首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Isolated trees may significantly enhance biodiversity at the landscape level. However, our understanding of their impacts is still poor, particularly in environments with high soil moisture where research on this topic has been comparatively limited. We examined understorey vegetation and soil oribatid mite assemblages under live and dead Scots pine trees and in open treeless areas, all within the same Scottish upland wet heath system, to determine whether isolated live trees affected the understorey and mite components of the ecosystem, and whether these effects occurred in parallel. We also explored whether these responses might result from tree-driven reductions in soil moisture content. Live trees reduced soil moisture (relative to wet heath and beneath dead trees) and appeared to change vegetation from wet heath to dry heath type communities. These effects were strongly related to tree trunk diameter (tree size). No major effects of dead trees on understorey vegetation or soil moisture were apparent. Higher mite species abundance and richness were found under live trees than in treeless open heath. Although mite abundances were lower under dead trees than live trees, richness remained similar, thus different factors seem to be regulating mite abundance and community composition. These findings indicate that landscape-level biodiversity responses to environmental change such as habitat fragmentation cannot be predicted from vegetation patterns alone, and that even in heavily fragmented landscapes comparatively small patches such as isolated individual trees can enhance biodiversity.  相似文献   

2.
The importance of biodiversity conservation is well recognized, and the loss of biodiversity is particularly evident in highly urbanized areas. On the other hand, green spaces inside cities, as parks, can provide a resource for maintaining and increasing biodiversity, especially for bird species. However, only a few studies have addressed the effects of vegetation structure and land use composition on different components of biodiversity.Here, we explored the response of bird community composition to environmental differences related to land use composition and vegetation structure in green spaces in the city of Beijing, China. We compared the values of taxonomic diversity, functional diversity and community evolutionary distinctiveness in breeding bird communities, among ten urban parks of the world's third most populous city. Variation partitioning analysis and generalized linear mixed models were used to explore the unique and shared effects of land use composition and vegetation structure on each biodiversity metric.Park size was not associated with the diversity of bird communities in Beijing. Land use composition was the best predictor of change in bird community composition, followed by vegetation structure at ground level and the intersection between land use and vegetation structure at tree level. Water coverage increased bird species richness, while the presence of large trees increased both taxonomic diversity and bird functional richness in urban parks. Finally, the presence of patches of deciduous trees showed a positive effect on the average score of evolutionary distinctiveness of bird communities. In conclusion, we highlight that different elements of the environment are supporting different components of bird community diversity.  相似文献   

3.
Changes in ecosystem structure caused by urbanization produce a reduction in photosynthetic productivity, which can lead to reductions in resource availability for birds. Here, we analyzed the relation between photosynthetic productivity and bird assemblages in a subtropical urban ecosystem, in North-Western Argentina. We used Generalized Linear Models to assess the responses of bird abundance, richness and diversity to photosynthetic productivity, vegetation cover and distance to main natural forest. We found higher bird richness and diversity with increasing photosynthetic productivity and vegetation cover, and with decreasing distance to forests; while total bird abundance was positively related to vegetation cover. When we classified bird species in different groups, based on their use of the environment, we found that species adapted to urban environments were more dependent on photosynthetic productivity, while species related to native forests were more dependent on the distance to source forests. Understanding the factors that affect bird assemblages in cities is important for the development of strategies for urban planning and conservation.  相似文献   

4.
Selective logging of tropical forests imposes spatial pattern on the landscape by creating a mosaic of patches affected by different intensities of disturbance. To understand the ecological impacts of selective logging it is therefore necessary to explore how patterns of tree species composition are affected by this patchy disturbance. This study examines the impacts of selective logging on species composition and spatial patterns of vegetation structure and tree diversity in Sabah, Borneo. We compare tree diversity between logged and unlogged forest at three scales: species richness within plots, species turnover among plots, and total species richness and composition of plots combined. Logging had no effect on tree diversity measured at the smallest scale. Logged forest had a greater rate of species turnover with distance, so at a large spatial scale it supported more tree species than the relatively homogeneous unlogged area. Tree species composition also differed significantly between the two types of forest, with more small dipterocarps and large pioneers in logged forest, and more large dipterocarps in unlogged forest. Our results emphasize the importance of sampling at a sufficiently large scale to represent patterns of biodiversity within tropical forest landscapes. Large areas of production forest in SE Asia are threatened with conversion to commercial crops; our findings show that selectively logged forest can retain considerable conservation value.  相似文献   

5.
Disentangling the confounded effects of edge and area in fragmented landscapes is a recurrent challenge for landscape ecologists, requiring the use of appropriate study designs. Here, we examined the effects of forest fragment area and plot location at forest edges versus interiors on native and exotic bird assemblages on Banks Peninsula (South Island, New Zealand). We also experimentally measured with plasticine models how forest fragment area and edge versus interior location influenced the intensity of avian insectivory. Bird assemblages were sampled by conducting 15?min point-counts at paired edge and interior plots in 13 forest fragments of increasing size (0.5?C141?ha). Avian insectivory was measured as the rate of insectivorous bird attacks on plasticine models mimicking larvae of a native polyphagous moth. We found significant effects of edge, but not of forest patch area, on species richness, abundance and composition of bird assemblages. Exotic birds were more abundant at forest edges, while neither edge nor area effects were noticeable for native bird richness and abundance. Model predation rates increased with forest fragmentation, both because of higher insectivory in smaller forest patches and at forest edges. Avian predation significantly increased with insectivorous bird richness and foraging bird abundance. We suggest that the coexistence of native and exotic birds in New Zealand mosaic landscapes enhances functional diversity and trait complementation within predatory bird assemblages. This coexistence results in increased avian insectivory in small forest fragments through additive edge and area effects.  相似文献   

6.
Understanding the relative influence of environmental and spatial variables in driving variation in species diversity and composition is an important and growing area of ecological research. We examined how fire, local vegetation structure and landscape configuration interact to influence dung beetle communities in Amazonian savannas, using both hierarchical partitioning and variance partitioning techniques to quantify independent effects. We captured a total of 3,334 dung beetles from 15 species at 22 savanna plots in 2003. The species accumulation curve was close to reaching an asymptote at a regional scale, but curves were variable at the plot level where total abundance ranged from 17 to 410 individuals. Most plots were dominated by just three species that accounted for 87.7% of all individuals sampled. Hierarchical partitioning revealed the strong independent and positive effect of percentage forest cover in the surrounding landscape on total dung beetle abundance and species richness, and richness of uncommon species and the tunneler guild. Forest cover also had a negative effect on community evenness. None of the variables that related to fire affected community metrics. The minimal direct influence of fire was supported by variance partitioning: partialling out the influence of spatial position and vegetation removed all of the individual explanation attributable to fire, whereas 8% of the variance was explained by vegetation and 28% was explained by spatial variables (when partialling out effects of the other two variables). Space-fire and vegetation-fire joint effects explained 14 and 10% of the dung beetle community variability, respectively. These results suggest that much of the variation in dung beetle assemblages in savannas can be attributed to the spatial location of sites, forest cover (which increased the occurrence of uncommon species), and the indirect effects of fires on vegetation (that was also dependent on spatial location). Our study also highlights the utility of partitioning techniques for examining the importance of environment variables such as fire that can be strongly influenced by spatial location.  相似文献   

7.
Huston’s Dynamic Equilibrium Hypothesis predicts that the response of biodiversity to disturbance varies with productivity. Because disturbance is thought to break competitive advantage of dominant species in productive ecosystems, species richness is predicted to increase with disturbance frequency in productive systems. Recovery of plant biomass following disturbance is also predicted to be faster in productive systems. Here we provide the first test of Huston’s hypothesis in the context of setting harvest rates in managed forests for achieving biodiversity objectives. We examined predictions relating to vegetation and bird response to disturbance and succession in productive and less productive forests in western Oregon and Washington, USA. We found that measurements of understory cover and shrub diversity were higher in young, productive stands than less productive stands of similar age. Later-seral forests in productive environments (mean age = 67 years) had less variable and more complete canopy closure than similar-age forests in less favorable settings. At the stand scale, bird abundance and richness decreased with canopy closure in highly productive forests whereas bird abundance and richness increased with canopy closure in less productive forests. At the landscape scale, bird abundance and richness within stands increased with increasing levels of disturbance in the surrounding landscape within highly productive forests, whereas bird abundance and richness decreased with increasing disturbance in the surrounding landscape within less productive forests. Our results indicate that bird response to disturbance varies across levels of productivity and suggest that bird species abundance and associated species richness will be maximized through relatively more frequent disturbance in highly productive systems.  相似文献   

8.
Nearctic-Neotropical migratory birds are threatened by land-use change throughout their complex annual cycles. While urbanization is an essential driver of land-use change, it is unclear how it affects migrant birds. Although migratory birds are more diverse in non-urban patches of native vegetation than in urban areas, neotropical cities can host diverse assemblages of overwintering migrant birds. Migratory birds in neotropical cities tend to be closely associated with urban green areas (UGAs). However, how their presence and abundance are affected by the habitat elements of UGAs and the urban matrix of neotropical cities is poorly understood. In this study, we compared the migratory bird species richness and abundances among UGAs and the urban matrix of the southern section of the megacity of Mexico City and native vegetation sites outside the city. Our results show that UGAs in neotropical cities provide habitats capable of maintaining complex overwintering migratory bird assemblages with local trees as critical features. We also assess the role that UGAs' characteristics play in determining migrant bird assemblages. We conducted bird censuses and measured habitat traits to determine how migrant bird assemblages are related to the habitat features of our study sites. We measured local, buffer, and spatial habitat features of each UGA. We found 23 overwintering migrant species in the three habitats, with 22 present within UGAs. Both UGAs and urban matrix sites had higher estimated species richness of migrant birds than non-urban native vegetation sites located outside the city. Only local features of UGAs affected migrant birds. While tree abundance in UGAs was positively associated with migratory bird species richness, the proportion of tree coverage was positively related to bird abundance. Our results show that UGAs in neotropical cities can maintain complex overwintering migratory bird assemblages, with trees being the most critical habitat feature. As a result, UGA management focused on maintaining trees and increasing their numbers can improve habitat conditions for migratory birds overwintering in neotropical cities.  相似文献   

9.
In response to the processes threatening biodiversity such as habitat loss, effective selection of priority conservation areas is required. However, reserve selection methods usually ignore the drivers of future habitat changes, thus compromising the effectiveness of conservation. In this work, we formulated an approach to explicitly quantify the impact of fire on conservation areas, considering such disturbance as a driver of land-cover changes. The estimated fire impact was integrated as a constraint in the reserve selection process to tackle the likely threats or opportunities that fire disturbance might cause to the targeted species depending on their habitat requirements. In this way, we selected conservation areas in a fire-prone Mediterranean region for two bird assemblages: forest and open-habitat species. Differences in conservation areas selected before and after integrating the impact of fire in the reserve selection process were assessed. Integration of fire impact for forest species moved preferences towards areas that were less prone to burn. However, a larger area was required to achieve the same conservation goals. Conversely, integration of fire impacts for open-habitat species shifted preferences towards conservation areas in locations where the persistence of their required habitat is more likely (i.e. shrublands). In other words, we prioritized the conservation of not only the current distribution of open-habitat birds, but also the disturbance process (i.e. fire) that favours their preferred habitat and distributions in the long term. Finally, this work emphasizes the need to consider the opposing potential impacts of wildfires on species for an effective conservation planning.  相似文献   

10.
Context

Biodiversity in tropical region has declined in the last decades, mainly due to forest conversion into agricultural areas. Consequently, species occupancy in these landscapes is strongly governed by environmental changes acting at multiple spatial scales.

Objectives

We investigated which environmental predictors best determines the occupancy probability of 68 bird species exhibiting different ecological traits in forest patches.

Methods.

We conducted point-count bird surveys in 40 forest sites of the Brazilian Atlantic forest. Using six variables related to landscape composition and configuration and local vegetation structure, we predicted the occupancy probability of each species accounting for imperfect detections.

Results

Landscape composition, especially forest cover, best predicted bird occupancy probability. Specifically, most bird species showed greater occupancy probability in sites inserted in more forested landscapes, while some species presented higher occurrence in patches surrounded by low-quality matrices. Conversely, only three species showed greater occupancy in landscapes with higher number of patches and dominated by forest edges. Also, several species exhibited greater occupancy in sites harbouring either larger trees or lower number of understory plants. Of uttermost importance, our study revealed that a minimum of 54% of forest cover is required to ensure high (> 60%) occupancy probability of forest species.

Conclusions

We highlighted that maintaining only 20% of native vegetation in private property according to Brazilian environmental law is insufficient to guarantee a greater occupancy for most bird species. We recommend that policy actions should safeguard existing forest remnants, expand restoration projects, and curb human-induced disturbances to minimise degradation within forest patches.

  相似文献   

11.

Context

An increasing number of studies have investigated the impact of environmental heterogeneity on faunal assemblages when measured at multiple spatial scales. Few studies, however, have considered how the effects of heterogeneity on fauna vary with the spatial scale at which the response variable is characterised.

Objectives

We investigated the relationship between landscape properties in a region characterised by diverse fire mosaics, and the structure and composition of avian assemblages measured at both the site- (1 ha) and landscape-scale (100 ha).

Methods

We surveyed birds and calculated spatial landscape properties in sub-tropical woodlands of central Queensland, Australia.

Results

Environmental heterogeneity, as measured by topographic complexity, was consistently important for bird species richness and composition. However, the explanatory power of topographic complexity varied depending on the spatial scale and the component of diversity under investigation. We found different correlates of richness within particular foraging guilds depending on the scale at which richness was measured. Extent of long-unburnt habitat (>10 years since fire) was the most important variable for the landscape-scale richness of frugivores, insectivores and canopy feeders, whereas environmental heterogeneity in the surrounding landscape was more important for site-scale richness of these foraging guilds.

Conclusions

The response of species richness to landscape characteristics varies among scales, and among components of diversity. Thus, depending on the scale at which a biodiversity conservation goal is conceptualised—maximising richness at a site, or across a landscape—different landscape management approaches may be preferred.
  相似文献   

12.
Birds may use urban parks as shelter and refuge, contributing with numerous ecosystem services upon which humans and other organisms depend on. To safeguard these services, it is important that bird communities of urban environments hold some degree of resilience, which refers to the capacity of a system to absorb disturbances and changes, while maintaining its functions and structures. Here we assessed the resilience of the bird community inhabiting an urban park in the Southeast region of Brazil. We classified birds in feeding guilds and identified discontinuities and aggregations of body masses (i.e., scales) using hierarchical cluster analysis. We then calculated five resilience indices for our urban park and for a preserved continuous forest (reference area): the average richness of functions, diversity of functions, evenness of functions, and redundancy of functions within- and cross-scale. The urban park had less species, lower feeding guild richness, and lower within-scale redundancy than the reference area. However, they had similar proportion of species in each function, diversity of functions, evenness of functions, and cross-scale redundancy. The lower species richness and, consequently, the lack of some species performing some ecological functions may be responsible for the overall lower resilience in the urban park. Our results suggest that the bird community of the urban park is in part resilient, as it maintained many biological functions, indicating some environmental quality despite the high anthropogenic impacts of this area. We believe that urban forest remnants with more complex and diverse vegetation are possibly more likely to maintain higher resilience in the landscape than open field parks or parks with suppressed or altered vegetation. We propose that raising resilience in the urban park would possibly involve increasing vegetation complexity and heterogeneity, which could increase biodiversity in a large scale.  相似文献   

13.
We hypothesized that the spatial configuration and dynamics of periurban forest patches in Barcelona (NE of Spain) played a minor role in determining plant species richness and assemblage compared to site conditions, and particularly to both direct (measured at plot level) and potential (inferred from landscape metrics) human-associated site disturbance. The presence of all understory vascular plants was recorded on 252 plots of 100 m2 randomly selected within forest patches ranging in size from 0.25 ha to 218 ha. Species were divided into 6 groups, according to their ecology and conservation status. Site condition was assessed at plot level and included physical attributes, human-induced disturbance and Quercus spp. tree cover. Landscape structure and dynamics were assessed from patch metrics and patch history. We also calculated a set of landscape metrics related to potential human accessibility to forests. Results of multiple linear regressions indicated that the variance explained for non-forest species groups was higher than for forest species richness. Most of the main correlates corresponded to site disturbance variables related to direct human alteration, or to landscape variables associated to indirect human effects on forests: Quercus tree cover (a proxy for successional status) was the most important correlate of non-forest species richness, which decreased when Quercus tree cover increased. Human-induced disturbance was an important correlate of synanthropic and total species richness, which were higher in recently managed and in highly frequented forests. Potential human accessibility also affected the richness of most species groups. In contrast, patch size, patch shape and connectivity played a minor role, as did patch history. We conclude that human influence on species richness in periurban forests takes place on a small scale, whereas large-scale effects attributable to landscape structure and fragmentation are comparatively less important. Implications of these results for the conservation of plant species in periurban forests are discussed.  相似文献   

14.
Tardigrade communities are affected by micro and macro-environmental conditions but only micro-environmental variables, and altitudinal gradients have been studied. We review previous reports of altitudinal effects and evaluate the influence by interacting macro- (climate, soils, biome, and others) and micro-environmental (vegetation, moss and leaf litter) factors on tardigrade assemblages at the Sierra de Guadarrama mountain range (Iberian Central System Mountains, Spain). Terrestrial tardigrade assemblages were sampled using standard cores to collect leaf litter and mosses growing on rocks. General Linear Models were used to examine relationships between Tardigrada species richness and abundance, and macro- and micro-environmental variables (altitude, habitat characteristics, local habitat structure and dominant leaf litter type, and two bioclimatic classifications). Variation partitioning techniques were used to separate the effects of altitude and habitat variation, and to quantify the independent influences of climate and soil, vegetation structure and dominant type of leaf litter. Altitude shows a unimodal relationship with tardigrade species richness, although its effect independent of habitat variation is negligible. The best predictors for species richness were bioclimatic classifications. Separate and combined effects of macro-environmental gradients (soil and climate), vegetation structure and leaf litter type are important determinants of richness. A model including both macro- and micro-environmental variables explained nearly 60% of tardigrade species richness in micro-scale plots. Abundance was significantly related only to soil composition and leaf litter type. Tardigrade abundance was not explained by macro-environmental gradients analysed here, despite a significant correlation between abundance and richness.  相似文献   

15.
At finer scales, spatial heterogeneity can influence fire intensity and severity. To test whether Macrotermes termite mounds act as fire refugia for woody plants, we assessed effects of fire on individual plants, woody plant structure and composition in a miombo woodland in Zimbabwe, where elephants have decreased tree cover, leading to increased grass cover, fuelling greater intensity fires. We compared exposure to fire on 47 paired mound-matrix plots at three sites. Mound-based woody plants were less exposed to fire than those in matrix positions. Woody species composition differed between mound and matrix, and there were more tall trees on mounds. We assessed grass cover, elephant damage, fire damage and resprouting response for all woody plants found on 10 paired mound-matrix plots that had been equally exposed to severe late dry season fires. Grass cover was three times greater for matrix sites, where 85 % of woody species experienced heavy fire damage, compared to 29 % for mounds. Matrix species were nearly 31 times more likely than mound species to exhibit a vigorous resprouting response after fire damage, all else being equal. The distinct composition of termitaria vegetation has been attributed to edaphic factors. To this should be added the fire-retardant properties of mounds, allowing woody species that might otherwise have been excluded, to persist in a fire-prone system. Thus, spatial pattern created by termitaria is reinforced through exclusion of fire, allowing different species composition and structure. Since termitaria are important for productivity and biodiversity, the refuge effect is significant for the system.  相似文献   

16.
Urban forests are increasingly valued for multiple benefits such as amenity, cultural values, native biodiversity, ecosystem services, and carbon sequestration. Urban biodiversity in particular, is the new focus although global homogenisation is undermining regional differentiation. In the northern hemisphere (e.g., Canada and USA) and in the southern hemisphere, particularly in countries like South Africa, Australia, South America and New Zealand, local biodiversity is further impacted by historical colonisation from Europe. After several centuries, urban forests are now composed of synthetic and spontaneous mixtures of native species, and exotic species from around the temperate world (e.g., Europe, North and South America, South Africa, Asia). As far as we are aware no-one has carried out in-depth study of these synthetic forests in any Southern Hemisphere city. Here we describe the composition, structure, and biodiversity conservation imperatives of urban temperate forests at 90 random locations in Christchurch city, New Zealand.We document considerable plant diversity; the total number of species encountered in the 253 sampled urban forest patches was 486. Despite this incredibly variable data set, our ability to explain variation in species richness was surprisingly good and clearly indicates that total species richness was higher in larger patches with greater litter and vegetation cover, and taller canopy height. Species richness was also higher in patches surrounded by higher population densities and closer to very large native forest patches. Native species richness was higher in patches with higher soil pH, lower canopy height, and greater litter cover and in patches closer to very large native forest patches indicating dispersal out of native areas and into gardens. Eight distinct forest communities were identified by Two-Way INdicator SPecies ANalysis (TWINSPAN) using the occurrence of 241 species that occurred in more than two out of all 253 forest patches.Christchurch urban forest canopies were dominated by exotic tree species in parklands and in street tree plantings (linear parkland). Native tree and shrub species were not as common in public spaces but their overall density high in residential gardens. There was some explanatory power in our data, since less deprivation resulted in greater diversity and density, and more native species, which in turn is associated with private ownership. We hypothesise that a number of other factors, which were not well reflected in our measured environmental variables, are responsible for much of the remaining variation in the plant community structure, e.g., advertising, peoples choice. For a more sustainable asset base of native trees in New Zealand cities we need more, longer-lived native species, in large public spaces, including a greater proportion of species that bear fruit and nectar suitable for native wildlife. We may then achieve cities with ecological integrity that present multiple historical dimensions, and sequester carbon in legible landscapes.  相似文献   

17.
Urbanization is a permanent and still continuing expansion of human settlements and is responsible for dramatic changes of natural areas to urban areas. In traditional view, urbanization is often blamed for the loss of biodiversity and biotic homogenization of natural communities. However, for some species, urban areas, can represent suitable environment for life and even enable them to maintain stable and abundant populations. Urban ecosystems are not homogenous; within human settlements we can find several different habitats which can be occupied by species with different tolerance to certain aspects of urban life. This diversity can be exhibited by interhabitat changes in species richness, diversity and abundances of local communities. Here, we investigated biodiversity patterns in bird communities of two urban habitats, parks and cemeteries, in three Central European countries. Data on species richness, diversity and abundances of birds were collected from published papers as well as unpublished sources. Our analyses revealed that bird species richness was positively correlated with area and age of trees in both habitat types. There was however no significant relationship between species diversity and area in both habitat types. Moreover, species composition of bird communities significantly varied between cemeteries and parks with strong preference for one of habitat types in several species. Predominant occupancy of habitat type by certain species could be linked to interhabitat differences in vegetation structure, human behaviour and management. Interestingly, several bird species often recognised as urban avoiders were detected in surveyed cemeteries and parks.  相似文献   

18.
We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial distribution of vegetation management activities to meet objectives primarily related to forest composition and recreation. The model simulates the spatial dynamics of differential reproduction, dispersal, and succession patterns using the vital attributes of species as they are influenced by the abiotic environment and disturbance. We simulated 50 replicates of each management alternative and recorded the presence of species age cohorts capable of sustaining canopy fire and the occurrence of fire over 250 years. We combined these maps of fuel and fire to map the probability of canopy fires across replicates for each alternative. Canopy fire probability varied considerably by land type. There was also a subtle, but significant effect of management alternative, and there was a significant interaction between land type and management alternative. The species associated with high-risk fuels (conifers) tend to be favored by management alternatives with more disturbances, whereas low disturbance levels favor low-risk northern hardwood systems dominated by sugar maple. The effect of management alternative on fire risk to individual human communities was not consistent across the landscape. Our results highlight the value of the LANDIS model for identifying specific locations where interacting factors of land type and management strategy increase fire risk.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

19.
There is increasing focus on designing liveable cities that promote walking. However, urban walking routes can expose people to adverse environmental conditions that reduce health, well-being and biodiversity. Our primary objective is to assess how urban form is associated with environmental quality, including biodiversity, for people moving through urban spaces. We assess a range of environmental conditions that influence human health and biodiversity (temperature, noise and particulate pollution) and biodiversity of three taxa (trees, butterflies and birds) along 700 m public walking routes embedded in 500 m x 500 m grid cells across three UK towns. Cells are selected using random stratification across an urbanisation intensity gradient. Walking routes in more built-up areas were noisier and hotter; noise levels further increased in areas with more industrial land-use and large roads. There was no evidence of vegetation mitigating noise or temperature, but there was some evidence that increased vegetation cover mitigated small particulate pollution. Walking routes in more built-up environments had lower butterfly, bird and native tree species richness, and reduced butterfly abundance. Large roads were associated with reduced bird species richness and increased noise was associated with reduced bird abundance. Most specific measures of vegetation in the surrounding matrix (median patch size, structural complexity at 1.5 m resolution) were not detectably associated with biodiversity along walking routes, indicating minimal beneficial spill-over. Increased garden cover in the surrounding matrix was associated with less abundant and less species-rich butterfly communities. Our results highlight considerable heterogeneity in the environmental quality of urban walking routes and pedestrians’ potential to experience biodiversity along these routes, driven by reduced quality in areas with more built cover. A greater focus is needed on mitigating adverse effects of specific features of the built environment (roads, industrial areas, noise) surrounding walking routes to enhance the co-benefits of more biodiversity and healthier conditions for pedestrians.  相似文献   

20.
Biotic communities are structured by both regional processes (e.g., dispersal) and local environmental conditions (e.g., stress). We examined the relative importance of landscape position (position within the hydrologic flow system and distance from other lakes) and local environmental factors in determining the assemblage structure of lake-dwelling snails and fingernail clams in a boreal landscape. Both landscape position and local environmental factors were highly influential in structuring the molluscan assemblages. In canonical correspondence analysis, 53.6% of snail and 48.2% of fingernail clam assemblage composition were accounted for by both sets of variables. The pure effects of landscape position were higher than those of environmental variables, and a considerable amount of variability was shared by the two sets of variables. In regression analysis, 95.5% of snail and 62.2% of fingernail clam species richness was accounted for by the explanatory variable groups, with most of the variability being related to shared effects, followed by landscape position. The effects of landscape position on species composition suggest that passive dispersal increases the similarity of molluscan assemblages in adjacent lakes. This process does not lead to an overall homogenisation of assemblage composition across the landscape, however, because local conditions set a strong environmental filter, excluding species that arrive at an unsuitable lake. These environmental filters may reflect either extinction probability (area, productivity) or species niche differences (calcium levels, abiotic stress). Landscape position may also be important in maintaining the species richness of lake-dwelling molluscan assemblages. By providing potential colonists, nearby source lakes are likely to be important in countering local extinctions. Our test of the relative importance of landscape position and local drivers of assemblage structure was partly confounded by their co-variation. Nevertheless, studying the relationship between landscape position and local variables is useful because it can tell us about the importance of local and regional processes in shaping lake communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号