首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of suspended solids, nutrients, and organic matter loads in drainage water from paddy fields is an important issue for water quality management in closed water areas in Japan. We evaluated the ability of cyclic irrigation to reduce the suspended solids load from paddy fields. In 2006 and 2007, we investigated water and mass balances during the irrigation period in a low-lying paddy-field district neighboring Lake Biwa, which is the largest lake in Japan. We confirmed that cyclic irrigation reduced effluent loads during the puddling season. With cyclic irrigation, 118 kg ha−1 of suspended solids was returned to the paddy fields in 2006 and 199 kg ha−1 in 2007. The effect of cyclic irrigation on the net suspended solids load can be represented by three ratios: the concentration ratio, which represents the ratio of the suspended solids concentration in drainage water to that in lake water; the cyclic irrigation ratio, which represents the ratio of the volume of reused water to that of irrigation water in cyclic irrigation; and the surplus irrigation water ratio, which represents the ratio of the volume of surplus irrigation water to that of irrigation water. The cyclic irrigation ratio and the surplus irrigation water ratio interact to determine the effect of cyclic irrigation on the net suspended solids load. Simultaneously increasing the cyclic irrigation ratio and decreasing the surplus irrigation water ratio will maximize the purification effect on drainage water from paddy fields.  相似文献   

2.
Runoff nitrogen from a large sized paddy field during a crop period   总被引:2,自引:0,他引:2  
Nutrient load management is an important environmental issue because nutrient loads from farmlands degrade surface waters as a result of anthropogenic eutrophication. Nitrogen load from a large sized paddy field during the crop period was examined from the results of field measurements carried out in 2004. The 1.5 ha paddy field was located east of Biwa Lake. Irrigation water volume and ponded water depth were continuously observed. Field measurements were carried out at least once a week to analyze total nitrogen (TN) concentration in the irrigation water and ponded water. Daily inflow and outflow of nitrogen was obtained by multiplication of the nitrogen concentration and transported water volume, consisting of irrigation, precipitation, evapotranspiration, percolation and surface discharge. Water outflow volume was calculated by a tank model that consisted of three small tanks connected to represent ponded water depth differences in the large paddy field. The calculated nitrogen load was 18.8 kg ha−1, with 7.2 kg ha−1 from surface drainage and 11.6 kg ha−1 from percolation loss. The runoff nitrogen value of 18.8 kg ha−1 was within the range of the reported values investigated in a medium-sized paddy field. The observed value was close to the value for a low percolation flux paddy field where less irrigation water has been applied. These results suggest that less irrigation water keep runoff nitrogen low. This also indicates that irrigation water management can reduce nitrogen load from large sized paddy fields.  相似文献   

3.
Excessive nutrient loadings from rice paddy fields has been a great concern in Korea as rice paddy area spans over 1,153,000 ha, which covers approximately 60% of the total agricultural land area in Korea. The principal tasks of this study included undertaking work to better identifying the scope of the nutrient loadings from paddy fields to assess their adverse effects. Hydro-meteorological factors, rainfall and surface discharge, were considered as the major driving forces of nutrients into the water. A Generalized Regression Neural Network (GRNN) model was applied and its capability evaluated to predict the nutrient loading into the neighboring water. The 15 ha paddy fields surrounded by drainage and irrigation channels were chosen as a study area. Field data, such as rainfall, quantities of irrigation and discharge water, and nutrient contents (total nitrogen (T-N) and total phosphorus (T-P)) from two different water sources, were obtained throughout the study period. Simulation results showed that surface discharge had a positive correlation with rainfall (R = 0.84). In addition, the resulting predictions for nutrient concentrations corresponding to surface discharge were varied (R = 0.72 and 0.40 in total nitrogen and total phosphorus, respectively). This study found that both natural and artificial variations of nutrient contents in irrigation streams were significantly influenced the model results of nutrient predictions. Therefore, the nutrient loadings into the neighboring water can be accurately described with a more comprehensive and sufficient representation of both environmental inputs and hydrological processes.  相似文献   

4.
The increasing cost and scarcity of water for irrigation is placing pressure on Australian dairy farmers to utilize water more efficiently, and as result, water use efficiency (WUE) of forages is becoming an important criterion for sustainable dairy production. This study was conducted to identify more water use efficient forage species than the dominant dairy forage, perennial ryegrass (Lolium perenne L.). Seventeen annual forage species were investigated under optimum irrigation (I1) and two deficit irrigation treatments (nominally 66 and 33% of irrigation water applied to the optimal level), over 3 years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Forages with the highest yield generally had the highest WUEt (total yield/evapotranspiration). Under optimal irrigation, there was a three-fold difference in mean annual WUEt between forages, with maize (Zea mays L.) having the highest (42.9 kg ha−1 mm−1) and cowpea (Vigna unguiculata (L.) Walp.) the lowest (13.5 kg ha−1 mm−1), with 11 of the forage species having a greater WUEt than perennial ryegrass. The ‘harvested’ forages maize, wheat, triticale (Triticosecale rimpaui Wittm.) and maple pea (Pisum sativium L.) generally had higher mean WUEt (26.7-42.9 kg ha−1 mm−1) than the remaining forages which were defoliated multiple times to simulate grazing (13.5-30.1 kg ha−1 mm−1). The reduction in annual WUEt in response to deficit irrigation was greatest for the warm season forages with up to 30% reduction for maize, while most of the cool season annuals were not significantly affected by deficit irrigation at the levels imposed. In order to maximize WUEt of any forage, it is necessary to maximize yield, as there is a strong positive relationship between yield and WUEt. However, while WUEt is an important criterion for choosing dairy forages, it is only one factor in a complex system. Choice of forages must be considered on a whole farm basis and include consideration of yield, nutritive value, cost of production and risk.  相似文献   

5.
Precision irrigation management and scheduling, as well as developing site- and cultivar-specific crop coefficient (Kc), and yield response factor to water deficit (ky) are very important parameters for efficient use of limited water resources. This study investigated the effect of deficit irrigation, applied at different growth stages of peanut with sprinkler irrigation in sandy soil, on field peanut evapotranspiration (ETc), yield and yield components, and water use efficiencies (IWUE and WUE). Also, yield response factor to water deficit (ky), and site- and cultivar-specific Kc were developed. Four treatments were imposed to deficit irrigation during late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages of peanut, and compared with full irrigation in the course of the season (control). A soil water balance equation was used to estimate crop evapotranspiration (ETc). The results revealed that maximum seasonal ETc was 488 mm recorded with full irrigation treatment. The maximum value of Kc (0.96) occurred at the fifth week after sowing, this value was less than the generic values listed in FAO-33 and -56 (1.03 and 1.15), respectively. Dry kernels yield among treatments differed by 41.4%. Deficit irrigation significantly affected yields, where kernels yield decreased by 28, 39, 36, and 41% in deficit-irrigated late vegetative and early flowering, late flowering and early pegging, pegging, and pod formation growth stages, respectively, compared with full irrigation treatment. Peanut yields increased linearly with seasonal ETc (R2 = 0.94) and ETc/ETp (R2 = 0.92) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 2.9, was higher than the 0.7 value reported by Doorenbos and Kassam [Doorenbos, J., Kassam, A.H., 1979. Yield response to water. FAO Irrigation and Drainage Paper 33, Rome, Italy, 193 pp.], the high ky value reflects the great sensitivity of peanut (cv. Giza 5) to water deficit. WUE values varied considerably with deficit irrigation treatments, averaging 6.1 and 4.5 kg ha−1 mm−1 (dry-mass basis) for pods and kernels, respectively. Differences in WUE between the driest and wettest treatment were 31.3 and 31.3% for pods and kernels, respectively. Deficit irrigation treatments, however, impacted IWUE much more than WUE. Differences in IWUE between the driest and wettest treatment were 33.9 and 33.9% for pods and kernels, respectively. The results revealed that better management of available soil water in the root zone in the course of the season, as well as daily and seasonal accurate estimation of ETc can be an effective way for best irrigation scheduling and water allocation, maximizing yield, and optimizing economic return.  相似文献   

6.
The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (Kc) and crop water productivity (WPET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008-2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50-60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72 ± 0.06 and it increased to 0.99 ± 0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration.Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14 ± 0.03) than in aerobic fields (0.24 ± 0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81 ± 0.21 mm d−1) than the flooded rice fields (4.29 ± 0.23 mm d−1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, Kc, of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, Kc values were 0.95 ± 0.01 for the vegetative stage, 1.00 ± 0.01 for the reproductive stage, 0.97 ± 0.04 for the ripening stage and 0.88 ± 0.03 for the fallow period, whereas, for flooded rice, Kc values were 1.04 ± 0.04 for the vegetative stage, 1.11 ± 0.05 for the reproductive stage, 1.04 ± 0.05 for the ripening stage and 0.93 ± 0.06 for the fallow period. The average annual ET was 1301 mm for aerobic rice and 1440 mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WPET) of aerobic rice (0.42 ± 0.03 g grain kg−1 water) was significantly lower than that of flooded rice (1.26 ± 0.26 g grain kg−1 water) because the grain yields of aerobic rice were very low since they were subjected to water stress.The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems.  相似文献   

7.
With the availability of irrigation water, supplemental irrigation in winter-grown crops, such as lentil, wheat, and barley, has been intensely practiced to prevent crop yield losses due to the incidence of intermittent drought stress. In the crop growing seasons of 2006-2007 and 2008-2009, a study was conducted to determine the effect of supplemental irrigations on Canola (Brassica napus L. cv. Elvis F1) under the semiarid climatic conditions of the Harran plain, Sanliurfa, Turkey. A sprinkler irrigation system was used to irrigate the study plots. The irrigation treatments included 0.0, 0.25, 0.50, 0.75, and 1.0 (full irrigation) of Class-A pan evaporation amounts. The full irrigation treatment during both years consisted of 250 and 225 mm, respectively. In turn, crop water use values during the same years and treatments were 462 and 449 mm. In general, plant height and 1000 seed weight ranged from 140 to 165 cm and from 2.5 to 3.3 g, respectively, and these variables significantly differed among irrigation treatments (p < 0.05). Crop yield and above ground biomass measurements were affected by irrigation treatments and varied from 1094 to 3943 kg ha−1 and from 6746 to 18,311 kg ha−1, respectively (p < 0.05). Similarly, harvest index values were affected (p < 0.05) and ranged from 0.16 to 0.23 on average. The water use efficiency obtained in the different treatments indicated a strong positive relationship between crop yield and irrigation. Overall, our results indicate that supplemental irrigation substantially increased canola yield; however, for an optimum yield, full irrigation is suggested.  相似文献   

8.
The agro-hydrological model SWAP was used in a distributed manner to quantify irrigation water management effects on the water and salt balances of the Voshmgir Network of North Iran during the agricultural year 2006-2007. Field experiments, satellite images and geographical data were processed into input data for 10 uniform simulation areas. As simulated mean annual drainage water (312 mm) of the entire area was only 14% smaller than measured (356 mm), its distribution over the drainage units was well reproduced, and simulated and measured groundwater levels agreed well. Currently, water management leads to excessive irrigation (621-1436 mm year−1), and leaching as well as high salinity of shallow groundwater are responsible for large amounts of drainage water (25-59%) and salts (44-752 mg cm−2). Focused water management can decrease mean drainage water (22-48%) and salts (30-49%), compared with current water management without adverse effects on relative transpiration and root zone salinity.  相似文献   

9.
This paper presents a water and nitrogen balance model for the surface ponded water and soil profile system of rice (Oryza sativa L.) fields. The model estimates the daily water balance components, as well as, the daily losses and transformations of nitrogen. Data from two neighbouring rice fields during the growing season of 2005 in the Thessaloniki plain of Northern Greece were used for the application of the model. The data set of field A was used for the calibration of the model, while the data set from the field B for validation of model. Simulation results of total inorganic nitrogen in the soil and runoff water exhibited reasonable agreement with the measured data during calibration and verification of the model. Significant amounts of applied irrigation water were lost through surface runoff and deep percolation into the groundwater. The sum of nitrogen inputs from fertilization, mineralization and irrigation water were 292.7 and 280.4 kg ha−1 for field A and B, respectively. Nitrogen uptake by algae in ponding water and plants was one of the main processes of nitrogen reduction in the rice field systems with an amount of 125.7 and 131.8 kg ha−1 for field A and B, respectively. Leaching through percolated water was the other significant process with 118.3 and 120.8 kg ha−1, respectively. Gaseous losses of nitrogen (via volatilization and denitrification) were also substantial processes of nitrogen reduction in the flooded compartment. The study showed that the simple model presents important results for the water and nitrogen management in rice fields. This information can be used for irrigation water saving and prevention of water resources contamination in rice-based agroecosystems.  相似文献   

10.
The primary objective of this study was to estimate the agricultural water demand of paddy fields in Hwanghaenam-do, North Korea. Three Landsat TM images, GIS data including digital elevation maps, a Thiessen network and administration maps of North Korea, and meteorological data were synthesized for this study. In order to estimate water demand for agricultural use, the FAO Blaney–Criddle method and 10-day crop coefficients of the northern areas of South Korea were used. To classify the Landsat images, supervised and unsupervised classification methods were conducted. Topographical constraints based on paddy rice growing conditions, which are under 7% slope and 200 m above sea level, were taken into account. The results showed an annual net water demand of 611.7 mm/year (916.4 Mt/year) is required for the 150,079 ha of paddy fields and the average gross water demand and design water demand for paddy rice were estimated to be 939.6 mm/year (1408 Mt/year) and 1131.97 mm/year (1695.1 Mt/year), respectively.  相似文献   

11.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

12.
In northeast Italy, a regimen of controlled drainage in winter and subirrigation in summer was tested as a strategy for continuous water table management with the benefits of optimizing water use and reducing unnecessary drainage and nitrogen losses from agricultural fields.To study the feasibility and performance of water table management, an experimental facility was set up in 1996 to reproduce a hypothetical 6-ha agricultural basin with different land drainage systems existing in the region. Four treatments were compared: open ditches with free drainage and no irrigation (O), open ditches with controlled drainage and subirrigation (O-CI), subsurface corrugated drains with free drainage and no irrigation (S), subsurface corrugated drains with controlled drainage and subirrigation (S-CI). As typically in the region free drainage ditches were spaced 30 m apart, and subsurface corrugated drains were spaced 8 m apart.Data were collected from 1997 to 2003 on water table depth, drained volume, nitrate-nitrogen concentration in the drainage water, and nitrate-nitrogen concentration in the groundwater at various depths up to 3 m.Subsurface corrugated drains with free drainage (S) gave the highest measured drainage volume of the four regimes, discharging, on average, more than 50% of annual rainfall, the second-highest concentration of nitrate-nitrogen in the drainage water, and the highest nitrate-nitrogen losses at 236 k ha−1.Open ditches with free drainage (O) showed 18% drainage return of rainfall, relatively low concentration of nitrate-nitrogen in the drainage water, the highest nitrate-nitrogen concentration in the shallow groundwater, and 51 kg ha−1 nitrate-nitrogen losses.Both treatments with controlled drainage and subirrigation (O-CI and S-CI) showed annual rainfall drainage of approximately 10%. O-CI showed the lowest nitrate-nitrogen concentration in the drainage water, and the lowest nitrogen losses (15 kg ha−1). S-CI showed the highest nitrate-nitrogen concentration in the drainage water, and 70 kg ha−1 nitrate-nitrogen losses. Reduced drained volumes resulted from the combined effects of reduced peak flow and reduced number of days with drainage.A linear relationship between daily cumulative nitrate-nitrogen losses and daily cumulative drainage volumes was found, with slopes of 0.16, 0.12, 0.07, and 0.04 kg ha−1 of nitrate-nitrogen lost per mm of drained water in S-CI, S, O, and O-CI respectively.These data suggest that controlled drainage and subirrigation can be applied at farm scale in northeast Italy, with advantages for water conservation.  相似文献   

13.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

14.
Independent historic datasets on irrigated maize, collected over seven years (1984-1990), were used to parameterize the irrigation scheduling model ISAREG. Experimental data were obtained under rainfed, deficit, and full irrigation conditions in an alluvial soil at Tsalapitsa, Plovdiv region, in the Thracian plain, Bulgaria. Crop coefficients and depletion fractions for no-stress were calibrated by minimizing the differences between observed and simulated soil water content. The calibration was performed using data from full irrigation and rainfed treatments while deficit irrigation treatments were used for validation. The modelling efficiency was high, 0.91 for the calibration and 0.89 for the validation. The resulting average absolute errors of the estimate for the soil water content were smaller than 0.01 cm3 cm−3. The model was also tested by comparing computed versus observed seasonal evapotranspiration. Results for dry years show a modelling efficiency of 0.96 but the model slightly underestimated evapotranspiration for other years. The yield response factor was derived from observed yield data of the hybrid variety H708 when relative evapotranspiration deficits were smaller than 0.5. The value Ky = 1.32 was obtained. The relative yield decreases predicted with this Ky value compared well with observed data. Results support the use of the ISAREG model for developing water saving irrigation schedules for the Thracian plain.  相似文献   

15.
The objective of the study was to determine the effects of different emitter spaces and water stress on crop yield, such that the tomatoes would be suitable for processing and paste output (Lycopersicon esculentum Mill cv. Shasta). Such variables were also analyzed with respect to crop quality characteristics (e.g., mean fruit weight - MFW, fruit diameter - FD, penetration value of fruit - PV, pH, total soluble solids - TSS, and ascorbic acid contents - AA). The experiment was conducted under ecological conditions typical of the Konya Plain, a semi-arid climate, in 2004 and 2005. Drip irrigation laterals were arranged in such a way that every row had one lateral. Emitters were spaced at 25, 50, and 75 cm intervals in the main plots, while four levels of water supply, irrigation at 7-day intervals with enough water to fill the soil depth of 0-60 cm until capacity was reached (I1), and 25, 50, and 75% decreased water supply levels were applied as subplots of the experiment. Results of the field experiments showed that yield suitable for processing (68.7-72.7 t ha−1) and paste output (12.2-12.9 t ha−1) were obtainable under conditions of I1 application (p < 0.01). MFW, FD, PV, and TSS were significantly affected from treatments (p < 0.05). High stress resulted in the highest soluble solids. The total irrigation water amount and water consumptive use of the mentioned application (I1) were determined as 426 and 525 mm in 2004. In 2005, the total irrigation water amount and water consumptive use of the same treatment were 587 and 619 mm, respectively.  相似文献   

16.
A simple irrigation scheduling approach for pecans   总被引:1,自引:0,他引:1  
Pecans are a major crop in New Mexico's Lower Rio Grande Valley (LRGV). It is estimated that New Mexico is responsible for about 21% of the world's pecan production (Lillywhite et al., 2007). Currently, approximately 12,000 ha of pecan orchards at various stages of growth consume 45% of the area's irrigation water. Pecan evapotranspiration (ET) varies with age, canopy cover, soil type, crop density and method of water management. Intense competition for the LRGV's limited water supply has created a serious need for better water management through improved irrigation scheduling. Annual pecan ET ranges from as low as 500 mm to as high as 1400 mm. Diversity of the pecan crop coefficient (Kc) and ET makes the task of irrigation scheduling for this crop very complicated. Using remote sensing technology and field ET measurements, a simple relationship was developed to relate crop coefficient and ET to canopy cover. This relationship is then used in combination with climate data to calculate daily and weekly water requirements for each orchard. The difference between annual ET values estimated from canopy cover and values measured with an eddy covariance flux tower ranged from 2 to 5%. The average ratio of estimated monthly ET values over measured ET values was 1.03 with the standard error of the estimate ranging from 10 to 20 mm/month. This methodology provides a simple tool that farmers can use to schedule irrigation of pecan orchards. Even though the methodology was developed for irrigation scheduling in the LRGV, it can be used in other locations by transferring the reference crop coefficients using Kc-GDD relationships.  相似文献   

17.
The effects of drip irrigation on the yield and crop water productivity responses of four tea (Camellia sinensis (L.) O. Kuntze) clones were studied four consecutive years (2003/2004-2006/2007), in a large (9 ha) field experiment comprising of six drip irrigation treatments (labelled: I1-I6) and four clones (TRFCA PC81, AHP S15/10, BBK35 and BBT207) planted at a spacing of 1.20 m × 0.60 m at Kibena Tea Limited (KTL), Njombe in the Southern Tanzania in a situation of limited water availability. Each clone × drip irrigation treatment combination was replicated six times in a completely randomized design with 144 net plots each with an area of 72 m2. Clone TRFCA PC81 gave the highest yields (range: 5920-6850 kg dried tea ha−1) followed by clones BBT207 (5010-5940 kg dried tea ha−1), AHP S15/10 (4230-5450 kg dried tea ha−1) and BBK35 (3410-4390 kg dried tea ha−1) and drip irrigation treatment I2 gave the highest yields, ranging from 4954 to 6072 kg dried tea ha−1) compared with those from other treatments (4113-5868 kg dried tea ha−1). Most of these yields exceeded those (4200 kg dried tea ha−1) obtained from overhead sprinkler irrigation system in Mufindi also Southern Tanzania, and Kibena Estate itself. Results showed that drip irrigation of tea not only increased yields but also gave water saving benefits of up to 50% from application of 50% less water to remove the cumulative soil water deficit (treatment I2), and with labour saving of 85% for irrigation. The yield of dried tea per mm depth of water applied, i.e., “the crop water productivity” for drip irrigation of clones TRFCA PC81, BBT207 and BBK35, in 2003/2004 for instance, were 9.3, 8.5 and 7.1 kg dried tea [ha mm]−1, respectively. The corresponding values in 2004/2005 were 2.7, 4.5 and 2.0 kg dried tea [ha mm]−1 while the yield responses from clone AHP S15/10 were linear decreasing by 1 and 1.6 kg dried tea [ha mm]−1 in 2003/2004 and 2004/2005, respectively. In 2005/2006 the crop water productivity from clones TRFCA PC81, AHP S15/10, BBK35 and BBT207 were 4.5, 0.4, 5.2 and 6.9 kg dried tea [ha mm]−1, respectively with quadratic yield response functions to drip irrigation depth of water application. The results are presented and recommendations and implications made for technology-transfer scaling-up for increased use by large and smallholder tea growers.  相似文献   

18.
Spate irrigation is a method of flood water harvesting, practiced in Dera Ismael Khan (D.I. Khan), Pakistan for agricultural production for the last several hundred years in which during monsoon period flood water is used for irrigation before wheat sowing. A field study on the effect of different pre-sowing water application depths on the yield of wheat was conducted during 2006-2007. The spate irrigation command areas normally receive the flood water as a result of rainfall on the mountains during the months of July to September, which also carries a significant amount of sediment load. The flood water flows in different torrents and is diverted through earthen bunds to the fields for irrigation with depth of water application ranging from 21 to 73 cm and resulted in sediment deposition of 1.8-3.6 cm per irrigation. In this study, the effect on wheat yield of three different pre-sowing water application depths (D1 < 30 cm, D2 = 30-45 cm and D3 > 45 cm) were studied under field conditions. Fifteen fields with field sizes of about 2-3 ha were randomly selected, in each field five samples were collected for analysis of soil physical properties, yield and yield components. Five major soil texture classes (silty clay, clay loam, silty clay loam, silt loam and loam) were found in the area with water-holding capacity ranging from 23% to 36.3% (on a volume basis) and bulk density varied from 1.35 to 1.42 g cm−3. About 36% more grain yield was obtained from loam soil fields, followed by silt loam (24%) as compared to wheat grown on silty clay soil condition. The maximum wheat grain yield of 3448 kg ha−1 was obtained from fields with water application depths of 30-45 cm and the lowest wheat yield was recorded in fields with water application depths greater than 45 cm. On-farm application efficiencies ranged from 22% to 93% with an overall average of about 49%. Due to large and uneven fields, a lot of water is lost. In general, the application efficiency decreased with increasing water application depth. Based on the results of this research, in arid to semi-arid environments, for optimum wheat yield under spate irrigation, the pre-sowing water application depth may be about 30-45 cm (September to July) and under or over irrigation should be avoided.  相似文献   

19.
Improved water capture and erosion reduction through furrow diking   总被引:2,自引:0,他引:2  
Crop production in Georgia and the Southeastern U.S. can be limited by water; thus, supplemental irrigation is often needed to sustain profitable crop production. Increased water capture would efficiently improve water use and reduce irrigation amounts and other input costs, thus improving producer's profit margin. We quantified water capturing and erosional characteristics of furrow diking by comparing runoff (R) and soil loss (E) from furrow diked (DT) and non-furrow diked tilled (CT) systems. A field study (Faceville loamy sand, Typic Kandiudult) was established (2006 and 2007) near Dawson, GA with DT and CT systems managed to irrigated cotton (Gossypium hirsutum L.). Treatments included: DT vs. CT; DT with and without shank (+/− S); and rainfall simulation performed (0, 60 days after tillage, DAT). Simulated rainfall (50 mm h−1 for 1 h) was applied to all 2 m × 3 m plots (n = 3). All runoff and E were measured from each flat, level sloping 6-m2 plot (slope = 1%). Compared to CT, DT decreased R and E by 14-28% and 2.0-2.8 times, respectively. Compared to DT − S, DT + S decreased R and E by 17-56% and 26% to 2.1 times, respectively. Compared to sealed/crusted soil conditions at 60 DAT, simulating rainfall on a freshly tilled seedbed condition (DAT = 0) decreased R by 69% to 3.4 times and increased E by 27%. DT0 + S + RF0 plots (best-case scenario) had 2.8 times less R, and 2.6 times less E than CT − S + RF60 plots (worst-case). Based on $1.17 ha-mm−1 to pump irrigation water and $18.50 ha−1 for DT, a producer in the Coastal Plain region of Georgia would recover cost of DT by saving the first 16 ha-mm of water. The DT + S system is a cost-effective management practice for producers in Georgia and the Southeastern U.S. that positively impacts natural resource conservation, producer profit margins, and environmental quality.  相似文献   

20.
This study deals with the effects of intermittent irrigation on actual evapotranspiration (ET) and leaf area index (LAI) of “Superior” grapevines grown in a semiarid environment in northeastern Brazil. The field experiments were carried out during two consecutive fruiting cycles (dry season and rainy season) of grapevines (Vitis vinifera, L) irrigated by drip at a rate of 2.3 L h−1. Four irrigation time intervals were used as follow: one turn irrigation-time (I-1), two turn irrigation-time (I-2), three turn irrigation-time (I-3), and four turn irrigation-time (I-4). The growing cycles received different amounts of water by irrigation, which for dry and rainy seasons were 470.5 and 243.5 mm, respectively. The ET increased from 5.7 to 7.5 mm day−1 when the irrigation time interval changed from I-1 to I-4 and resulted in a higher value of LAI. The values of ET during the rainy-season growing cycle were much lower throughout the phenological stages, reaching a maximum of 6.4 mm day−1 for I-4 in the maturation stage. For both growing cycles, an increase in the cumulated vineyard evapotranspiration was observed when changing the irrigation time interval from I-1 to I-4, except I-2, which was slightly greater than I-3. Soil water drainage had a very gradual exponential decrease from I-1 to I-4 in both fruiting cycles. The grapevine coefficient under intermittent irrigation can be described as function of days after pruning by polynomial models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号