首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了探讨施用保水剂对干旱胁迫下大麦幼苗生长及光合特性的影响,给保水剂在大麦抗旱栽培中的应用提供理论依据。采用盆栽法通过测定在不同干旱胁迫下大麦幼苗根长、茎长、叶片相对含水量、叶片光合参数、叶绿素含量等指标,结果表明,在同等水分条件下,施用保水剂可增加大麦幼苗根长、茎长及叶片相对含水量,显著增加大麦幼苗叶片的净光合速率、气孔导度、胞间CO2浓度、蒸腾速率,说明保水剂可以通过保持大麦叶片较高的光合特性来增强其碳同化能力,进而促进大麦幼苗的生长。且施用保水剂后大麦幼苗叶绿素含量得到显著提高,从而减小了干旱胁迫对植株带来的损害,延缓植株衰老。施用保水剂可以较好地促进干旱胁迫下大麦幼苗的生长发育。  相似文献   

2.
Drought is one of the major environmental stresses altering forest productivity. However, nutrient availability can modulate drought resistance. Phoebe zhennan (gold Phoebe) is a high‐quality timber‐producing but threatened tree species in China, facing serious anthropogenic disturbances and abiotic constraints that restrict its growth and development. However, little attention has been given to designing adaptive strategies for its management by evaluating the possible role of major nutrients, particularly nitrogen (N), on its morphological and physio‐biochemical responses under water stress. To evaluate these responses, a complete randomized design was followed to investigate the effects of two irrigation levels (well‐watered and drought‐stressed conditions) and N fertilization treatments (with and without N). Drought stress significantly affected the growth of seedlings, as indicated by impaired photosynthesis, pigment degradation, disrupted N metabolism, over‐production of reactive oxygen species and enhanced lipid peroxidation. Nitrogen supplementation under drought stress had remarkable positive effects on the growth through physio‐biochemical adjustments as shown by higher level of nitrogenous compounds and up‐regulation of N‐associated metabolic enzymes activities which might be due to N‐mediated improved leaf relative water contents and photosynthetic efficiency. In addition, N application reduced oxidative stress and membrane damage, and maintained a high accumulation of osmolytes. However, in well‐watered seedlings N fertilization significantly improved root biomass and net CO2 assimilation rate suggesting high N‐use efficiency of the seedlings. These findings reveal that drought significantly affects the growth of P. zhennan, while N fertilization plays a crucial role in alleviating water stress damage by improving its drought tolerance potential at low metabolic costs. Therefore, N fertilization could be considered as an effective strategy for the conservation and management of P. zhennan in the face of future climate change.  相似文献   

3.
The resistance of most plants to salt can be impaired by concurrent waterlogging. However, few studies have examined this interaction during germination and early seedling growth and its implications for nutrient uptake. The aim of the study was to examine the response of germination, early growth, and nutrient uptake to salt (NaCl) and hypoxia applied to barley (Hordeum vulgare L. cv. Stirling), in solution culture. Hypoxia, induced by covering seeds with water, lowered the germination from 94% to 28% but salinity and hypoxia together lowered it further to 13% at 120 mM NaCl. While the germination was 75% at 250 mM NaCl in aerated solution, it was completely inhibited at this NaCl concentration under hypoxia. Sodium ion (Na+) concentrations in germinated seedlings increased with increasing salinity under both aerated and hypoxic conditions during germination, while K+ and Mg+ concentrations were decreased with increasing salinity in 6 d old seedlings. After 20 d, control seedlings had the same dry weights of the roots and shoots with and without hypoxia but at 10 mM NaCl and higher, shoot and root dry weight was depressed with hypoxia. Sodium ion increased in roots and shoots with increased NaCl under both aerated and hypoxic conditions while K+ was depressed when salinity and hypoxia were applied together and Ca2+ was mostly decreased by NaCl. In general, hypoxia had greater effects on nutrient concentrations than NaCl by decreasing N, P, S, Mg, Mn, Zn, and Fe in shoots and by increasing B concentrations. The threshold salinity levels decreased markedly for germination, uptake of a range of nutrients, and for seedling growth of barley under hypoxic compared to well‐aerated conditions.  相似文献   

4.
The increasing frequency of dry periods in many regions of the world and the problems associated with salinity in irrigated areas frequently result in the consecutive occurrence of drought and salinity on cultivated land. Currently, 50% of all irrigation schemes are affected by salinity. Nutrient disturbances under both drought and salinity reduce plant growth by affecting the availability, transport, and partitioning of nutrients. However, drought and salinity can differentially affect the mineral nutrition of plants. Salinity may cause nutrient deficiencies or imbalances, due to the competition of Na+ and Cl with nutrients such as K+, Ca2+, and NO . Drought, on the other hand, can affect nutrient uptake and impair acropetal translocation of some nutrients. Despite contradictory reports on the effects of nutrient supply on plant growth under saline or drought conditions, it is generally accepted that an increased nutrient supply will not improve plant growth when the nutrient is already present in sufficient amounts in the soil and when the drought or salt stress is severe. A better understanding of the role of mineral nutrients in plant resistance to drought and salinity will contribute to an improved fertilizer management in arid and semi‐arid areas and in regions suffering from temporary drought. This paper reviews the current state of knowledge on plant nutrition under drought and salinity conditions. Specific topics include: (1) the effects of drought and salt stress on nutrient availability, uptake, transport, and accumulation in plants, (2) the interactions between nutrient supply and drought‐ or salt‐stress response, and (3) means to increase nutrient availability under drought and salinity by breeding and molecular approaches.  相似文献   

5.
为了比较不同烤烟品种的苗期耐旱性差异,选用河南烟区主栽烤烟品种‘豫烟6号’、‘豫烟10号’、‘豫烟12号’和‘中烟100’为供试材料,利用浓度为15%的聚乙二醇(PEG-6000)模拟中度干旱环境,研究不同烤烟品种幼苗生物量、根系形态、叶片气孔特征、叶绿体超微结构和光合参数等指标对干旱胁迫响应机制的差异。结果表明:(1)干旱刺激了幼苗根系生长,抑制了地上种幼苗根冠比均显著提高;‘豫烟6号’和‘豫烟12号’幼苗根系生物量、总根长、根系表面积和根系体积均显著增加,但根系平均直径与对照无显著性差异;而‘豫烟10号’和‘中烟100’根系形态指标增加幅度较小,仅有‘豫烟10号’根系表面积显著增加,而根系平均直径均显著下降。(2)干旱引起‘中烟100’叶片气孔总面积比对照显著增加,‘豫烟12号’仅有气孔长度比其对照增加显著。(3)干旱处理后,‘豫烟6号’和‘豫烟12号’叶绿体整体结构变化不大,而‘豫烟10号’和‘中烟100’中叶肉细胞叶绿体被膜分解,与细胞壁分离;其中‘中烟100’叶绿体平均长度、长宽比和面积均显著降低。(4)与对照相比,干旱组叶片光合作用被抑制,其中‘豫烟10号’和‘中烟100’叶片净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)均显著下降,而胞间CO2浓度(Ci)显著上升,说明干旱胁迫下烤烟光合速率下降是非气孔因素所致。(5)干旱胁迫后‘豫烟6号’和‘豫烟12号’叶片叶绿素总量显著增加,而‘豫烟10号’和‘中烟100’却呈下降趋势。结果表明,‘豫烟6号’和‘豫烟12号’是耐旱型品种,而‘豫烟10号’和‘中烟100’抗旱性较差,抗旱能力排序为‘豫烟6号’‘豫烟12号’‘豫烟10号’‘中烟100’。  相似文献   

6.
The possibility to use membrane‐lipid measurements to screen barley genotypes for salt resistance was studied. The results showed that wild barley (Hordeum maritimum) displayed a typical halophytic response as compared to cultivated barley (Hordeum vulgare L. cv. Manel). Growth, tissue hydration, and photosynthetic activity were less affected by salinity in H. maritimum than in H. vulgare. The induced effects of long‐term NaCl treatment were reflected in root membrane lipids that remained relatively unchanged in wild barley, whilst they were significantly diminished with increasing salinity in H. vulgare. The levels of membrane‐lipid peroxidation and electrolyte leakage were changed only at high salt concentrations in H. maritimum whereas those of H. vulgare were considerably increased by lower salinity levels as a result of oxidative damage. These findings indicate that maintained membrane integrity (in H. Maritimum) may be considered a possible trait for salt resistance. However, membrane fluidity in H. vulgare was more increased than in H. maritimum. Thus, the unsaturated–to–saturated fatty acid ratio (UFAs : SFAs) and the double‐bond index (DBI), significantly increased in response to salt stress in cultivated barley while it did not change in H. maritimum. The changes in lipid unsaturation were predominantly due to increases in linolenic (C18:3), linoleic (C18:2), and oleic (C18:1) acids and decreases in stearic acid (C18:0). These results suggest that, in spite of being important for maintenance of membrane fluidity, the ability to increase unsaturation is not a determinant factor for salt resistance in barley species.  相似文献   

7.
In future, prolonged summer drought and heat will constitute a major risk for the cultivation of shallow‐rooting beech in Central Europe and will negatively affect the productivity of beech forests. In a pot experiment under controlled conditions, the influence of long‐term (28 d) water deprivation on nitrogen (N), carbon (C), phosphate (Pi), and ascorbate (ASC) concentrations was examined in leaves and fine roots of beech seedlings (Fagus sylvatica L.) from six provenances originating from Central Europe (Germany: Neidenstein and Illertissen, intermediate habitats), the Balkan peninsula (Croatia: Zagreb and Gospic, wet habitats), and Southeast Europe (Bulgaria: Kotel, Greece: Paikos; dry habitats). The goal of the study was to identify beech provenances well adapted to water limitation during summer drought events. Our results suggest that N might be involved in the alleviation of water scarcity, whereas Pi might become a limiting factor for forest growth during drought periods. Drought stress resulted in significant changes of ASC pools in leaves and fine roots and the ASC redox state. Under well‐watered and under drought conditions, ASC in leaves was the most important factor causing differences between the provenances examined. Finally, a link between P nutrition and the capacity of antioxidative stress defense by ascorbate could be highlighted. Based on observations from this study, beech seedlings from three origins (Paikos, Zagreb, and Neidenstein) might constitute beech provenances well adapted to water shortage in summer. This conclusion is drawn from the high potential of these provenances to alleviate oxidative stress during water shortage.  相似文献   

8.
Late-terminal drought stress during grain filling has recently become more common in the semi-arid Mediterranean region, where barley (Hordeum vulgare L.) is grown as an important winter cereal crop. Little information is available in the literature about the effect of late-terminal drought stress on seed germination and vigor of barley. The objective of this experiment was to study the effect of late-terminal drought stress on seed germination and vigor of barley as estimated by the germination after accelerated aging test. Drought stress reduced grain yield of barley. Grain yield was correlated positively with leaf gross photosynthetic rate and negatively with leaf osmotic potential. Late-drought stress had no effect on standard germination, but reduced the germination after the accelerated aging test. These data suggested that late-terminal drought stress had a greater effect on seed vigor than standard germination in barley.  相似文献   

9.
烟草是重要的模式植物和经济作物,盐害和干旱两种环境因子对其生长发育、产量和品质都危害很大。为了提高烟草的耐盐抗旱性,本研究利用农杆菌介导的遗传转化法在烟草中过量表达了碱蓬液泡膜Na~+/H~+逆向转运基因SsNHX1,对转基因烟草的耐盐及抗旱性进行表型鉴定和各项生化指标的检测,以期得到耐盐抗旱表性良好的SsNHX1转基因烟草。表型分析发现,SsNHX1基因过表达株系L1和L5的抗盐能力比野生型显著提高,表现为盐胁迫条件下仍能保持旺盛的生长且根系的伸长未受抑制。SsNHX1过表达株系在叶片和根系中积累了更多的Na~+和K~+,同时Na~+含量增长速率较快,而K~+含量降低速率较缓,并可维持较高的叶片相对含水量和叶绿素含量,及较低的丙二醛含量和相对电导率。干旱胁迫发现,过表达株系受干旱胁迫程度更小,并在复水后迅速恢复正常生长。同时,过表达株系的丙二醛含量和相对电导率显著低于野生型,且维持了较高的叶片相对含水量及叶绿素含量。这些结果说明SsNHX1基因在烟草中过量表达后,降低了盐胁迫和干旱胁迫对烟草根系及细胞膜的损伤,并通过调节离子含量、降低细胞的渗透势,维持了叶片较高的相对含水量和叶绿素含量,最终提高了烟草的抗盐和抗旱性。  相似文献   

10.
利用高寒草甸生荒地进行当归育苗的传统方式造成严重的水土流失。为了探讨农茬口调控土壤特性继而影响后茬当归育苗的效应,在道地产区甘肃省卓尼县熟地培育农作物茬口后进行当归育苗,测定育苗期土壤特性、成苗数和产量。结果表明,农茬口对后茬当归育苗田土壤特性具有显著影响,与休耕茬田比较,马铃薯、油菜、蚕豆茬田土壤电导率极显著降低, pH显著提高,青稞茬田土壤pH和电导率均降低,农茬口极显著提高了后茬土壤阳离子含量,降低了阴离子含量。各茬口土壤K~+含量依次为青稞蚕豆油菜马铃薯休耕, Na~+含量为马铃薯青稞蚕豆油菜和休耕, Cl~-含量为休耕马铃薯青稞油菜蚕豆。随土层加深,紧实度增加,孔隙度减少,含水量随土层和茬口而异。0~15 cm土层的土质疏松且含水量高则有利于保苗。当归成苗数和苗产量与土壤电导率、Cl~-含量均呈显著负相关;苗产量与pH、K~+含量呈显著正相关,与5~10 cm土层容重呈显著负相关;苗数与0~5 cm土层总孔隙度呈显著正相关。各茬口育成苗产量排序与综合评价指数顺序一致,综合评价指数依次为蚕豆(0.986)油菜(0.682)青稞(0.668)马铃薯(0.297)休耕(0.159)。因此,优异的茬口特性可优化当归幼苗赖以生存的农田土壤环境,改善土壤性质,富集营养,促生保苗,蚕豆茬口更为优异。  相似文献   

11.
Low‐input production of barley on the predominantly calcareous soils in most countries of West Asia and North Africa is affected by drought and a low availability of P and Zn. Especially during the early growth stages, P and Zn deficiencies retard seedling growth, rendering the young plantlets particularly sensitive to the frequently encountered dry spells. Seed priming (soaking in water and drying back to storage moisture until use) has been shown to improve crop establishment and, in some instances, to increase crop yields. While increased seedling vigor will improve barley establishment, possible benefits are likely to be limited when P and Zn are deficient. A promising variation of the priming concept is the seed treatment with solutions containing the limiting nutrient. A series of experiments was conducted in a phytotron in 2003 to develop a nutrient‐priming approach to foster the establishment of barley under marginal growing conditions. Seeds of the traditional barley cultivar Arabi aswad were soaked for 0–48 hours in water and for 12 hours in solutions containing 5–500 mM P, Zn, and P+Zn, and dried back to 12% moisture until further use. Seeds were incubated at 10°C, and germination was evaluated over a 6‐ to 8‐day period. Additionally, growth and nutrient uptake of 4‐week‐old seedlings, grown at 25% and 100% field capacity in a typical Xerosol from Syria were evaluated. Water priming for 12 hours with subsequent seed storage of up to 9 weeks increased germination rate from 65% to 95%, and advanced germination by up to 3 days compared to unprimed seeds. Addition of 10 mM Zn and 50 mM P to the priming solution increased the P and Zn content of the seeds without affecting germination. It furthermore significantly stimulated growth and P and Zn uptake by 4‐week‐old seedlings and improved the water use efficiency of drought‐stressed plants by 44% above that of unprimed seeds.  相似文献   

12.
13.
Tonoplast Na+/H+ antiporters increase the salt resistance of various plant species, but very little is known about the role of these antiporters in the salt resistance of trees. Understanding the physiological responses of plants to salinity stress is of paramount importance in examining the salt resistance of transgenic plants. In this study, the wild‐type poplar (WT; Populus × euramericana var. Neva) and its transgenic varieties (TR) that overexpress the AtNHX1 gene were exposed to various seawater concentrations (0%, 10%, 20%, and 30%) for 30 d to determine the effects of seawater on seedling growth, ion content, and photosynthetic productivity. Results show that TR plants grew much better than WT under saline conditions. Differences between WT and TR in most parameters were significant after 30 d exposure to 20% and 30% seawater concentrations. The dry weight of TR was higher than that of WT for each seawater treatment. Transgenic variety was able to maintain higher photosynthetic ability than WT upon exposure to salinity and maintained higher K+ concentrations and K+ : Na+ ratio but had less Cl compared with WT. This suggests that AtNHX1 has a critical role in the regulation of K+ homeostasis, which in turn affects plant K+ nutrition and salt resistance.  相似文献   

14.
ABSTRACT

The comparative effects of drought stress on seed performance, growth parameters, free proline content, lipid peroxidation, and several antioxidative enzymes activities were studied in both cultivars of Brassica napus L. Drought stress increased mean germination rate and mean of day germination in both cultivars, and its effect was more pronounced in RGS003. The length and dry weight of root increased significantly in both cultivars under drought. RGS003 was more tolerant and obtained more biomass under drought than that of Sarigol. Proline content and pyrroline-5-carboxylate synthetase expression increased in Sarigol under drought. Measurement of malondialdehyde content in seedlings showed that lipid peroxidation was lower in RGS003 than in Sarigol. Antioxidant enzyme activities showed different trends in the two cultivars under drought stress but were higher in RGS003 than in Sarigol. These results suggest that RGS003 is better protected against drought-induced oxidative damage. Lipoxygenase activity only induced under water deficit condition in RGS003. Changes of respiratory enzymes activities of RGS003 subjected to drought stress showed a pattern different with Sarigol. Drought stress induced aconitase activity in RGS003, but it reduced fumarase and succinate dehydrogenase activity in Sarigol. This study showed that RGS003 exhibits a better protection mechanism against oxidative damage and RGS003 is more drought-tolerant than Sarigol possibly by maintaining and/or increasing growth parameters, antioxidant enzyme activities, and respiratory enzymes activities.  相似文献   

15.
干旱胁迫及复水对豌豆根系内源激素含量的影响   总被引:5,自引:1,他引:4  
采用盆栽试验方法,研究了干旱胁迫及复水对豌豆根系脱落酸(ABA)、吲哚乙酸(IAA)、赤霉素(GA)和玉米素(ZT)等4种内源激素含量的影响.结果表明:不同程度的干旱胁迫均导致各生育期豌豆根系ABA和IAA含量增加,GA和ZT含量减少,且随干旱胁迫程度的加重变化量增大.同时对各生育期豌豆根系内源激素比例产生影响,对ZT与ABA、GA与ABA、GA与IAA、ZT与IAA比例影响较大,对ZT与GA、IAA与ABA比例影响较小.旱后复水可对各生育期豌豆根系内源激素含量产生补偿效应,其补偿量决定于豌豆生育时期、干旱胁迫强度和复水历时.同时促进各生育期豌豆根系内源激素比例发生变化.  相似文献   

16.
This greenhouse study tested the effect of smoke‐water and the smoke‐isolated biologically active compound karrikinolide (KAR1) on growth and photosynthetic pigments of Jatropha curcas L. seedlings. Fifteen‐day‐old seedlings were sprayed once weekly for 5 weeks with three dilutions of smoke‐water (1 : 250, 1 : 500, and 1 : 1000 v/v) or KAR1 (10–7, 10–8, and 10–9 M). Growth parameters and photosynthetic pigment concentrations of 75‐d‐old seedlings were measured. Foliar application of both smoke‐water and KAR1 on J. curcas seedlings showed significant increases in stem width, shoot length, chlorophyll a, chlorophyll b, total chlorophyll, and total carotenoid concentrations compared to the untreated control. KAR1 significantly improved leaf area, shoot and root dry mass, seedling‐vigor index, and photosynthetic pigments as compared to control treatments. These results suggest the possible use of smoke‐water and KAR1 to achieve a vigorous and well established crop of J. curcas.  相似文献   

17.
Drought is an important limiting factor which can cause major loss in barley productivity. A field experiment was conducted to investigate the effects of irrigation regimes on assimilate remobilization and photosynthetic characteristics of five barley cultivars in 2012 and 2013. There were four levels of irrigation including well-watered [soil moisture content in root depth kept at 100% field capacity (FC)], mild drought (75% FC), severe drought (50% FC), and very severe drought (25% FC). Results showed that Karoon and Valfajr cultivars had the maximum net photosynthetic rate (Pn) ranged from 16.3 to 19.3 µmol CO2 m?2 s?1 under very severe drought. Stomatal conductance (gs) was affected by drought so that Karoon and Valfajr had the lowest gs under severe and very severe drought. By improving the drought, remobilization efficiency in Karoon and Valfajr increased from 18.3% in well-watered to 54.1% under severe drought. In both years under severe and very severe drought, maximum 1000-grain weight and grain yield was obtained in Valfajr and Karoon. Overall, in arid areas, applying suitable irrigation regimes such as mild or severe drought can control soil drying, so that suitable cultivars such as Karoon and Valfajr can rehydrate overnight, and yield might not be inhibited severely.  相似文献   

18.
Efficacy of 1?mM humic (HA) and salicylic (SC) acids on SC 260 and SC 705 corn seedlings to alleviate drought stress via polyethylene glycol was studied via hydroponics at Shiraz University, Iran in a factorial, randomized design, with four replicates each. Under stress, SC 260 had higher electrolyte leakage compared to SC 705, and exogenous application of HA combined with SA decreased SC 705 electrolyte leakage. As a general trend, photosynthetic pigment content, relative water content, root and shoot length, mean number and diameter of central and peripheral root metaxylem, and K+ accumulation were higher in SC 705 treated with HA and SA compared to SC 260. Application of HA with SA could be an effective and low cost approach to ensure seedling establishment and plant growth in fields affected by soil drought in the early season, especially for the SC 705 corn hybrid in semi-arid regions.  相似文献   

19.
Development of crop cultivars with high yield under low nitrogen (N) supply is a basic approach for the enhancement of agricultural sustainability. The previous studies showed that Tibetan wild barley shows wider genetic diversity in abiotic stress and poor fertility tolerance. In this study, four barley genotypes (two Tibetan wild and two cultivated), differing in N use efficiency (NUE), were characterized for their growth and physiological responses to low N stress. The genotypes ZD9 (cultivated) and XZ149 (wild) with high NUE performed better in terms of shoot dry weight (DW) and photosynthetic parameters under both low and normal N levels and had higher antioxidative enzyme activities, N concentration, and accumulation in both shoots and roots under low N stress. The current results showed the substantial difference among barley genotypes in low N tolerance and verified the significance of Tibetan wild barley in the genetic improvement of cultivated barley in NUE.  相似文献   

20.
The excretion of phytosiderophores by barley (Hordeum vulgare L.) has recently been documented and a major difference in the Fe‐stress response of gramineous species and dicotyledonous species proposed. However, currently used methods of quantifying and measuring phytosiderophore are tedious or require specialized equipment and a cultivar easily accessible to U.S. scientists is needed. The objectives of this study were (a) to determine if “Steptoe”; and “Europa”; (used as a control cultivar) barleys would release Fe3+ solubilizing compounds in response to Fe‐deficiency stress and (b) to develop a technique to determine the efficiency of solubilization of Fe(OH)3 by the released chelating substances. Two cultivars of barley were place under Fe‐stressed (‐Fe) and nonstressed (+Fe) conditions in modified Hoagland solutions (14 L). The solutions were periodically monitored for H+ and reductant release from the roots and plants were rated daily for chlorosis development. Periodic (6 or 7 harvests) evaluation of the release of Fe3+ solubilizing substances was performed as herein described. Neither H+ nor reductant extrusion occurred with either cultivar during Fe stress. However, Fe3+ solubilizing substances were released by both cultivars at relatively high levels under Fe‐stress conditions compared to the nonstressed plants. A convenient technique was developed to measure the release of Fe solubilizing substances released by barley roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号