首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
S. D. Basha  M. Sujatha 《Euphytica》2009,168(2):197-214
The present study aims at characterization of Jatropha species occurring in India using nuclear and organelle specific primers for supporting interspecific gene transfer. DNA from 34 accessions comprising eight agronomically important species (Jatropha curcas, J. gossypifolia, J. glandulifera, J. integerrima, J. podagrica, J. multifida, J. villosa, J. villosa. var. ramnadensis, J. maheshwarii) and a natural hybrid, J. tanjorensis were subjected to molecular analysis using 200 RAPD, 100 ISSR and 50 organelle specific microsatellite primers from other angiosperms. The nuclear marker systems revealed high interspecific genetic variation (98.5% polymorphism) corroborating with the morphological differentiation of the species used in the study. Ten organelle specific microsatellite primers resulted in single, discrete bands of which three were functional disclosing polymorphism among Jatropha species. The PCR products obtained with organelle specific primers were subjected to sequence analysis. PCR products from two consensus chloroplast microsatellite primer pairs (ccmp6 and 10) revealed variable number of T and A residues in the intergenic regions of ORF 77–ORF 82 and rp12rps19 regions, respectively in Jatropha. Artificial hybrids were produced between J. curcas and all Jatropha species used in the study with the exception of J. podagrica. Characterization of F1 hybrids using polymorphic primers specific to the respective parental species confirmed the hybridity of the interspecific hybrids. Characterization of both natural and artificially produced hybrids using chloroplast specific markers revealed maternal inheritance of the markers. While the RAPD and ISSR markers confirmed J. tanjorensis as a natural hybrid between J. gossypifolia and J. curcas, the ccmp primers (ccmp6 and 10) unequivocally established J. gossypifolia as the maternal parent. Evaluation of backcross interspecific derivatives of cross involving J. curcas and J. integerrima indicate scope for prebreeding and genetic enhancement of Jatropha curcas through interspecific hybridization.  相似文献   

2.
New tri-species hybrids (GOS) in the genus Pennisetum involving the cultivated species pearl millet (P. glaucum L.) and two wild species, viz. P. squamulatum Fresen and P. orientale L. C. Rich, are reported. Six hybrid plants were recovered after crossing a backcross hybrid (2n = 3x = 23, GGO) between P. glaucum (2n = 2x = 14, GG) and P. orientale (2n = 2x = 18, OO) with F1s (2n = 6x = 42, GGSSSS) between P. glaucum (2n = 4x = 28, GGGG) and P. squamulatum (2n = 8x = 56, SSSSSSSS). The hybrids were perennial, morphologically intermediate to their parents, and represented characters from the three contributing species. The hybrids contained 2n = 44 chromosomes (GGGSSO) representing 21, 14 and nine chromosomes from P. glaucum, P. squamulatum and P. orientale, respectively. Meiotic and flow-cytometric analysis suggested origin of these hybrids from unreduced female and reduced male gametes. Average chromosome configuration (8.42I + 14.32II + 1.62III + 0.52IV) at Meiosis showed limited inter-genomic pairing indicating absence of significant homology between the three genomes. The hybrids were male sterile (except one) and highly aposporous. P. orientale was identified to induce apospory in hybrid background with P. glaucum at diploid and above levels, though it was quantitatively affected by genomic doses from sexual parent. A case of inducible and recurrent apospory is presented whereby a transition from Polygonum-type sexual embryo-sacs to Panicum-type aposporous embryo-sacs was observed in diploid interspecific hybrids. Results supported independent origin and partitioning of the three apomixis-components (apomeiosis, parthenogenesis, and functional endosperm development), reported for the first time in Pennisetum. Potential utilization of GOS hybrids in understanding genome interactions involved in complex traits, such as perenniality and apomixis, is discussed.  相似文献   

3.
The potential of microsatellite markers for use in genetic studies has been evaluated in Allium cultivated species (Allium cepa, A. fistulosum) and its allied species (A. altaicum, A. galanthum, A. roylei, A. vavilovii). A total of 77 polymerase chain reaction (PCR) primer pairs were employed, 76 of which amplified a single product or several products in either of the species. The 29 AMS primer pairs derived from A. cepa and 46 microsatellites primer pairs from A. fistulosum revealed a lot of polymorphic amplicons between seven Allium species. Some of the microsatellite markers were effective not only for identifying an intraspecific F1 hybrid between shallot and bulb onion but also for applying to segregation analyses in its F2 population. All of the microsatellite markers can be used for interspecific taxonomic analyses among two cultivated and four wild species of sections Cepa and Phyllodolon in Allium. Generally, our data support the results obtained from recently performed analyses using molecular and morphological markers. However, the phylogeny of A. roylei, a threatened species with several favorable genes, was still ambiguous due to its different positions in each dendrogram generated from the two primer sets originated from A. cepa and A. fistulosum.  相似文献   

4.
Nicotiana wuttkei Clarkson and Symon discovered in the 1990s in Australia may be of potential interest to breeders as it carries resistance to Peronospora hyoscyami de Bary. The crossability between N. wuttkei (2n = 4x = 32) and three N. tabacum (2n = 4x = 48) cultivars (‘Puławski 66’, ‘Wiślica’ and ‘TN 90’) and the morphology and cytology of their amphihaploid hybrids (2n = 4x = 40) were studied. Seeds were produced only when N. wuttkei was used as the maternal parent, but under normal germination all seedlings died. Viable F1 hybrids of N. wuttkei × N. tabacum cv. ‘Puławski’ and N. wuttkei × N. tabacum cv. ‘Wiślica’ were obtained only by in vitro cotyledon culture. The amphihaploid plants were intermediate between the parents for most morphological traits. In 46.4% of the PMC’s, only univalents were present. The remainder of the cells had 1–5 bivalents and 1–2 trivalents. In spite of a detectable frequency of monads (2.6%), dyads (2.6%) and triads (4.5%), the hybrids were self and cross sterile.  相似文献   

5.
The genus Kalanchoe is currently divided into section Kalanchoe and section Bryophyllum, and there has been no successful report on the production of inter-sectional hybrids. Therefore, reciprocal crosses were made between Kalanchoe spathulata (sect. Kalanchoe) and K. laxiflora (sect. Bryophyllum) in order to obtain basic information on the reproductive barriers between these two sections. The seeds were aseptically germinated in vitro and the plants were grown in greenhouse till flowering. When K. spathulata was used as a maternal donor, 39 out of 80 plants showed intermediate characteristics between K. spathulata and K. laxiflora. In contrast, no plants were obtained in the reverse crosses. Hybridity of these plants was confirmed by flow cytometric analysis, chromosome numbers and RAPD analysis. Bulbil formation on the leaf margin as one of the conspicuous characteristics of K. laxiflora was not observed in the hybrids. Some of the hybrid lines showed some pollen fertility, but failed to yield viable seeds by self-pollination or backcross-pollination. Successful production of the inter-sectional hybrid between the two species suggests that they are not so distantly related as considered previously.  相似文献   

6.
Ceratocystis canker, which is caused by the fungus Ceratocystis fimbriata Ellis et Halsted, is one of the most severe diseases of the common fig (Ficus carica L.). In contrast, the wild fig species F. erecta Thunb. is resistant to this fungus. We performed interspecific hybridization between the common fig (seed parent) and F. erecta (pollen parent) through artificial pollination. Even though hybrid seeds showed high germination rates, the seedling survival rates were low. All of the seedlings contained the expected simple sequence repeat (SSR) alleles from both common fig and F. erecta at each of the three loci tested, thus confirming the parent–offspring relationships of the interspecific hybrids. The leaf morphological characters of hybrid seedlings were intermediate between those of the parents. Cuttings of cultivars of common fig, F. erecta, and hybrid seedlings were inoculated with C. fimbriata by direct wounding of the shoot. All of the common fig cultivars tested withered and died within 10 weeks. Leaves and shoots of the hybrids and F. erecta were healthy 100 days after inoculation. Our results suggest that interspecific hybridization between the common fig and the wild species F. erecta is a breakthrough in the breeding of a new fig rootstock source with resistance to Ceratocystis canker.  相似文献   

7.
Gossypium turneri, a wild cotton species (2n = 2X = 26, D10D10) originating from Mexico, possesses invaluable characteristics unavailable in the cultivated tetraploid cotton gene pool, such as caducous involucels at anthesis, resistance to insects and tolerance to abiotic stresses. However, transferring desired characteristics from wild species into cultivated cotton is often fraught with diverse obstacles. Here, Gossypium hirsutum (as the maternal parent) and G. turneri were crossed in the Hainan Province of China, and the obtained hybrid seeds (2n = 3X = 39, ADD10) were treated with 0.075% colchicine solution for 48 h to double the chromosome complement in order to overcome triploid F1 sterility and to generate a fertile hexaploid. Chromosome doubling was successful in four individuals. However, the new synthetic hexaploids derived from these individuals were still highly sterile, and no seeds were generated by selfing or crossing. Therefore, an embryo rescue technique was employed in an attempt to produce progenies from the new synthetic hexaploids. Consequently, a total of six large embryos were obtained on MSB2K medium supplemented with 0.5 mg l?1 KIN and 250 mg l?1 CH using ovules from backcrossing that were 3 days post-anthesis. Four grafted surviving seedlings were confirmed to be the progenies (pentaploids) of the new synthetic hexaploids using cytological observations and molecular markers. Eight putative fertile individuals derived from backcrossing the above pentaploids were confirmed using SSR markers and generated an abundance of normal seeds. This research lays a foundation for transferring desirable characteristics from G. turneri into upland cotton.  相似文献   

8.
Zea mays ssp. mexicana, an annual wild relative of maize, has many desirable characteristics for maize improvement. To transfer alien genetic germplasm into maize background, F1 hybrids were generated by using Z. mays ssp. mexicana as the female parent and cultivated maize inbred line Ye515 as the male parent. Alien introgression lines, with a large range of genetic diversity, were produced by backcross and successive self-pollinations. A number of alien introgression lines with the predominant traits of cultivated maize were selected. Genomic in situ hybridization (GISH) proved that small chromosome segments of Z. mays ssp. mexicana had been integrated into the maize genome. Some outstanding alien introgression lines were evaluated in performance trials which showed 54.6% hybrids had grain yield greater than that of hybrid check Yedan12 which possessed 50% Ye515 parentage, and 17.1, 9.9% hybrids had grain yield competitive or greater than those of Nongda108 and Zheng958, which were elite commercial hybrids in China, respectively. The results indicated that some of the introgression lines had excellent agronomic traits and combining ability for maize cultivar, and demonstrated that Z. mays ssp. mexicana was a valuable source for maize breeding, and could be used to broaden and enrich the maize germplasm.  相似文献   

9.
The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1.  相似文献   

10.
Most forage cultivars released for the genus Paspalum belong to a section named Plicatula. The species of Plicatula are mostly apomictic and consequently the genetic diversity is locked for their genetic improvement. The objectives were to evaluate the crossability, hybrid fertility, heterosis, and genetic distances between apomictic accessions and a sexual genotype of species of Plicatula group of Paspalum. Crosses were made using 22 apomictic tetraploid accessions belonging to 12 different species as pollen donors, and a sexual tetraploid genotype induced by colchicine from a sexual diploid accession of P. plicatulum. Crossability varied between 0 and 16% among crosses. Viable hybrid offspring were recovered from 15 out of 22 crosses. The most successful crosses involved P. guenoarum, P. plicatulum, P. chaseanum, and P. oteroi. Fertility of the sampled hybrids varied between 1.6% for the cross involving P. lenticulare, and 40.1% for an intraspecific cross (P. plicatulum, accession Hojs388). The genetic distance between parents was estimated using amplified fragment-length polymorphism, and it varied between 0.34 and 0.53. There was no correlation between genetic distances and crossability or fertility of the hybrids. Hybrids from the most numerous families were classified for mode of reproduction using flow cytometric seed analysis. The ratio between sexual and apomictic hybrids varied between 0.6:1 and 1.6:1. A selected group of apomictic hybrids were evaluated for several agronomic traits in the field. Heterosis was observed for frost tolerance and cattle preference. The results indicated that gene transfer via hybridization is possible among several species of Plicatula. Superior hybrids for specific traits can be generated and fixed by apomixis.  相似文献   

11.
12.
Stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases of rapeseed (Brassica napus L.) which causes huge loss in rapeseed production. Genetic sources with high level of resistance has not been found in rapeseed. In this study, 68 accessions in six Brassica species, including 47 accessions of B. oleracea, were evaluated for leaf and stem resistance to S. sclerotiorum. Large variation of resistance was found in Brassica, with maximum differences of 5- and 57-folds in leaf and stem resistance respectively. B. oleracea, especially its wild types such as B. rupestris, B. incana, B. insularis, and B. villosa showed high level of resistance. Our data suggest that wild types of B. oleracea possess tremendous potential for improving S. sclerotiorum resistance of rapeseed.  相似文献   

13.
Sexual self-incompatibility in wild diploid potato species is controlled by a single multiallelic S-locus encoding a polymorphic stylar ribonuclease (S-RNase) that is responsible for the female function in pollen–pistil recognition. In this study, an approach using PCR-based markers were originally developed to amplify the S-RNase alleles in Solanum chacoense. Subsequently, to investigate their general applicability in Solanum, this molecular approach was successfully tested on S. spegazzinii and S. kurtzianum. Application of PCR-SSCP approach revealed potentially new S-RNase alleles in the three species, demonstrating for the first time the existence of S-RNase genetic variability within and between populations of wild diploid potato species. Species-specific SSCP markers that may be successfully used in gene flow studies was also detected in this investigation.  相似文献   

14.
Teasle gourd [Momordica subangulata Blume subsp. renigera (G. Don) de Wilde, 2n = 56] exhibits morphological characters found in both M. dioica (2n = 28) and M. cochinchinensis (2n = 28). Morphological analysis of M. subangulata subsp. renigera suggests an allopolyploid origin. We present evidence elucidating the genomic relationships between M. dioica, M. cochinchinensis and M. subangulata subsp. renigera. A triploid M. dioica × M. subangulata subsp. renigera hybrid had an average of 12.76 bivalents, 13.84 univalents and 0.88 trivalents at metaphase I, while the M. cochinchinensis × M. subangulata subsp. renigera hybrid had an average of 13.08 bivalents, 12.96 univalents and 0.96 trivalents. F1 hybrids of the two diploid species (M. dioica × M. cochinchinensis) showed an average of 9.12 bivalents and 9.76 univalents, suggesting that the genomes of these species are only partially homologous. A higher number of bivalents in the triploid hybrids suggests that M. subangulata subsp. renigera is a segmental allopolyploid of M. dioica and M. cochinchinensis and that its genomes have diverged from the parental genomes.  相似文献   

15.
The recessive mutation of the XANTHA gene (XNT) transforms seedlings and plants into a yellow color, visually distinguishable from normal (green) rice. Thus, it has been introduced into male sterile lines as a distinct marker for rapidly testing and efficiently increasing varietal purity in seed and paddy production of hybrid rice. To identify closely linked markers and eventually isolate the XNT gene, two mapping populations were developed by crossing the xantha mutant line Huangyu B (indica) with two wild type japonica varieties; a total of 1,720 mutant type F2 individuals were analyzed for fine mapping using polymorphic InDel markers and high dense microsatellite markers. The XNT gene was mapped on chromosome 11, within in a fragment of ~100 kb, where 13 genes are annotated. The NP_001067671.1 gene within the delimited region is likely to be a candidate XNT gene, since it encodes ATP-dependent chloroplast protease ATP-binding subunit clp A. However, no sequence differences were observed between the mutant and its parent. Bioinformatics analysis demonstrated that four chlorophyll deficient mutations that were previously mapped on the same chromosome are located outside the XNT region, indicating XNT is a new gene. The results provide useful DNA markers not only for marker assisted selection of the xantha trait but also its eventual cloning.  相似文献   

16.
Summary To demonstrate the applicability of the target region amplification polymorphism (TRAP) marker technique to lettuce genotyping, we fingerprinted 53 lettuce (Lactuca sativa L.) cultivars and six wild accessions (three from each of the two wild species, L. saligna L. and L. serriola L.). Seven hundred and sixty-nine fragments from 50 to 900 bp in length were amplified in 10 PCR reactions using 10 fixed primers in combination with four fluorescent labeled arbitrary primers. Three hundred and eighty-eight of these fragments were polymorphic among the 59 Lactuca entries and 107 fragments were polymorphic among the 53 lettuce cultivars and the six wild accessions; 251 fragments were present only in the wild species. These markers not only discriminated all cultivars, but also revealed the evolutionary relationship among the three species: L. sativa, the cultivated species, is more closely related to L. serriola than to L. saligna. Cluster analysis grouped the cultivars by horticultural types with a few exceptions. These results are consistent with previous findings using RFLP, AFLP, and SAMPL markers. The TRAP markers revealed significant differences in genetic variability among horticultural types, measured by the average genetic similarity among the cultivars of the same type. Within the sample set, the leaf type and butterhead types possessed relatively high genetic variability, the iceberg types had moderate variability and the romaine types had the lowest variability. The genetic behavior of TRAP markers was assessed with a mapping population of 45 recombinant inbred lines (RILs) derived from an interspecific cross between L. serriola and L. sativa. Almost all the markers segregated in the expected 1:1 Mendelian ratio and are being incorporated into the existing lettuce linkage maps. Our results indicate that the TRAP markers can provide a powerful technique for fingerprinting lettuce cultivars. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

17.
Interspecific hybrids Buddleja davidii × Buddleja weyeriana, Buddleja weyeriana × Buddleja davidii and Buddleja davidii × Buddleja lindleyana were generated using in vitro embryo rescue 10–11 weeks after manual pollination. The morphological variation within the F1 populations was limited. The F1 progeny of B. davidii × B. lindleyana was almost sterile and no F2 generation was obtained. From the other hybrids, F2 generations were made by self pollinations and back crosses. Hybrid nature of all F1 and F2 seedlings was confirmed by AFLP. Chromosome counting and genome size measurement for B. weyeriana (F2 selection of (diploid) B. globosa × (tetraploid) B. davidii) revealed a higher chromosome number (76 chromosomes) and genome size than expected, indicating 2n-gametes formation occurred during meiosis of B. globosa. The F1 hybrids B. weyeriana × B. davidii (76 chromosomes) had an intermediate genome size compared with the genome size of the parent plants, proving their hybrid nature. However, the F1 and F2 hybrids of B. davidii × B. weyeriana all had 76 chromosomes but had a lower genome size than expected, suggesting the occurrence of chromosome rearrangements in the genome of the hybrids. B. lindleyana had 38 chromosomes, while the F1 hybrids of B. davidii × B. lindleyana had 76 chromosomes. Also genome size measurements revealed that the F1 seedlings B. davidii × B. lindleyana had higher genome sizes than expected. Both the results of chromosome counting and genome size measurement indicate that 2n-gametes formation took place during meiosis of B. lindleyana.  相似文献   

18.
Chrysanthemum grandiflorum ‘Yuhuaxingchen’ is an important commercial chrysanthemum cultivar with excellent ornamental quality but low drought tolerance, whereas C. indicum has exceptional drought tolerance. In our earlier study, many hybrid seeds between them were obtained through interspecific hybridization. In the present study, we selected six putative hybrid lines with most drought tolerance from all the hybrid lines by withholding water, indentified their facticity by chromosome counting, and then evaluated their drought tolerance through determining foliar electrolyte leakage (EL), contents of malondialdehyde (MDA) and proline, and plant survival rate after 20% polyethylene glycol 6000 treatment. It was found that 155 out of 282 seeds germinated and only 132 seedlings survived. In addition, chromosome and morphological analysis showed that the six putative hybrids were real hybrids and their morphological features were intermediate between their parents. Furthermore, the density of leaf epidermal hair, proline content, and plant survival rate were the highest in C. indicum and the lowest in C. grandiflorum among the six hybrids and their parents. In contrast, EL value and MDA content were the highest in C. grandiflorum and the lowest in C. indicum. These results suggest that some true hybrids with improved drought tolerance can be obtained through interspecific hybridization in chrysanthemum breeding. Therefore, interspecific hybridization between chrysanthemum cultivars and their wild species may become a promising way to improve their biotic and abiotic resistance in the future breeding.  相似文献   

19.
We have previously reported that expression of salt-responsive genes, including Bruguiera gymnorhiza ankyrin repeat protein 1 (BgARP1), enhances salt tolerance in both Agrobacterium tumefaciens and Arabidopsis. In this report, we further characterized BgARP1-expressing Arabidopsis to elucidate the role of BgARP1 in salt tolerance. BgARP1-expressing plants exhibited more vigorous growth than wild-type plants on MS plates containing 125–175 mM NaCl. Real-time PCR analysis showed enhanced induction of osmotin34 in the 2-week-old transformants under 125 mM NaCl. It was also showed that induction of typical salt-responsive genes, including RD29A, RD29B, and RD22, was blunted and delayed in the 4-week-old transformants during 24 h after 200 mM NaCl treatment. Ion content analysis showed that transgenic plants contained more K+, Ca2+, and NO3 , and less NH4 +, than wild-type plants grown in 200 mM NaCl. Our results suggest that BgARP1-expressing plants may reduce salt stress by up-regulating osmotin34 gene expression and maintaining K+ homeostasis and regulating Ca2+ content. These results indicate that BgARP1 is functional on a heterogeneous background.  相似文献   

20.
The objective of this study was to develop diallel population hybrids by crossing selected germplasm and to determine the gene effects and genetic control of yield and yield components using diallel analysis. A complete diallel including reciprocals was made during 2003 and 2004 between five alfalfa cultivars of different geographic origin. For each pairwise cross, five plants were chosen at random from each of the two cultivars (~100 florets per plant) to obtain the F1 generation. A spaced plant field was established in 2006 which included the five alfalfa cultivars (parents) and their 20 diallel hybrids (F1). The results of the diallel analysis suggest that the genetic control of major agronomic traits is determined by both additive gene action (accumulation of frequency of desirable alleles represented by significant GCA effects) and nonadditive gene action (complementary gene interactions represented by significant SCA effects). This type of gene action expression in alfalfa also determines the way in which breeding is carried out and brings about changes in the methods used and has given rise to the idea of the semi-hybrid breeding of this crop. The concept involves: breeding alfalfas within the population, identification of heterotic germplasm, and the production of seed of the population hybrid (PH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号