 h beginning 36 h after calf removal. Serum LH was similar between groups during the pretreatment and the first 6 h of infusion, but M decreased (P less than .001) the number of serum LH pulses (.44 +/- .09 vs .06 +/- .04 pulses/h). Morphine increased (P less than .05) serum PRL. It is concluded that M differentially modulated gonadotropin secretion in the cow such that PRL increased, LH decreased and FSH was unchanged.  相似文献   

20.
This study investigated the responsiveness of the pituitary-ovarian axis of prepubertal gilts to hourly injections (i.v.) with GnRH. Six gilts each at 70, 100, 150, and 190 d of age were assigned either to treatment with GnRH or saline. Treatments were given until gilts showed estrus or for 7 d, whichever came first. Hourly pulsing with GnRH resulted in gradually increasing concentrations of estradiol-17 beta (E2), a preovulatory surge of LH, and subsequently increased progesterone (P4) concentrations. The increase in serum P4 was preceded by ovulation and corpora lutea (CL) formation in two gilts 70 d of age and all older gilts. The interval (h) from start of GnRH treatment to peak E2 (88 +/- 3), peak LH (103 +/- 3), and concentrations of P4 greater than or equal to 1 ng/mL (144 +/- 4) did not differ (P greater than .50) for 18 gilts between 100 and 190 d of age. In two ovulating, 70-d-old gilts, the interval from onset of GnRH treatment to peak E2 (171 +/- 6), peak LH (186 +/- 0), and P4 greater than or equal to 1 ng/mL (216 +/- 4) was lengthened (P less than .001). Peak concentrations of E2 (pg/mL) were higher (P less than .01) at 190 d (48 +/- 2) and 150 d (49 +/- 2) than at younger ages and lower (P less than .01) in gilts 70 d of age (31 +/- 1) than in gilts 100 d of age (41 +/- 2). Peak LH (nanograms/milliliter) was higher (P less than .01) in gilts 100 d of age (12.7 +/- 6) than in older gilts. Concentrations of P4 were similar (P greater than .20) for all ovulating gilts. The number of CL (12.7 +/- .7) did not differ (P greater than .20) for 18 gilts 100 d of age or older but was higher (P less than .01) than that (4.5 +/- 1.1) for two gilts 70 d of age. Corresponding endocrine responses or ovulations were not observed in four 70-d-old gilts treated with GnRH or in gilts given saline. These findings indicate that the functional integration of the pituitary-ovarian axis is completed between 70 and 100 d of age. Hourly treatment with GnRH is an adequate stimulus to induce ovulation in prepubertal gilts as early as 70 d of age. Also, the number of follicles reaching ovulatory competency was similar (P greater than .20) in gilts between 100 and 190 d of age, when GnRH was given on a BW basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号