首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
雹灾后棉花氮素吸收规律研究   总被引:1,自引:0,他引:1  
运用^15N示踪技术,研究了雹灾后施氮配合中耕对棉花氮素吸收、利用和棉花--土壤氮素平衡的影响。结果表明,在蕾期遭受雹灾的情况下,施氮配合中耕的处理灾后3日开始吸收肥料氮,单纯施用氮肥处理灾后6日才开始吸收肥料氮。中耕处理的棉株单株氮素积累量高,且吸收肥料的比率增加。中耕还明显提高籽棉和根系中肥料氮的分配率,显著提高肥料利用率。  相似文献   

2.
棉花雹灾后追肥及中耕对其生长发育,植株N、P的吸收及产量均有较大的影响。中耕可促进雹灾棉腋芽的生长,特别在追施N、P肥的基础上中耕有助于促进植株对N、P的吸收积累,促进雹灾棉早现蕾、早开花、增加铃数提高产量。单施N肥的增产效果不及N、P混施,施N或N、P混施不中耕的又不及N肥中耕的增产作用。因此,棉花雹灾后应在及时中耕松土的基础上及早追施N、P肥,以提高产量、减少损失。  相似文献   

3.
施钾对花生积累氮素来源和产量的影响   总被引:4,自引:0,他引:4  
利用盆栽试验和15N示踪技术,研究了不同施钾量对花生吸收土壤氮、肥料氮、根瘤固氮量及比例和产量的影响.结果表明,不同施钾处理花生氮素均主要积累在籽仁中,但随着施钾量的增大,花生各器官中茎的含氮量增加幅度最大,果壳的含氮量增加幅度最小.适当增施钾肥可以提高各器官含氮量和15N丰度、氮素和15N积累量,促进花生植株对3种氮源的吸收利用,尤其对籽仁生物量(经济产量)的影响最大.吸收土壤氮的比例在38.29% ~ 45.10%之间,吸收肥料氮的比例在12.37%~13.40%之间,吸收大气氮的比例在42.53% ~48.31%之间.适量增施钾肥提高了吸收肥料氮和根瘤固氮的比例,降低了吸收土壤氮的比例,提高了肥料氮的利用率,但过量施钾效果降低.  相似文献   

4.
富士苹果营养转换期肥料氮去向和土壤氮库盈亏研究   总被引:1,自引:0,他引:1  
运用15 N同位素示踪技术,以5年生烟富3/SH6/平邑甜茶苹果为试材,研究了不同施氮水平(0,50,100,150,200,250kg/hm2)对营养转换期富士苹果肥料氮吸收利用、土壤残留和土壤氮库盈亏的影响。结果表明,随施氮水平的提高,肥料氮的利用率逐渐下降,且树体吸收土壤氮素的比例逐渐降低,而来自肥料氮的比例逐渐升高;施氮1个月后,5.75%~12.99%的肥料氮被树体吸收,29.62%~39.74%的肥料氮残留在0—60cm土体中,47.27%~64.64%的肥料氮通过其他途径损失。随施氮水平的提高,树体吸收的肥料氮量和土壤残留氮量逐渐增加,但肥料氮利用率和土壤残留率却不断降低,同时损失量和损失率不断增加。残留在土壤剖面中的肥料氮主要分布在表土层(0—20cm),各土层15 N丰度随施氮水平的提高显著提高。随施氮水平的提高,土壤氮素总平衡由亏缺转为盈余,表明低施氮水平会造成土壤氮肥力的下降,过量施氮则会加剧土壤氮素累积。施氮水平与土壤氮素总平衡存在较好的正相关关系,其回归方程为y=0.3147x-16.144(R2=0.990 2),当施氮水平达到51.30kg/hm2时,土壤氮库达到平衡。  相似文献   

5.
氮肥用量与运筹对水稻氮素吸收转运及产量的影响   总被引:15,自引:2,他引:15  
应用15N示踪技术研究了大田条件下氮肥用量与运筹对水稻氮素吸收、转运及籽粒产量的影响。试验分别设置3个氮肥水平(0、150和240 kg/hm2N)和两种基追比例(即基肥:蘖肥穗粒肥分别为40%︰30%︰30%(A)和30%︰20%︰50%(B)),共5个处理,依次记作N0、N150A、N150B、N240A、N240B。结果表明,在0~240 kg/hm2范围内,提高氮肥水平,显著增加水稻吸收的肥料氮素、土壤氮素数量以及肥料氮在土壤中的残留量。成熟期高氮处理(240 kg/hm2)水稻吸收的肥料氮素、土壤氮素及肥料氮在土壤中的残留量较多,分别为110.25、65.91、32.69 kg/hm2,而氮素的吸收利用率和土壤残留率下降,氮素损失率增加。在相同的氮肥水平下,采用基肥蘖肥穗粒肥比例为30%︰20%︰50%时,水稻吸收的肥料氮数量显著增加,氮素吸收利用率和土壤残留率提高,氮素损失率降低。适量施氮并增加穗粒肥的施氮比例,可以显著增加水稻产量。在本实验条件下,施氮量为240 kg/hm2及基肥蘖肥穗粒肥为30%︰20%︰50%的施氮处理是兼顾产量和环境的最佳氮肥运筹方式。  相似文献   

6.
膜下滴灌条件下不同土壤盐度和施氮量对棉花生长的影响   总被引:1,自引:0,他引:1  
通过盆栽试验研究了膜下滴灌条件下不同土壤盐度水平和施氮量对棉花生长的影响。研究结果表明低盐度处理,随着施氮量的增加棉花株高显著增加;而在土壤盐度较高的条件下棉花株高则随着施氮量的增加显著降低。棉花籽棉和总干物质重随土壤盐度的增加显著降低,合理的施用氮肥可显著提高籽棉重和总干物质积累量。棉花的氮素吸收量受盐分、施氮量和盐氮交互作用影响显著。随着土壤盐度的增加,棉花氮素吸收量显著降低。在低盐度条件下,增加氮肥施用量可显著提高棉花的氮素吸收量;中量盐度下,适量的氮肥施用可显著提高棉花的氮素吸收量,但施用量过大并不能增加棉花的氮素吸收量;高盐度条件下,盐分是限制棉花生长和氮素吸收的主要因素,施用氮肥对棉花的氮素吸收量无显著影响。  相似文献   

7.
不同供氮方式和施氮量对烤烟生长和氮素吸收的影响   总被引:36,自引:2,他引:36  
2005年5月至9月在云南玉溪采用田间试验和微区试验相结合的方法,研究了传统施肥和优化施肥2个施氮水平对烤烟生长和氮素积累的影响。结果表明,施N.120.kg/hm2的烟株在打顶以后以吸收土壤氮为主;施N52.5.kg/hm2的烟株在团棵期以后以吸收土壤氮为主,该施氮量能够保证烟株从移栽至打顶(即移栽后60.d)阶段的生长需要。但与施N.120.kg/hm2相比,植株氮素营养略有不足,烟株各部位及整株的干物重和氮素积累量略有降低;各时期干物重的分配比例没有区别。另外,打顶期和成熟期,两施氮处理植株所吸收的肥料氮绝对量差异达显著水平,施氮量越高,吸收量也越大。同时,施氮量越多,各个时期各部位和整株中肥料氮的比例越大,且均在团棵期达到最大值;之后呈下降趋势,施氮越多,下降幅度越小。两处理植株都呈现肥料氮比例随叶位上升而减少的规律,施氮量越高,部位间差异越小。  相似文献   

8.
氮肥运筹对棉花干物质积累、氮素吸收利用和产量的影响   总被引:14,自引:3,他引:11  
通过膜下滴灌田间试验,研究不同氮肥运筹模式对棉花干物质积累、氮素吸收利用及产量的影响。结果表明,各处理棉花干物质及氮素积累均符合Logistic方程;棉花干物质积累最快时期出现在出苗后83~139 d。不同的氮肥运筹可明显影响到棉花氮素吸收最大速率及其出现日期,以有机无机氮肥配施(N2+M)处理的氮素吸收最大速率较高,且其出现日期相对较早。棉株对干物质分配中心与氮素吸收分配中心一致。各施氮处理氮肥利用率在32.11%~49.24%之间,N2+M处理氮肥利用率最高,其它处理氮肥利用率随施氮量的增加而降低。本试验中,N2+M处理产量达1890 kg/hm2,显著高于其它处理。  相似文献   

9.
萝卜适宜施氮量和氮肥基追比例研究   总被引:2,自引:0,他引:2  
运用15N示踪法研究了大田条件下不同氮肥用量与施肥方式对萝卜氮素吸收、分配及肉质根产量的影响。试验设置3个氮水平(0、 60和120 kg/hm2)和两种基追肥比例[基肥∶破肚期肥料∶膨大期肥料=50%∶20%∶30%(A)和30%∶20%∶50%(B)],共5个处理,依次记作 N0、N60A、N60B、N120A、N120B。结果表明,在施N 0120 kg/hm2范围内,随氮施用量的增加,萝卜吸收的肥料氮素、土壤氮素数量及肥料氮在土壤中的残留量显著增加,氮素的吸收利用率和土壤残留率显著下降,氮素损失率显著增加。当氮用量为120 kg/hm2 时, N120A和N120B处理萝卜吸收的肥料氮素、土壤氮素及肥料氮在土壤中的残留量分别为30.50、 53.64、 14.88 kg/hm2和35.56、 56.61、 17.81 kg/hm2,采收期肉质根产量分别为67.6 t/hm2和72.5 t/hm2,比对应的低氮处理(N60A和N60B)分别增加64.07%和66.67%,且N120B处理萝卜氮素吸收利用率显著提高。因此,适量施氮并增加肉质根膨大期的施氮比例,可有效提高氮肥利用率,显著增加萝卜肉质根产量。在本试验条件下,施氮量为120 kg/hm2, 按照基肥∶破肚期肥料∶膨大期肥料比例30%∶20%∶50%进行施肥,是兼顾产量和氮肥利用效率的最佳氮肥运筹方式。  相似文献   

10.
以‘夏黑’葡萄扦插苗为试验材料,采用盆栽试验方法,分析了磁化水灌溉后葡萄叶片、茎和根系中不同形态氮素含量、氮素代谢关键酶活性以及不同氮源的贡献率,探讨磁化作用对‘夏黑’葡萄扦插苗生长以及氮素吸收、分配和利用的影响。以~(15)N为外源氮肥,分3次施入土壤中。试验设置4个处理,包括:磁化水灌溉处理、非磁化水灌溉处理、磁化水灌溉+施氮处理、非磁化水灌溉+施氮处理。磁化处理组中利用磁化装置处理灌溉水。结果表明:1)施氮条件下,与非磁化处理相比,磁化处理后葡萄叶片、根系和全株的全氮量提高,但是肥料中~(15)N对不同器官中氮素的贡献率无显著差异;叶片和根系的氮素利用率显著提高;全氮在叶片中分配率显著提高,在茎中的分配率则显著降低。2)与非磁化处理相比,磁化处理后葡萄叶片中谷氨酰胺合成酶和谷氨酸合酶活性显著提高,根系中显著降低。3)与单独施氮相比,磁化水灌溉+施氮提高了土壤氮含量;氮肥中~(15)N利用率提高,损失率降低。由以上研究结果可以看出,磁化水灌溉不仅可提高氮素代谢关键酶活性,而且可提高不同器官中氮素营养的吸收和利用,从而改变了氮素在不同器官中的分布。  相似文献   

11.
Soil movement by tillage as affected by slope   总被引:6,自引:0,他引:6  
Exposure of subsoil material on ridge tops and adjacent sideslopes indicates soil movement away from these positions, i.e. soil erosion. A study was conducted on the University of Minnesota Southwestern Experiments Station to determine if soil movement by tillage could be a contributing factors to the apparent soil erosion present on many ridge tops. Numbered soil movement detection units (11-mm steel hexagonal nuts) were buried 10-cm deep in a grid network in 16 individual plots, on a sideslope with slopes ranging from 1 to 8%. Plots were moldboard plowed and disked in June, and again in August. The direction of tillage was either across the sideslope or up- and downslope. The soil movement detection units were then located with a metal detector, excavated and identified, and distance moved was measured in relation to movement perpendicular and parallel to the direction of tillage. Soil movement was directly related to slope. Movement perpendicular off the moldboard on the direction of tillage was greater than movement perpendicular off the moldboard. Calculations on the angle of movement in relation to tillage direction showed movement toward the downslope position. Results from this study suggest that soil movement by tillage can contribute to soil movement off ridge tops and adjacent sideslopes.  相似文献   

12.
Fertilizer nitrogen uptake by rice increased by biochar application   总被引:1,自引:0,他引:1  
This study was conducted to test the hypothesis that biochar application can increase rice yield through improving nitrogen (N) uptake and utilization by rice plants under N application conditions. A pot experiment was done with a hybrid rice cultivar grown on a Fe-leachi-Stagnic Anthrosols with and without biochar application. The N fertilizer used was 15N-labeled urea. Results showed that biochar application resulted in 23–27 % increase in fertilizer N uptake by rice plants and consequently 8–10 % increase in grain yield. The higher fertilizer N uptake under biochar application was associated with a reduced fertilizer N loss. Fertilizer N loss rate was reduced by 9–10 % by applying biochar. We suggest that further studies are needed to assess the short-term and long-term effects of different biochars on N uptake and utilization by rice under field conditions.  相似文献   

13.
The sorption of zinc (Zn) by two acid tropical soils, Mazowe clay loam (kaolinitic, coarse, Rhodic Kandiustalf) and Bulawayo clay loam (coarse, kaolinitic, Lithic Rodustalf), was studied over a wide range of Zn solution concentrations. Samples of the two soils used in the experiments were collected at both uncleared, uncultivated (virgin) sites and cultivated sites. The two virgin soils showed similar abilities to bind Zn. Mazowe soil (40 g organic matter kg?1) presented the highest affinity for Zn. Yet, Bulawayo soil (23.5 g organic matter kg?1) sorbed almost the same amount. Bulawayo soil had higher pH and Fe and Mn-oxide content than Mazowe soil. Once cultivated, the two soils behaved quite differently. After 50 years, Mazowe soil had lost 60% of its organic matter and effective cation exchange capacity (ECEC). In this soil, Zn sorption capacity had also been decreased by 60%. Clearing and 10 years under cultivation had affected neither the organic matter content nor the ECEC of Bulawayo soil. For this soil, Zn sorption was even higher in the cultivated soil, presumably due to an increase in the amount of Fe and Mn oxide from subsoiling. Zinc sorption was dependent upon pH, with retention dramatically increasing in the pH range 6–7. Sorption occurred at pH values below the point of zero charge (PZC), indicating that the sorption reaction can proceed even in the presence of electrostatic repulsion between the positively charged soil surface and the cation. In the two soils, the reversibility of the sorption reaction was very low. More than 90% of the sorbed Zn was apparently strongly bonded.  相似文献   

14.
15.
16.
In this paper we evaluate the environmental impact of dust emission from a magnesite calcination factory during the last 40 years over an area of about 600 ha in northern Spain. Our study aimed to determine the contamination levels through the spatial modifications induced on the soil pH by deposition of the dust, mostly composed of magnesium oxides. A soil survey of the area has been conducted by collecting soil samples at three different depths (0–2, 2–32 and 32–52 cm) following a square grid pattern. Our survey has evidenced an important and general pH increase of the soils. Thus, from original values of around 7, pH reaches alkaline values of above 9·5. IDRISI GIS techniques have been used to analyse and represent the spatial distribution of the pH values. Variations in the expected concentric circular pattern of soil pH distribution appear to be related to climatic factors, such as precipitation, wind direction and intensity. Also topography affects pH distribution through its ‘screen’ effect. The contamination levels in the area have a strong environmental impact responsible for the abandonment of some agricultural lands. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
由于冲蚀磨损对喷雾质量产生影响,造成喷头磨损失效。通过对扇形雾喷头球头处固体颗粒的运动状态、边界层上颗粒受力、运动速度和攻角的分析,解释了扇形雾喷头的冲蚀磨损机理。并建立了扇形雾喷头球头处材料流失体积与攻角的关系式。结果表明,在扇形雾喷头处,当固体颗粒冲击位置的轴向尺寸小于其轴向临界尺寸时,攻角随轴向尺寸的增加而增大;反之,攻角随轴向尺寸的增加而减小。分析发现,扇形雾喷头喷口处磨损程度随喷头内表面轴向尺寸的增加而增加。在扇形雾喷头喷口短轴处,轴向尺寸最大,固体颗粒的攻角最小,磨损最严重。并通过喷头冲蚀磨损试验,试验结果与理论分析一致。该文对分析喷头磨损规律,计算磨损率和磨损失效预测提供了基础依据。  相似文献   

18.
Abstract

Soybean (Glycine max (L.) Merrill) has been shown to have a great capacity to take K from soil, suggesting that it might absorb K from non‐exchangeable forms. In this paper, the effect of level of K fertilization on soil exchangeable K content and K uptake by soybean are discussed. The experiment was conducted on a Typic Haplortox (sandy loam), fertilized with 0, 40, 80, 160 and 240 kg K2O/ha as KC1 or K2SO4. During five years before the experiment, half of the plots received those K rates annually and the other half only in the first three years, providing an opportunity to study the residual effect of applied K. Plant samples were taken at pod filling and at harvest. Soil cores were collected in 20 cm increments down to 80 cm deep at plant emergence, pod filling and after harvest. There was a residual effect of K, and 240 kg K2O/ha applied in a 3‐year term led to the same yield and K uptake as 80 kg ICO/ha applied annually for 3 years. Fertilized plants absorbed 160% more K than unfertilized ones, but soil exchangeable K accounted for less than 50% of plant uptake; therefore the exchangeable pool must have been replaced in time for soybean uptake. On the other hand, the K recycled from the plant to the soil was not found in the exchangeable form. There was evidence of K leaching deeper than 80 cm, and in addition, the K recycled from the plants may have turned into non‐exchangeable forms in the soil.  相似文献   

19.
Industrial crops provide a possibility for utilization of heavy metal polluted soils. Knowledge of the factors which affect metal uptake by crops is therefore essential in order to develop concepts for the management of such soils. In pot experiments the uptake of Zn by oilseed rape increased considerably with the Zn supply. The increase of Zn uptake was counteracted partly by S. This protective effect of S was, however, not related to Zn retention in the roots.  相似文献   

20.
The applicability of magnetic susceptibility measurements was tested for the detection of industrial pollution by fly ash in topsoil in a beech stand in the vicinity of a steel factory at ?iroka near Oravsky? Podzámok (Slovakia). The first trial measurements already showed that there is at least one spot near the trunk of each tree in which the susceptibility is significantly higher than anywhere else beneath the crown of the same tree. Detailed measurements showed that the susceptibility anomaly is associated with stemflow, and extends to some distance on the slope side of the trunk. Elsewhere beneath the crowns, at spots unaffected by stemflow, the variation of susceptibility is moderate. Samples were collected systematically from the topsoil around five trees in the beech stand, and another one elsewhere exposed to direct flow of fly ash from ?iroka. The results of measurements of low and high frequency susceptibility allow to conclude that in the beech stand where the ground is effectively shielded by the canopy from direct precipitation of pollution particles, all susceptibility values unaffected by stemflow are dominated by fine-grained magnetic particulates having formed by biogenic processes during pedogenesis, while those pertaining to the stemflow zone are dominated by larger multidomain particles conveyed to the ground in the stemflow. So, in this particular environment, it is the stemflow and its effect that makes magnetic pollution detectable by using susceptibility parameters. The case of the site exposed to direct precipitation of pollution particles is different in that that every susceptibility value irrespective of being small or large is dominated by large multidomain pollution particles. The heavy metal concentration of the soils investigated is elevated with respect to background levels of the Geochemical atlas of Slovakia, and have strong positive relationship, basically established by the effect of stemflow, with magnetic susceptibility. Without the stemflow effect the variation either in susceptibility or heavy metal concentration would not be sufficient to recognise existing relationships between them in the topsoil of the beech stand selected for the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号