首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
滴灌湿润比对成龄库尔勒香梨树根系分布的影响   总被引:3,自引:0,他引:3  
在充分灌溉条件下采用3种滴灌湿润比(20%、40%、60%).以漫灌为对照.研究库尔勒成龄香梨吸水根(根直径≤1 mm)在0~70 cm土层内分布的变化,探讨滴灌湿润比对根系分布的影响.结果表明,漫灌成龄库尔勒香梨树吸水根水平方向上在距树体1~2 m内从树行由内向外呈递增趋势;垂直方向上根系随深度呈递增趋势.滴灌对成龄...  相似文献   

2.
The study was undertaken in order to quantify the effect of 12-year irrigation by drip emitters placed on one side of the tree trunk on the rooting pattern of Gloster apple trees (Malus domestica Borkh) grafted on M26 rootstock under the conditions of south-west Poland. The orchard was established in 1994 and since 1995 was drip irrigated under three treatments: V0 - without irrigation (control), V1 - intensive irrigation, and V2 - economical irrigation. In March 2007, after 12 years of irrigation, a profile trench observation method was used to map the number and the location of root distribution in clay loam (Luvisol) soil.The root system architecture was largely affected by irrigation. In case of the trees irrigated intensively (V1), the study showed asymmetry in the distribution of roots of diameter <1 mm and 1-3 mm. In V1, shallow root system, concentrated in the wetted zone developed on the irrigated side of the tree, where on the side of the tree trunk opposite the emitter trees developed significantly larger numbers of roots, which penetrated deeper soil layers. There were no statistically significant differences in the number of roots between both sides of the tree trunk under the treatment with economical irrigation (V2). Moreover, spatial roots distribution over the entire soil profile was found to be the most uniform compared to the other experimental treatments (V0 and V1). Finally, the study examined the relationship between root system and yield. Obtained results showed that in the 3-year period less frequent water application (V2) resulted in the highest yield.  相似文献   

3.
Actual evapotranspiration (ETc) of three mature sweet orange orchards (cv. Salustiana and Washington Navel on sour orange), under border irrigation and typical cultural practices was measured by the water balance method during 1981 to 1984. Soil water content was measured at 7 to 10 day intervals using a neutron meter and soil sampling of the 0–10 cm surface layer. Zero flux plane was calculated by measurements with mercury tensiometers. Irrigation water in these and other 5 similar orchards was measured by broad crested weirs. Rainfall and other climatic data for calculation of reference evapotranspiration by FAO's methods (ETo) were collected in a nearby meteorological station. Average yearly ETc ranged from 750 to 660 mm and mean monthly maximum was 3.7 and 3.2 mm/day in July for Salustiana and W. Navel orchards, respectively.ETo estimates for the different methods used were highly correlated (r 20.94). Monthly crop coefficients (Kc) based on pan evaporation ranged from 0.5–0.6 in spring and summer to 0.8 in autumn and were about 10% higher than those for Penman or radiation methods. Average annual Kc for the three plots studied was 0.64, 0.61 and 0.51, respectively, and correlated well (r 2=0.99) with tree ground cover. Irrigation efficiency was about 50% for orchards with soils with less water holding capacity and more applied water per irrigation and 70–80% in orchards with deeper soils or with a higher water holding capacity. Increasing irrigation frequency and applying smaller amounts of water per irrigation with good uniformity can improve on-farm irrigation efficiency.  相似文献   

4.
Relationship between plant water stress and soil water depletion (SWD) is not investigated thoroughly for irrigated pecans of southern New Mexico. In this study, transient soil water contents, rootzone SWD, and midday stem water potential (SWP) were monitored in mature pecan orchards in sandy loam (Site 1) and silty clay loam (Site 2) soils near Las Cruces, New Mexico. Corresponding to transient variations of soil water content at different depths, daily SWD varied with soil depth but not spatially. The SWD within the rootzone (0–80 cm) was higher in the shallow depths (0–40 cm) where root length density (RLD) was also higher than in the deeper depths (40–80 cm). The SWD at Site 1 was higher compared to Site 2 due to the higher clay content of the latter. The SWD patterns at outside the tree driplines were similar to those under-canopy locations because of similar RLD at the shallow depths. At both pecan orchards, differences in SWP at 2.5, 4.5, and 7.6 m tree heights were evident particularly 10–14 days after irrigation. This was due to the stress caused by decreasing soil water contents at different depths, which were generally significantly correlated with SWP. Midday air temperature was as useful as midday atmospheric vapor pressure deficit for interpreting SWP. Combined influence of soil water content (0–40 cm) and air temperature on midday SWP was significant at both orchards, which can be used as an adjunct for the clear interpretation of SWP to help refine irrigation scheduling.  相似文献   

5.
The compensation heat-pulse method for measuring sap flow is tested here in olive trees (Olea europaea L.). We describe a rigorous three-way examination of the robustness of the technique for this species, and examine the potential of the technique for an automatic control of the irrigation system. Two tests were carried out using heat-pulse gear inserted into the stem of 12-year-old ‘Manzanilla’ olive trees. One test used forced-flow through a stem section, and the other involved measured water uptake by an excised tree. The measured sap flow in these two tests was in agreement with calculations from heat-pulse velocities when using a standard ‘wound correction’ to account for the presence of the probes and the disruption to the sap flow. Thus, this technique for monitoring transpiration can, we feel, be used with confidence in olives.The third experiment was carried out in the field, where we analysed sap flow data from two 29-year-old olive trees — one tree was under regular drip irrigation and the other was from dry-farming conditions. We use measurements of sap flow in the trunk to examine the hydraulic functioning of the tree, and to explore some diagnostics of water stress. Our heat-pulse measurements in the irrigated olive tree exhibited a profile of sap flow that was weighted towards the outer xylem of the tree trunk while the water-stressed trees in the field showed a profile of sap flow weighted towards the centre of the trunk. The loss of hydraulic functioning in the outermost section of the vascular system, as a result of water stress, we consider to be due both to stomatal control and to embolisms in the xylem vessels.The fourth experiment was also carried out in the field, in which sap flow measurements were made at three locations in the trunk as well as in two roots of another 29-year-old olive tree. The soil explored by each root, on opposite sides of the trunk, was differentially wetted by separate irrigation of each side. Our data showed that the surface roots were able to absorb water immediately after wetting, despite a reasonably prolonged period of moderate drought. Root activity quickly shifted to the regions where the soil had been wetted. A root in dry soil exhibited no flow at night, whereas sap flows of about 0.02 l h−1 were measured around midnight in the root drawing water from the wetter soil. Our observations suggest that the hydraulic behaviour of the trunk and surface roots might be used as a diagnostic of the onset, or severity, of water stress. Here there is not the imperative to replicate, for the prime goal is not transpiration estimation. Rather interpretation of the diurnal dynamics is used to infer the onset, or severity of water stress.The compensation heat-pulse seems a suitable technique for automatically controlling the irrigation system of olives, and probably other trees, based either on the estimation of the short-time dynamics of transpiration, or on changes in the hydraulic behaviour of the trees.  相似文献   

6.
The effect of irrigation frequency on soil water distribution, potato root distribution, potato tuber yield and water use efficiency was studied in 2001 and 2002 field experiments. Treatments consisted of six different drip irrigation frequencies: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days), with total drip irrigation water equal for the different frequencies. The results indicated that drip irrigation frequency did affect soil water distribution, depending on potato growing stage, soil depth and distance from the emitter. Under treatment N1, soil matric potential (ψm) Variations at depths of 70 and 90 cm showed a larger wetted soil range than was initially expected. Potato root growth was also affected by drip irrigation frequency to some extent: the higher the frequency, the higher was the root length density (RLD) in 0–60 cm soil layer and the lower was the root length density (RWD) in 0–10 cm soil layer. On the other hand, potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency. High frequency irrigation enhanced potato tuber growth and water use efficiency (WUE). Reducing irrigation frequency from N1 to N8 resulted in significant yield reductions by 33.4 and 29.1% in 2001 and 2002, respectively. For total ET, little difference was found among the different irrigation frequency treatments.  相似文献   

7.
Summary Lucerne was irrigated for three years on a slowly permeable, duplex soil, with saline water up to 2.4 dS m–1 without significant yield decline. Irrigation water of 4.5 dS m–1 significantly reduced yield. Lucerne yield was most closely related to the soil ECe of the 0–15 cm depth, rather than the total rootzone, and was described by; Relative yield=100–6.5 (ECe-2.1). While lucerne roots reached depths of at least 150 cm, approximately 80% of total root length was located in the 0–60 cm depth.Increasing salinity increased the plant concentrations of sodium and chloride, however, these changes were not closely related to changes in yield.Soil salinity increased with increasing salinity of the applied water. However, during the irrigation season water penetration and the accumulation of salt within the profile was predominantly restricted to the 0–60 cm depth. No portion of the applied irrigation water was available as a leaching fraction. Any leaching of salts to the watertable, particularly below 120 cm, was due to winter rainfall rather than the application of summer irrigation water.Ripping the soil to a depth of 75 cm increased water infiltration and resulted in increased crop yields, but did not significantly affect the crop relative yield-soil ECe relationship.From the results it is proposed that on the slowly permeable duplex soils, when watertable depth is controlled, management strategies for lucerne irrigated with saline water should be based on controlling the salinity of the shallow soil depths, to 60 cm.  相似文献   

8.
The spatial and temporal pattern of root water uptake in partially wetted soil was studied in the root zone of a 6-year-old microsprinkler-irrigated almond tree. The water balance of about one quarter of the root zone’s wetted soil volume (2.0×2.0×0.9 m3) was determined by catch cans, neutron probe and tensiometer measurements. Twenty-five neutron probe access tubes with catch cans were distributed in a square grid of 50 cm spacing. Eight pairs of tensiometers were installed at depths of 82.5 and 97.5 cm in a regular pattern between the access tubes. Neutron probe readings at 15 cm depth increments and tensiometer readings were taken at time intervals of 4–24 h. The rate of soil water depletion was calculated and used to estimate the spatial and temporal distributions of root water uptake. Soil water dynamics was studied in two stages: (1) during a week of conventional irrigation management with three irrigation events; and (2) during a period of 16 days without irrigation, after the monitored soil volume was thoroughly moistened so that soil water was easily available everywhere, initially. The zones of maximum root water uptake were the same for both stages in periods of high local rates of water application. After water applications, root water uptake occurred initially near the tree trunk and then progressed towards the root system periphery, thereby changing locations of maximum root water uptake and shifting to root zone regions with minimum soil water stress.
Kouman S. KoumanovEmail: Phone: +359-32-692349Fax: +359-32-670808
  相似文献   

9.
The root dynamics of young early-season peach trees (Prunus persica L. Batsch, cv. Flordastar) were studied during one growing season. The trees were submitted to three drip irrigation treatments: T1 (control) irrigated at 100% of the estimated crop evapotranspiration (ETc) requirements, T2 (continuous deficit) irrigated at 50% ETc and T3 (partial rootzone drying, PRD, treatment), alternating irrigation from one half to the other every 2–3 weeks. Root length was measured frequently using minirhizotrons and a circular-vision scanner. Overall, root length density was reduced by ≈73% in the continuous deficit irrigated treatment and by ≈42% in the T3 treatment with respect to the well irrigated treatment. A roughly similar amount of water was applied in both deficit irrigated treatments (44 and 56% of T1, for T2 and T3, respectively), but the continuous deficit irrigation applied to both sides of the root system in T2 resulted in a greater reduction in root growth than in T3. The dynamics of the root growth were similar in the three treatments. In general, root growth declined during the fruit growth period and increased after harvest, reaching its peak in mid July. By late July, root growth had declined again, and an alternating pattern of growth between the aerial and root parts of the tree was observed. Roots were mostly located in the upper 0.55 m of soil and were particularly concentrated at 0.40–0.55 m. More than 88% of these roots were very thin, with diameters of <0.5 mm. The study looks at the impact of deficit irrigation on the phenological processes related with root growth, and will help in making decisions concerning fertigation in areas with scarce water resources where deficit irrigation strategies are considered desirable.  相似文献   

10.
Summary Development of a ploughpan has been reported in Bangladesh for almost all ploughed soils which are puddled for transplanted rice cultivation. Field information on the water requirement of dryland crops such as wheat and the effects of loosening the dense layer on crop yield and water use efficiency are very limited. Field experiments were, therefore, conducted in the grey floodplain soil of Sonatala series (Aeric Haplaquept) to study the irrigation and tillage effects on the yield and water relations of wheat (Triticum aestivum L. cv. Sonalika). The split plot design experiment comprised four irrigation treatments in the mainplots viz. W0 = no irrigation, W1 = irrigation of 5 cm at 4 weeks after planting, W2-W1 + irrigation(s) of 5 cm each at irrigation water to cummulative pan evaporation (IW/CPE) ratio of 0.75 and W3- W1 + irrigation(s) of 5 cm eacht at IW/CPE ratio of 0.50. The sub-plot tillage depth treatments were: A-7.5 cm (traditional), B-15 cm, C-22.5 cm, D-22.5 cm practised in alternate wheat seasons. Measurements were made of grain and straw yield, soil water depletion and water expense efficiency.Irrigation had no effect on grain or straw yield. Tillage to 15 cm increased wheat yield by about 15% over traditional depth to ploughing. In general, deep tillage coupled with one irrigation at four weeks after planting produced the largest wheat yield.Soil water depletion (SWD) in the 0–90 cm profile was greatest in the treatment receiving two irrigations, one at 4 weeks and again at IW/CPE ratio of 0.50. The average SWD in this treatment was 113 in 1982–83 and 82 mm in 1983–84. Plots receiving traditional tillage (7.5 cm) had the greatest SWD. Total water expense were the greatest in treatments receiving three irrigations. The maximum water expense efficiency (WEE) of wheat was observed in the non-irrigated plots in 1982–83 and 1983–84, respectively. Deep tillage treatments, in general, had significantly greater WEE than those under traditional ploughing. Intensive irrigation and efficient soil and water management are important factors in enhancing crop productivity. The former not only permits judicious water use but also better utilization of other production factors thereby leading to increased crop yield which, in turn, helps stabilize the farming economy. The best way to meet increasing demand for water is to adopt efficient water management practices to increase water use efficiency.Irrigation should aim at restoring the soil water in the root zone to a level at which the crop can fully meet its evapo-transpiration (ET) requirement. The amount of water to be applied at each irrigation and how often a soil should be irrigated depend, however, on several factors such as the degree of soil water deficit before irrigation, soil types, crops, and climatic conditions (Chaudhury and Gupta 1980).Knowledge of movement of water through the soil is imperative to efficient water management and utilization. The presence of a dense pan impedes water movement into the sub-soil. As a result, the top soil becomes saturated by irrigation and sensitive dryland crops can fail as this plough layer impedes the penetration of roots into deeper soil layers and decreases water extraction. Crops growing in these soils often undergo severe water stress within 5–8 days after rainfall or irrigation (Lowry et al. 1970). Due to decrease rates of water flow, the lower soil layer may remain unsaturated and as a result, the recharge and soil water storage in the profile are considerably decreased (Sur et al. 1981).In Bangladesh, ploughpans develop to varying degree in almost all ploughed soils (Brammer 1980). They are particularly marked in soils which are puddled for transplanted rice cultivation where the pan is usually only 8–10 cm below the soil surface and 3–5 cm thick. Its presence is generally regarded as advantageous for cultivation of transplanted rice in that it prevents excessive deep percolation losses of water. But in the same soil this cultivation for a subsequent dryland crop would adversely affect yield. A slight modification of the plough layer could enable good yields of both rice and a dryland crop to be obtained in the same soil in different seasons (Brammer 1980). The sub soils have a good bearing capacity, both when wet and dry and the pan can easily be reformed, if desired, for cultivating transplanted rice after a dryland crop like wheat.Professor of Soil Science, Dhaka University, Dhaka, Bangladesh  相似文献   

11.
The DSSAT-CSM-CERES-Wheat V4.0 model was calibrated for yield and irrigation scheduling of wheat with 2004–2005 data and validated with 13 independent data sets from experiments conducted during 2002–2006 at the Punjab Agricultural University (PAU) farm, Ludhiana, and in a farmer's field near PAU at Phillaur, Punjab, India. Subsequently, the validated model was used to estimate long-term mean and variability of potential yield (Yp), drainage, runoff, evapo-transpiration (ET), crop water productivity (CWP), and irrigation water productivity (IWP) of wheat cv. PBW343 using 36 years (1970–1971 to 2005–2006) of historical weather data from Ludhiana. Seven sowing dates in fortnightly intervals, ranging from early October to early January, and three irrigation scheduling methods [soil water deficit (SWD)-based, growth stage-based, and ET-based] were evaluated. For the SWD-based scheduling, irrigation management depth was set to 75 cm with irrigation scheduled when SWD reached 50% to replace 100% of the deficit. For growth stage-based scheduling, irrigation was applied either only once at one of the key growth stages [crown root initiation (CRI), booting, flowering, and grain filling], twice (two stages in various combinations), thrice (three stages in various combinations), or four times (all four stages). For ET-driven irrigation, irrigations were scheduled based on cumulative net ETo (ETo-rain) since the previous irrigation, for a range of net ETo (25, 75, 125, 150, and 175 mm). Five main irrigation schedules (SWD-based, ET-driven with irrigation applied after accumulation of either 75 or 125 mm of ETo, i.e., ET75 or ET125, and growth stage-based with irrigation applied at CRI plus booting, or at CRI plus booting plus flowering stage) were chosen for detailed analysis of yield, water balance, and CWP and IWP. Nitrogen was non-limiting in all the simulations.Mean Yp across 36 years ranged from 5.2 t ha−1 (10 October sowing) to 6.4 t ha−1 (10 November sowing), with yield variations due to seasonal weather greater than variations across sowing dates. Yields under different irrigation scheduling, CWP and IWP were highest for 10 November sowing. Yields and CWP were higher for SWD and ET75-based irrigations on both soils, but IWP was higher for ET75-based irrigation on sandy loam and for ET150-based irrigation on loam. Simulation results suggest that yields, CWP, and IWP of PBW343 would be highest for sowing between late October and mid-November in the Indian Punjab. It is recommended that sowing be done within this planting period and that irrigation be applied based on the atmospheric demand and soil water status and not on the growth stage. Despite the potential limitations recognised with simulation results, we can conclude that DSSAT-CSM-CERES-Wheat V4.0 is a useful decision support system to help farmers to optimally schedule and manage irrigation in wheat grown in coarse-textured soils under declining groundwater table situations of the Indian Punjab. Further, the validated model and the simulation results can also be extrapolated to other areas with similar climatic and soil environments in Asia where crop, soil, weather, and management data are available.  相似文献   

12.
Summary Rapid drying of surface layers of coarse-textured soils early in the growth season increases soil strength and restricts root growth. This constraint on root growth may be countered by deep tillage and/or early irrigation. We investigated tillage and irrigation effects on root growth, water use, dry matter and grain yield of wheat on loamy sand and sandy loam soils for three years. Treatments included all combinations of two tillage systems i) conventional tillage (CT) — stirring the soil to 10 cm depth, ii) deep tillage (DT) — subsoiling with a single-tine chisel down to 35–40 cm, 40 cm apart followed by CT; and four irrigation regimes, i) I0 — no post-seeding irrigation, ii) I1 — 50 mm irrigation 30 days after seeding (DAS), iii) I2 — 50 mm irrigation 30 DAS and subsequent irrigations of 75 mm each when net evaporation from USWB class A open pan (PAN-E) since previous irrigation accumulated to 82 mm, and iv) I3 — same as in I2 but irrigation applied when PAN-E accumulated to 62 mm. The crop of wheat (Triticum aestivum L. HD 2329) was fertilized with 20kg P, 10kg K and 5kg Zn ha–1 at seeding. The rate of nitrogen fertilization was 60 kg ha–1 in the unirrigated and 120 kg ha–1 in the irrigated treatments. Tillage decreased soil strength and so did the early post-seeding irrigation. Both deep tillage and early irrigation shortened the time needed for the root system to reach a specified depth. Subsequent wetting through rain/irrigation reduced the rate of root penetration down the profile and also negated deep tillage effects on rooting depth. However, tillage/irrigation increased root length density in the rooted profile even in a wet year. Better rooting resulted in greater profile water depletion, more favourable plant water status and higher dry matter and grain yields. In a dry year, the wheat in the DT plots used 46 mm more water, remained 3.3 °C cooler at grain-fill and yielded 68% more grain than in CT when unirrigated and grown in the loamy sand. Early irrigation also increased profile water depletion, more so in CT than DT. Averaged over three years, grain yield in DT was 12 and 9% higher than in CT on loamy sand and sandy loam, respectively. Benefits of DT decreased with increase in rainfall and irrigation. Irrigation significantly increased grain yield on both soils, but the response was greatly influenced by soil type, tillage system and year. The study shows that soil related constraints on root growth may be alleviated through deep tillage and/or early irrigation.  相似文献   

13.
Summary Water withdrawal from the soil beneath an irrigated peach orchard is described over depth and time after irrigation for a red-brown earth where the hydraulic properties vary with depth. Relationships between water uptake by roots, root concentration and soil-water suction were explored over protracted drying cycles. In the early stages of drying water uptake by roots was well correlated with root concentration over the profile but, over time, water uptake was redistributed over the root system. Theoretical analysis suggests that poor utilization of water from depth on this soil was associated mainly with low root concentrations and low root (radial) conductance. Practical considerations for improved water management in the root zone of peach orchards on shallow soils are discussed.  相似文献   

14.
The ability of cotton roots to grow downwards through a partially-wetted soil (Calcic Haploxeralf) profile toward a water source located beneath them was investigated. Plants were grown in 60-cm-high soil columms (diameter 10 cm), the bottom 15 cm of which was kept wet by frequent drip irrigation, while the upper 45 cm was wetted three times per week up to 20, 40, 60, 80 or 100% of pot capacity. Pot capacity was defined as the water content which gave uniform distribution within the pot and was at a soil matric potential ( m ) of –0.01 MPa. Plants were harvested 42 and 70 days after emergence (DAE). Root length density was reduced by decreased soil moisture content. At 42 DAE, density was reduced in the soil profile down to 36 cm. The density in the middle segment of the cylinder (24–36 cm) increased at the second harvest, from 0.1 to 0.35 cm · cm–3 at 40% and from 0.2 to 0.5 cm · cm–1 at 60% of pot capacity, respectively. A significant rise in root length density was found at all moisture contents above 20% in the two deepest soil segments. It was most marked at 40% where the rise was from 0.2 to 0.8 cm · cm–3, due to the development of secondary roots at the wetted bottom of the column. When only 20% of pot capacity was maintained in the top 45 cm of the profile, almost no roots reached the wetted soil volume, and root length density was very low. Hydrotropism, namely root growth through dry soil layers toward a wet soil layer was thus not apparent. Root dry weight per unit length decreased with increasing depth in the column at all moisture levels. However, the only significant decrease was, found between the top and the second soil segments and was due to thicker primary roots in the top segment. There was no clear relationship between length and dry weight of roots. Total plant dry weight and transpiration were reduced significantly only at 20% of pot capacity. Dry matter production by roots was less severely inhibited than that by shoots, under decreased moisture content in the soil profile. Leaf water potential decreased when the soil moisture content of the top 45 cm of the profile was reduced below 60% of pot capacity. It was concluded that even at soil moisture content equivalent to a m of 0.1 MPa, the rate of root growth was sufficient to reach a wetted soil layer at the bottom of the soil column, where the plant roots then proliferated. This implies that as long as the soil above the subsurface dripper is not very dry there is no real need for early surface irrigation.  相似文献   

15.
山地枣树涌泉根灌适宜布置方式研究   总被引:1,自引:0,他引:1  
以5年生梨枣树为试验树种,设置了4个处理(T1~T4),即每株枣树分别安装1、2、3、4个灌水器的布置方式,在灌水器流量4 L/h、埋深35 cm,单株枣树单次灌水量80 L情况下,对山地枣树涌泉根灌适宜布置方式进行了试验研究。结果表明,T2在灌水后土壤湿润体与枣树主要吸收根匹配最好,0~80 cm土层范围水分保持也较好;各处理枣树的枣吊长度、叶面积在停止生长后有一定的差异,枣吊平均长度顺序为T2T3T1T4,叶面积大小顺序为T2=T3T4T1;T2枣树在生理落果以后挂果最多,达到平均每株215个,比T1、T3、T4分别高57%、14%和32%;在一个灌水周期的末期,各处理叶水势处于-1.0~-1.4 MPa之间,叶水势大小顺序为T2T4T3T1。综合分析表明,每株枣树安装2个灌水器对枣树生长、生理最有利,是一种适宜的布置方式。  相似文献   

16.
Soil water and salinity are crucial factors influencing crop production in arid regions. An autumn irrigation system employing the application of a large volume of water (2200–2600 m3 ha−1) is being developed in the Hetao Irrigation District of China, since the 1980s with the goal to reduce salinity levels in the root zone and increase the water availability for the following spring crops. However, the autumn irrigation can cause significant quantities of NO3 to leach from the plant root zone into the groundwater. In this study, we investigated the changes in soil water content, NO3–N and salinity within a 150 cm deep soil profile in four different types of farmlands: spring wheat (FW), maize (FM), spring wheat–maize inter-planting (FW–M) and sunflower (FS). Our results showed that (1) salt losses mainly occurred in the upper 60 cm of the soil and in the upper 40 cm for NO3–N; (2) the highest losses of salt and NO3–N could be observed in FW, whereas the lowest losses were found in FW–M.NO3–N concentration, pH and electrical conductivity (EC) in the groundwater were also monitored before and after the autumn irrigation. We found that the autumn irrigation caused the groundwater concentration of NO3–N to increase from 1.73 to 21.6 mg L−1, thereby, exceeding the standards of the World Health Organization (WHO). Our results suggest that extensive development of inter-planting tillage might be a viable measure to reduce groundwater pollution, and that the application of optimized minimum amounts of water and nitrogen to meet realistic yield goals, as well as the timely application of N fertilizers and the use of slow release fertilizers can be viable measures to minimize nitrate leaching.  相似文献   

17.
We describe the three dimensional variation in root length density (Lv) within a quarter of the planting area of Colombard grapevines on Ramsey rootstock grown under drip and full-cover microjet irrigation. Under drip irrigation roots were concentrated under the vine row, whereas under microjet irrigation roots were evenly spread across the planting area. The maximum Lv were 1.2 and 0.6 cm/cm3 and the estimated total root lengths per vine were 32 and 26 km for drip and microjet irrigated vines, respectively. Under drip irrigation, 56% of the variation in Lv could be accounted for as a function of depth and radial distance into the row, and under microjet, 45% of the variation in Lv could be accounted for as a function of depth. Twenty five per cent of the vine roots were in soil with an air filled porosity at field capacity of 6% or less. Based on the variation of root length per unit area (La) across a quarter of the planting area and between vines, we concluded that selection of a location at which the La would be representative of that in the entire irrigation unit is feasible in microjet irrigated vines but not in those irrigated with drip. The absence of a location representative of La confounds the scheduling of drip irrigation based solely on measurements of soil moisture.  相似文献   

18.
The reduction in agricultural water use in areas of scarce supplies can release significant amounts of water for other uses. As improvements in irrigation systems and management have been widely adopted by fruit tree growers already, there is a need to explore the potential for reducing irrigation requirements via deficit irrigation (DI). It is also important to quantify to what extent the reduction in applied water through DI is translated into net water savings via tree evapotranspiration (ET) reduction. An experiment was conducted in a commercial pistachio orchard in Madera, CA, where a regulated deficit irrigation (RDI) program was applied to a 32.3-ha block, while another block of the same size was fully irrigated (FI). Four trees were instrumented with six neutron probe access tubes each, in the two treatments and the soil water balance method was used to determine tree ET. Seasonal irrigation water in FI, applied through a full-coverage microsprinkler system, amounted to 842 mm, while only 669 mm were applied in RDI. Seasonal ET in FI was 1024 mm, of which 308 mm were computed as evaporation from soil (Es). In RDI, seasonal ET was reduced to 784 mm with 288 mm as Es. The reduction in applied water during the deficit period amounted to 147 mm. The ET of RDI during the deficit period was also reduced relative to that of FI by 133 mm, which represented 33% of the ET of FI during the deficit irrigation period. There was an additional ET reduction in RDI of about 100 mm that occurred in the post-deficit period.  相似文献   

19.
Water demand for irrigation is increasing in olive orchards due to enhanced yields and profits. Because olive trees are considered moderately tolerant to salinity, irrigation water with salt concentrations that can be harmful for many of fruit tree crops is often used without considering the possible negative effects on olive tree growth and yield. We studied salt effects in mature olive trees in a long term field experiment (1998-2006). Eighteen-year-old olive trees (Olea europaea L.) cv. Picual were cultivated under drip irrigation with saline water composed of a mixture of NaCl and CaCl2. Three irrigation regimes (i. no irrigation; ii. water application considering soil water reserves, short irrigation; iii. water application without considering soil water reserves and adding a 20% more as a leaching fraction, long irrigation) and three salt concentrations (0.5, 5 or 10 dS m−1) were applied. Treatments were the result of the combination of three salt concentrations with two irrigation regimes, plus the non-irrigated treatment. Growth parameters, leaf and fruit nutrition, yield, oil content and fruit characteristics were annually studied. Annual leaf nutrient analyses indicate that all nutrients were within the adequate levels. After 8 years of treatment, salinity did not affect any growth measurement and leaf Na+ and Cl concentration were always below the toxicity threshold of 0.2 and 0.5%, respectively. Annual and accumulated yield, fruit size and pulp:stone ratio were also not affected by salts. However, oil content increased linearly with salinity, in most of the years studied. Soil salinity measurements showed that there was no accumulation of salts in the upper 30 cm of the soil (where most of the roots are present) because of leaching by rainfall at the end of the irrigation period. Results suggest that a proper management of saline water, supplying Ca2+ to the irrigation water, using drip irrigation until winter rest and seasonal rainfall typical of the Mediterranean climate leach the salts from the first 0-60 cm depth, and growing a tolerant cultivar, can allow using high saline irrigation water (up to 10 dS m−1) for a long time without affecting growth and yield in olive trees.  相似文献   

20.
Subsurface drip irrigation (SDI) can result in accumulation of soluble salts at or near the soil surface. In the southwestern USA, rainfall is usually inadequate for stand establishment, thus supplemental irrigation is necessary. Use of sprinklers to minimize salt concentrations near the soil surface is an alternative to using SDI for stand establishment. Our objective was to evaluate the effects of germination method (irrigation with SDI or sprinklers), depth of SDI tape (0.18 and 0.25 m), and irrigation water salinity (1.5 and 2.6 dS m−1) on salt and Br distribution after each of two consecutive growing seasons. Treatments consisted of factorial combinations of these three factors. Bromide was used to trace salt accumulation from the drip tape. After season 1, the highest salt concentrations (ECe up to 11 dS m−1) were in the top 3 cm of soil. Below 3 cm, soil EC dropped significantly and remained constant to 1.05 m. Similarly, Br concentrations were highest in the top 3 cm of soil. The mass of salt and Br recovered in the top 3 cm were significantly affected by tape depth, and water EC significantly affected salt mass. Salt present in the soil after season 1 adversely affected crop emergence in season 2, where SDI was used for stand establishment. After season 2, the highest salt and Br concentrations were at about 25 cm depth, probably due to 210 mm of rainfall that occurred near the end of the growing season. There were no significant differences among treatments in the mass of either salt or Br in the top 3 cm or 16 cm of the soil profile after season 2. Timely rainfall, transplanting rather than direct seeding, and changing bed geometry can reduce dependence on sprinklers for stand establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号