首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fungicide Vitavax RS and the seed polymer Extender were sequentially applied to canola seed to determine their effect on the fungal inoculum, Penicillium bilaiae. In the laboratory, the fungicide was applied at the recommended rate of 23.4 ml kg–1, and the polymer was applied by the manufacturer. Significant death of P. bilaiae occurred after 2.5 days on the Vitavax RS-treated seed and after 1.5 days with the seed treated with both Vitavax RS and Extender. In field treatments, the seed was sown at six sites in the fall just prior to freeze-up. Results from the laboratory experiment indicate that there should be no harmful effects of the Vitavax RS and Extender on the P. bilaiae at the time of seeding because the seeds were sown within 2 h of inoculation. The environmental extremes in 2001 and 2002 resulted in large variations in the data. P. bilaiae did not increase yield under these conditions.  相似文献   

2.
Rock phosphate (RP) is a low efficiency P fertilizer that is directly applied to the soil and can be solubilized by phosphate-solubilizing microorganisms (PSMs) in fermentation or soil conditions. This study investigated dynamic solubilization of 2 concentrations of rock phosphate in a liquid culture with different dosages of glucose by two fungal isolates,Aspergillus niger P39 and Penicillium oxalicum P66, from soybean and wheat rhizosphere soil. Although during the 20 day culture period A. niger P39 had a stronger ability to acidify the culture media than P. ozalicum P66, soluble P concentrations at glucose dosages of 30 and 50 g L^-1 with RP of 15 g L^-1 in the culture solution were much higher by P. oxalicum P66. The greater effectiveness of P. oxalicum P66 compared to A. niger P39 in the solubilization of RP was strongly associated with the production of organic acids. This study suggested that for RP solubilization the type rather than the concentration of PSM-produced organic acids was more important.  相似文献   

3.
Seven most efficient phytase and phosphatases producing fungi were isolated from the soils of arid and semi-arid regions of India and tested for their efficiency on hydrolysis of two important organic P compounds: phytin and glycerophosphate. The native soil organic P may be exploited after using these organisms as seed inoculants, to help attain higher P nutrition of plants. The identified organisms belong to the three genera: Aspergillus, Emmericella and Penicillium. Penicillium rubrum released the most acid into the medium during growth. Aspergillus niger isolates were found to accumulate biomass the fastest. A significant negative correlation (r=−0.593,n=21, p<0.01) was observed between the development of fungal mat and pH of the media. The extracellular (E) phosphatases released by different fungi were less than their intracellular (I) counterpart, but the trend was reversed in case of phytase production. The E:I ratio of different fungi ranged from 0.39 to 0.86 for acid phosphatase, 0.29 to 0.41 for alkaline phosphatases and 9.4 to 19.9 for phytase. The efficiency of hydrolysis of different organic P compounds of different fungi varied from 2.12-4.85 μg min−1 g−1 for glycerophosphate to 0.92-2.10 μg min−1 g−1 for phytin. The trend of efficiency was as follows: Aspergillus sp.>Emmericella sp.>Penicillium sp. The results indicated that the identified fungi have enough potential to exploit native organic phosphorus to benefit plant nutrition.  相似文献   

4.
The biodegradation of cyanide by Trichoderma and Fusarium spp. growing in association with plant roots in microcosms was investigated with CN at 50 or 100 mg/kg. Pea and wheat seeds germinated and plants grew only when seeds were inoculated with the fungi, probably because the plant/fungal association was capable of promoting cyanide catabolism. Inoculation by fungi also increased plant shoot lengths and the biomass of shoots and root compared with control plants without CN and fungi. Such plant/fungal association shows potential as a land remediation system.  相似文献   

5.
Biosolubilization of rock phosphate (RP) using a Penicillium spp., an Aspergillus spp., Pleurotus ostreatus, Bradyrhizobium elkanii SEMIA 5019 and their fungal-rhizobial biofilms was investigated. Eppawala Rock Phosphate (ERP, total P concentration 17.6%), a RP from a deposit in Sri Lanka was used. Penicillium spp.-B elkanii SEMIA 5019 biofilm released the highest amount of P from the ERP with the highest P release-to-P uptake ratio. The P release of Penicillium spp. alone was significantly lower than that of its biofilm. Similarly, P. ostreatus-B. elkanii SEMIA 5019 biofilm showed a higher P release than P. ostreatus alone. However, P. ostreatus alone or its biofilm showed lower P release-to-P uptake ratios indicating relatively higher P uptake compared to the P release. The Aspergillus spp., showed a moderate P release. Large bradyrhizobial cell clusters attached to the mycelial mat of Penicillium spp. and P. ostreatus were observed under light microscope after 12 and 25 days of incubation, respectively. The present study, identified an effective method of fungal-rhizobial biofilm mediated solubilization of RP.  相似文献   

6.
Summary Selective grazing of fungi by soil microarthropods may affect decomposition rates of litter materials and the structure of microarthropod and fungal communities. We developed laboratory methods to assay feeding selectivity and investigated the preferences of the collembolan Folsomia candida on three fungi: Acremonium sp., Paecilomyces varioti, and Penicillium citrinum. F. candida showed stronger preference for Acremonium sp. than for P. varioti and P. citrinum. Oviposition site selection followed the same pattern. Actively metabolizing hyphae of Acremonium sp. and P. varioti were preferred over senescent hyphae, while spores of P. citrinum were preferred over active hyphae. If microarthropod preference for active hyphae is extensive, microarthropod regulation of decomposition could be more important than their biomass indicates. Furthermore, as the P. citrinum results indicate, mechanisms of microbial dissemination may include selective grazing.Contribution in part to International Symposium on Faunal Influences on Soil Structure, Edmonton, Alberta, Canada (11–13 June 1984), organized by W. B. McGill; and the annual meeting of the Ecological Society of America, Minneapolis, Minnesota (17–21 June 1985)  相似文献   

7.
Four most efficient phytase and phosphatase producing fungi belonging to genera Aspergillus, Trichoderma, and Penicillium were isolated from the rhizosphere soil of leguminous, cereal, and vegetable crops. Efficacy order of fungi in terms of phytate hydrolysis under laboratory conditions was Aspergillus > Penicillium > Trichoderma. The test fungi released more of extracellular (E) phytase than intracellular (I) phytase (E: I- 3.44 - 6.03:1) and produced acid phosphatase activity ranging from 367- 830 μmol pNP ml?1 h?1. Aspergillus niger possessed the twin ability of phosphate mineralization and solubilization. The incubation studies in compost-amended soil exhibited the higher competence of Penicillium chrysogenum to improve the soil available P and increase the level of extractable organic P under alkaline soil to benefit P nutrition. Developing microbial inoculant using P. chrysogenum strain and its subsequent application to soil may help the marginal farmer to replenish soil P more economically compared to chemical fertilizer.  相似文献   

8.
Summary At least 105–106 viable cells of the rhizopseudomonad strain 7NSK2* had to be applied per seed of maize cultivar Beaupré and barley cultivar Iban in order to obtain a beneficial effect on plant growth under greenhouse conditions. In pot experiments where an increase in plant growth, varying between 15% and 25%, was observed, the introduced strain 7NSK2* constituted at least 20% of the bacterial root colonizers. This colonization provoked a shift in the fungal rhizospheric community. Due to the inoculation with 7NSK2, Penicillium spp. became the dominant isolates, while Trichoderma spp. were the dominant isolates in pot experiments with low and inefficient inoculum levels of 7NSK2*.  相似文献   

9.
Almost 900 fungal isolates were obtained from eight coffee plantations in Colombia and Mexico. Of these, 76 isolates showed activity to solubilize Ca3(PO4)2 (PCa) and FePO4·H2O (PFe), which had been added to agar in a plate test. Generally, PCa was better solubilized than PFe. Colombian isolates were generally somewhat less effective than Mexican isolates. The two most effective isolates from each country with apparent highest PFe, solubilization potential were selected and cultivated in liquid medium containing PFe, which is more prevalent in tropical soils. The pH value, solubilized P in the medium and P uptake in fungal biomass were determined. After 24 days, Cylindrocarpon didymum and C. obtusisporum (both from Colombia) had solubilized 9.9 and 6.4 mg PO4 3--P L?1 and took up 8.6 and 11.6 mg P in biomass. Penicillium janthinellum and Paecilomyces marquandii (both from Mexico) solubilized 7.0 and 1.9 mg PO4 3--P L?1 and took up 11.3 and 17.3 mg P in biomass. The potential practical use of the four fungal isolates for different strategies in making more P available for coffee growth is discussed.  相似文献   

10.
Two of 187 fungal isolates (Aspergillus niger 1B and 6A) displaying superior phosphate (P) solubilization and hydrolytic enzyme secretion were studied using P forms of calcium (Ca-P), iron (Fe-P), and aluminum (Al-P). Phosphate solubilization in a sucrose-basal salt (SB) broth was increased and pH decreased by both isolates. In Ca-P medium, solubilization for 6A was approximately 322 μg P mL−1 and pH decreased by 4.2 units to 2.3 in 72 h. However, when pH value of the SB broth was lowered to 2.5 using HCl, 65.3  ±  0.4 μg mL−1 of P was released from Ca-P, whereas trace amounts of P were released from Fe-P and Al-P. Both isolates displayed enhanced Al-P solubilization using NH4Cl rather than KNO3 as the N source; final pH values were not significantly different. With Ca-P, gluconic acid was predominantly produced by 1B and 6A, whereas oxalic acid predominated with Fe-P and Al-P. Addition of gluconic acid (final concentration of 8.5 μmol mL−1) to Ca-P-supplemented SB lowered pH (2.9) and solubilized phosphate (146.0 ± 1.0 μg mL−1). Similarly, addition of oxalic acid (final concentration 6.6 μmol mL−1) to Ca-P- and Fe-P-amended media solubilized P (60.2 ± 0.9 and 21.6 ± 2.1 μg mL−1, respectively), although these quantities were significantly lower than those detected in unamended SB. The presence of unidentified P solubilized compound(s) in the dialyzed (MW>500) supernatant warrants further study. In pot experiments, significant increases in plant (Brassica chinensis Linn.) dry weight and N and P contents were observed with the addition of isolate 6A, when a small amount of organic fertilizer together with either rock phosphate (South African apatite) or Ca-P served as the main P sources.  相似文献   

11.
We studied the effect of bacteria involved in rock phosphate (four isolates), iron phosphate (two isolates), and aluminium phosphate (two isolates) solubilization, and two phytate-mineralizing bacteria in terms of their interaction with two Glomus spp. on Pueraria phaseoloides growth and nutrition. The plant —Rhizobium sp. — mucorrhiza symbiosis system may increase in yield and nutrition in association with specific rhizosphere bacteria that solubilize calcium, iron, and aluminium phosphates. No benefit from phytate-mineralizing bacteria was found under these experimental conditions. P. phaseloides growth responses were influenced in different ways by specific combinations of the selected bacteria and arbuscular mycorrhizal fungi. Considerable stimulation of nutrient uptake was observed with fungus-bacteria combinations of Azospirillum sp. 1, Bacillus sp. 1 or Enterobacter (spp. 1 or 2) associated with G. mosseae. The fact that Bacillus sp. 1, a calcium-phosphate solubilizing isolate, positively interacted with G. mosseae and negatively with G. fasciculatum is an indication of specific functional compatibility between the biotic components integrated in the system. From our results, the interactions between bacterial groups able to solubilize specific phosphate and mycorrhizal fungi cannot be interpreted as occurring only via P solubilization mechanisms since no generalized effect was obtained. Iron-phosphate solubilizing microorganisms were more active alone than in dual associations with Glomus sp., but the aluminium-phosphate dissolving isolates positively interacted in mycorrhizal plants. Further work is needed in this area in order to elucidate the mechanisms that affect rhizosphere microorganism interactions. G. mosseae was more effective but less infective than G. fasciculatum in most of the combined treatments.  相似文献   

12.
Plants colonized by arbuscular mycorrhizal (AM) fungi have been shown to respond positively to the application of insoluble forms of inorganic phosphorus (P) such as rock phosphates (RPs). The mechanism(s) underlying such responses remain(s) unknown and although it has been hypothesized, there is no experimental support for the production of chelating agents by AM fungal hyphae. Here we investigate whether AM fungi can solubilize P from RPs and transfer it to plant roots. Using root-organ cultures of Daucus carrota L. inoculated or not with Glomus intraradices Schenk & Smith and containing P from different RP sources, we predicted that: (1) roots inoculated with G. intraradices would take up more P than those uninoculated; that (2) the amount of P taken up by roots through G. intraradices would be positively correlated with the RP reactivity; and that (3) G. intraradices would have access to RP through localized alterations of pH and/or by the production of organic acid anions that may act as chelating agents. The RP reactivity was positively correlated with P uptake. However, mycorrhizal roots grew initially slower and did not respond differently to any P treatment than those uninoculated. There was no evidence of localized changes in pH in proximity of G. intraradices hyphae, indicating that responses to RP by mycorrhizal plants observed in previous studies do not appear to result from the release of H+ ions alone or in combination with organic acid anions.  相似文献   

13.
The effects of biocide use on nontarget organisms, such as arbuscular mycorrhizal (AM) fungi, are of interest to agriculture, since inhibition of beneficial organisms may counteract benefits derived from pest and disease control. Benomyl, pentachloronitrobenzene (PCNB) and captan were tested for their effects on the germination and early hyphal growth of the AM fungiGlomus etunicatum (Becker & Gerd.),Glomus mosseae (Nicol. & Gerd.). Gerd. and Trappe andGigaspora rosea (Nicol & Schenck) in a silty-clay loam soil placed in petri plates. Application of fungicides at 20 mg active ingredient (a.i) kg–1 soil inhibited spore germination by all three AM-fungal isolates incubated on unsterilized soil for 2 weeks. However, fungicides applied at 10 mg a.i. kg–1 soil had variable effects on AM-fungal isolates. Fungicide effects on germination and hyphal growth of G.etunicatum were modified by soil pasteurization and CO2 concentration in petri plates and also by placing spores below the soil surface followed by fungicide drenches. Effects of fungicides on mycorrhiza formation and sporulation of AM fungi, and the resulting host-plant response, were evaluated in the same soil in associated pea (Pisum sativum L.) plants. Fungicides applied at 20 mg a.i. kg–1 soil did not affect the root length colonized byG. etunicatum, but both benomyl and PCNB reduced sporulation by this fungus. Benomyl and PCNB reduced the root length colonized byG. rosea at 48 and 82 days after transplanting. PCNB also reducedG. mosseae-colonized root length at 48 and 82 days, but benomyl only affected root length colonized byG. mosseae at the earlier time point. Only PCNB reduced sporulation byG. mosseae, consistent with its effect on root length colonized by this fungus. captan reduced the root length colonized by G. rosea at 48 days, but not at 82 days, and reduced colonization byG. mosseae at 82 days, but not at 48 days. Captan did not affect sporulation by any of the fungi.G. rosea spore production was highly variable, but benomyl appeared to reduce sporulation by this fungus. Overall,G. etunicatum was the most tolerant to fungicides in association with pea plants in this soil, andG. rosea the most sensitive. Benomyl and PCNB were overall more toxic to these fungi than captan. Interactions of AM fungi and fungicides were highly variable and biological responses depended on fungus-fungicide combinations and on environmental conditions.  相似文献   

14.
根寄生杂草瓜列当(Orobanche aegyptiaca)严重危害番茄(Solanum lycopersicum)等多种经济作物的产量和品质。如何有效防除仍是当今瓜列当研究重点之一。真菌是列当的生防因子之一,但目前对农作物无致病性的列当生防真菌的研究尚少。本研究通过培养皿试验研究1株灰黄青霉(Penicillium griseofulvum,CF3)的无细胞发酵滤液对瓜列当种子萌发和发芽管生长的影响,通过盆栽试验研究CF3粉状制剂对瓜列当的防除效果及对寄主番茄生长和根区土壤微生物的影响。结果表明:1)培养皿试验中,CF3发酵液抑制了瓜列当种子萌发和发芽管生长。其中,在放有瓜列当种子与番茄幼苗的培养皿中,加入CF3发酵液后培养6 d,瓜列当种子的萌发均被完全抑制;添加CF3发酵液与霍格兰德营养液体积比为1∶2、1∶4、1∶6和1∶8的混合液培养8 d后,瓜列当种子的萌发率与对照相比分别减少80.26%、70.26%、68.10%和47.51%。CF3发酵液原液、10倍稀释液和100倍稀释液处理后使瓜列当发芽管长度与对照相比分别缩短100.00%、68.84%和19.24%。2)盆栽试验中,CF3菌剂抑制了瓜列当的出土和单株瓜列当的生长,并使番茄增产。施加1.0 g·kg-1 CF3菌剂130 d后,瓜列当的出土数量、出土率和单株瓜列当干重分别降低76.19%、85.30%和28.48%,番茄果实鲜重增加51.57%。此外,灰黄青霉菌剂还调整了番茄根区土壤的微生物区系结构,使施加菌剂130 d后番茄根区土壤中除接入CF3外真菌数量与对照相比降低75.60%,细菌与真菌的数量之比增加117.57%。平均来看,CF3使番茄根区土壤中除CF3外真菌数量降低42.81%,放线菌总数增加84.15%。本研究表明,灰黄青霉CF3具有防除番茄上寄生瓜列当的能力,适宜作为瓜列当的生防真菌。  相似文献   

15.
Investigations were made on living strains of fungi in a bioremediation process of three metal (lead) contaminated soils. Three saprotrophic fungi (Aspergillus niger, Penicillium bilaiae, and a Penicillium sp.) were exposed to poor and rich nutrient conditions (no carbon availability or 0.11 M d-glucose, respectively) and metal stress (25 µM lead or contaminated soils) for 5 days. Exudation of low molecular weight organic acids was investigated as a response to the metal and nutrient conditions. Main organic acids identified were oxalic acid (A. niger) and citric acid (P. bilaiae). Exudation rates of oxalate decreased in response to lead exposure, while exudation rates of citrate were less affected. Total production under poor nutrient conditions was low, except for A. niger, for which no significant difference was found between the poor and rich control. Maximum exudation rates were 20 µmol oxalic acid g?1 biomass h?1 (A. niger) and 20 µmol citric acid g?1 biomass h?1 (P. bilaiae), in the presence of the contaminated soil, but only 5 µmol organic acids g?1 biomass h?1, in total, for the Penicillium sp. There was a significant mobilization of metals from the soils in the carbon rich treatments and maximum release of Pb was 12% from the soils after 5 days. This was not sufficient to bring down the remaining concentration to the target level 300 mg kg?1 from initial levels of 3,800, 1,600, and 370 mg kg?1in the three soils. Target levels for Ni, Zn, and Cu, were 120, 500, and 200 mg kg?1, respectively, and were prior to the bioremediation already below these concentrations (except for Cu Soil 1). However, maximum release of Ni, Zn, and Cu was 28%, 35%, and 90%, respectively. The release of metals was related to the production of chelating acids, but also to the pH-decrease. This illustrates the potential to use fungi exudates in bioremediation of contaminated soil. Nonetheless, the extent of the generation of organic acids is depending on several processes and mechanisms that need to be further investigated.  相似文献   

16.
Summary We tested the response of the wetland rice cultivar Prakash to inoculation with ten vescular-arbucular mycorrhizal (VAM) fungi (three selected from the first screening and seven isolated from local paddy fields) in a pot experiment under flooded conditions in order to select the most efficient mycorrhizal fungi to inoculate the rice nursery. A sandy clay loam soil was used as the substrate, fertilized with the recommended N and K levels (100 kg N ha–1 as ammonium sulphate and 50 kg K ha–1 as muriate of potash) and half the recommended level of P (25 kg ha–1 as super phosphate). The inoculation was made into dry nursery beds and the beds were flooded when the seedlings were about 25 cm high, in 15 days. Twenty-eight-day old seedlings were transferred to pots filled with well puddled soil flooded with 5 cm of standing water. Based on the increase in grain yield and total biomass, Glomus intraradices and Acaulospora sp. were considered efficient and suitable for inoculation into rice nurseries.  相似文献   

17.
The symbiotic efficiency of coastal sand dune rhizobial isolates on four cultivated legumes, cowpea (Vigna unguiculata), green gram (Vigna radiata), black gram (Vigna mungo) and horse gram (Macrotyloma uniflorum), was assessed. Among the isolates of Someshwara (S1–S5), inoculation of S5 resulted in the highest increase of shoot biomass in cowpea (control vs experimental, 1:6), while inoculation of P1 among the Padubidri isolates (P1–P5) induced the highest shoot biomass in cowpea (1:14.4). Inoculation of the isolate P2 induced higher shoot biomass against uninoculated controls of horse gram (12.6:1), green gram (11.2:1) and black gram (6.1:1). One-way ANOVA revealed significant difference in the shoot biomass between uninoculated and inoculated cowpea plants with ten rhizobial isolates (P <0.05). Cultivation of surface-sterilized green gram seeds on unsterilized dune sand resulted in profuse flowering as well as nodules within 6 weeks indicating possibilities for isolating efficient rhizobial strains through cultivating edible legumes on coastal sand dune soils.  相似文献   

18.
Time of mulching can influence the growth environment and performance of white yam (Dioscorea rotundata Poir). An on-farm trial was conducted during the 1988–1989 and 1989–1990 seasons (October–August) in Nigeria to determine the effect of time of mulching (October–February) on the hydrothermal regime and emergence, growth and tuber yield of white yam. Application of 12.5 mg ha−1 of dry Eupatorium odoratum L. (Syn. Chromolaena odorata L.) mulch on top of the mounds significantly improved soil moisture content of the 15 cm surface layer by 50–120 g kg−1 and decreased the maximum soil temperature by 2–7°C at 15 cm depth in the early growing season (March–April). The emergence and development of yam seedlings were significantly lower in unmulched plots than in mulch-treated plots. Mulching significantly increased tuber yield by about 10–15 mg ha−1 season−1. Plots mulched in October–December were more moist by 20–60 g kg−1 and cooler by 1–3°C, and had 27–44% greater emergence than those mulched in January or February. The number of leaves per plant, vine diameter and leaf area index were also significantly greater in plots mulched in October–December than plots mulched in January or February. Consequently, shoot dry weight was about 28–36% greater in yam mulched in October–December than in yam mulched in February. However, the time of mulching had no effect on soil moisture of the surface layer at the beginning of the rainy season (April), on yam emergence in May and on tuber yield and yield components. Although time of mulching did not significantly affect tuber yield, the increase (10–15%) in the tuber yield of yam mulched in December–February compared to the yam mulched in October or November was considerable. It was concluded that yam planted in October, just before the rain stops, can be mulched in January or February without detrimental effect on emergence, growth and tuber yield.  相似文献   

19.
Field experiments were conducted at Fort Vermilion (58°23′N 116°02′W), Alberta, to determine phosphorus (P) release patterns from red clover (Trifolium pratense) green manure (GM), field pea (Pisum sativum), canola (Brassica rapa) and monoculture wheat (Triticum aestivum) residues in the 7th and 8th years of conventional and zero tillage. Phosphorus contained in crop residues ranged from 1.5 kg ha−1 in pea to 9.2 kg ha−1 in clover GM, both under zero tillage. The patterns of P release over a 52-week period sometimes varied with tillage, i.e., a greater percentage of GM residue P was released under conventional tillage than under zero tillage in the first 2–10 weeks of residue placement. Wheat residues resulted in net P immobilization under zero tillage, but the amounts immobilized were less than 1 kg ha−1. When net P mineralization occurred, the percentage of P released ranged from 24% of wheat P under conventional tillage to 74% of GM P under conventional tillage. The amounts of P released were 0.4 kg ha−1 from wheat, 0.8 kg ha−1 from canola, 0.4 kg ha−1 from pea and 5.1–5.6 kg ha−1 from clover GM residues. Therefore, only GM residues recycled agronomically significant amounts of P for use by subsequent crops in rotation. Phosphorus release was positively correlated with residue P concentration and negatively correlated with C/P and lignin/P ratios.  相似文献   

20.
Effects of the broad-spectrum insecticide fipronil were investigated on a non-target insect living in the soil, the springtail Folsomia candida Willem. Fipronil induced a significant reduction in juvenile production (PNEC = 250 μg kg−1 dry soil), which seemed to be linked with an impact on the first stages of springtail development: juveniles and 7-day-old adults. These young organisms have a thinner integument, a smaller mass body and a weaker detoxification efficiency and were more sensitive than adults (14 days old) to fipronil and phenylpyrazole derivatives. Contact toxicity for juveniles was measured (LC50(96 h)) giving the following values: fipronil, 450 μg l−1; sulfone-fipronil, 430 μg l−1; sulfide-fipronil, 160 μg l−1. F. candida organisms were able to avoid contaminated food because phenylpyrazoles decreased food appetency. However, F. candida could bioaccumulate fipronil through trans-tegumental penetration (BAF96 h = 160) and its high biotransformation rate inside springtail bodies (1 ng fipronil metabolized day−1 individual−1) was suspected to increase this process. Under natural conditions, phenylpyrazoles risk assessment on springtails seems to be weak due to their capacity of avoiding high contaminated zones and their biochemical tolerance to this class of insecticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号