首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The pharmacokinetics of florfenicol (FF) and its metabolite, florfenicol amine (FFA), were studied in rice field eel (Monopterus albus) after a single dose (20 mg/kg) by intramuscular (i.m.) or oral gavage (p.o.) dose at 25 °C. The elimination half‐lives (t1/2β), peak concentration of FF (Cmax), and time to reach FF peak concentration (Tmax) in plasma were estimated as 18.39 h, 10.83 μg/mL, and 7.00 h, respectively, after i.m. injection and 13.46 h, 8.37 μg/mL, and 5 h, respectively, after p.o. administration. The Tmax values of FF in tissues (i.e., kidney, muscle, and liver) were larger for i.m. injection compared with those for p.o. administration. The t1/2β had the following order kidney > muscle > liver for i.m. administrated and kidney > liver > muscle for p.o. administrated. The largest area under the concentration–time curve (AUC) was calculated to be 384.29 mg · h/kg after i.m. dosing, and the mean residence time (MRT) was 42.46 h by oral administration in kidney. FFA was also found in all tissues with a lower concentration than FF for both i.m. and p.o. administrations throughout the study. The elimination of FFA was slow with a t1/2β between 18.19 and 47.80 h in plasma and tissues. The mean metabolic rate of FFA for i.m. and p.o. administrations was >23.30%.  相似文献   

2.
1. The pharmacokinetics of levofloxacin were investigated in Japanese quails after a single dose of 10?mg/kg BW, given either intravenously or orally.

2. Following intravenous administration, the mean value of distribution at steady state (Vdss), total body clearance (Cltot) and mean residence time (MRT) of levofloxacin were 1·25?l/kg, 0·39?l/h/kg and 2·72?h, respectively.

3. Following oral administration of levofloxacin, the peak plasma concentration (Cmax) was 3·31?µg/ml and was achieved at a maximum time (Tmax) of 2?h. Mean residence time (MRT), mean absorption time (MAT) and bioavailability were 4·26?h, 1·54?h and 69·01%, respectively. In vitro plasma protein binding of levofloxacin was 23·52%.

4. Based on pharmacokinetic and pharmacodynamic integration, an oral dose of 10?mg/kg levofloxacin for every 12?h is recommended for a successful clinical effect in quails.  相似文献   

3.
Thiamphenicol (TP) pharmacokinetics were studied in Japanese quails (Coturnix japonica) following a single intravenous (IV) and oral (PO) administration at 30 mg/kg BW. Concentrations of TP were determined with HPLC and were analyzed by a noncompartmental method. After IV injection, elimination half-life (t1/2λz), total body clearance (Cltot) volume of distribution at steady state (Vdss), and mean residence time (MRT) of TP were 3.83 hr, 0.19 L/hr/kg, 0.84 L/kg, and 4.37 hr, respectively. After oral administration of TP, the peak plasma concentration (Cmax) was 19.81 μg/ml and was obtained at 2.00 hr (tmax) postadministration. Elimination half-life (t1/2λz) and mean absorption time (MAT) were 4.01 hr and 1.56 hr, respectively. The systemic bioavailability following oral administration of TP was 78.10%. TP therapy with an oral dosage of 30 mg/kg BW is suggested for a beneficial clinical effect in quails.  相似文献   

4.
Cytochromes P450 (P450) are important for not only drug metabolism and toxicity, but also biosynthesis and metabolism of cholesterol and bile acids, and steroid synthesis. In cynomolgus macaques, widely used in biomedical research, we have characterized P450 cDNAs, which were isolated as expressed sequence tags of cynomolgus macaque liver. In this study, cynomolgus CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 cDNAs were characterized by sequence analysis, phylogenetic analysis and tissue expression pattern. By sequence analysis, these five cynomolgus P450s had high sequence identities (94–99%) to the human orthologs in amino acids. By phylogenetic analysis, each cynomolgus P450 was more closely related to the human ortholog as compared with the dog or rat ortholog. By quantitative polymerase chain reaction, among the 10 tissue types, CYP7A1 and CYP17A1 mRNAs were preferentially expressed in liver and adrenal gland, respectively. Cynomolgus CYP27A1 and CYP51A1 mRNAs were most abundantly expressed in liver and testis, respectively. Cynomolgus CYP20A1 mRNA was expressed in all the tissues, including brain and liver. Tissue expression patterns of each cynomolgus P450 were generally similar to that of the human ortholog. These results suggest the molecular similarities of CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 between cynomolgus macaques and humans.  相似文献   

5.
Abstract

AIM: To determine the pharmacokinetics and bioavailability of florfenicol in the plasma of healthy Japanese quail (Coturnix japonica).

METHODS: Sixty-five quail were given an I/V and I/M dose of florfenicol at 30 mg/kg bodyweight (BW). A two-period sequential design was used, with a wash-out period of 2 weeks between the different routes of administration. Concentrations of florfenicol in plasma were determined using high-performance liquid chromatography (HPLC).

RESULTS: A naíve pooled data analysis approach for the plasma concentration-time profile of florfenicol was found to fit a non-compartmental open model. After I/V administration, the mean residence time (MRT), mean volume of distribution at steady state (Vss), and total body clearance of florfenicol were 12.0 (SD 0.37) h, 8.7 (SD 0.22) L/kg, and 1.3 (SD 0.08) L/h/kg, respectively. After I/M injection, the MRT, mean absorption time (MAT), and bioavailability were 12.3 (SD 0.37) h, 0.2 (SD 0.02) h, and 79.1 (SD 1.79)%, respectively.

CONCLUSIONS: The time for the concentration of florfenicol to fall below the probable effective concentration of 1 µg/ml of approximately 10 h is sufficient for the minimum inhibitory concentration needed for many bacterial isolates. Further pharm acodynamic studies in quail are needed to evaluate a suitable dosage regimen.  相似文献   

6.
The pharmacokinetic parameters of moxidectin (MXD) after intravenous and pour‐on (topical) administration were studied in sixteen pigs at a single dose of 1.25 and 2.5 mg/kg BW (body weight), respectively. Blood samples were collected at pretreatment time (0 hr) over 40 days. The plasma kinetics were analyzed by WinNonlin 6.3 software through a noncompartmental model. For intravenous administration (n = 8), the elimination half‐life (λZ), the apparent volume of distribution (Vz), and clearance (Cl) were 10.29 ± 1.90 days, 89.575 ± 29.856 L/kg, and 5.699 ± 2.374 L/kg, respectively. For pour‐on administration (n = 8), the maximum plasma drug concentration (Cmax), time to maximum plasma concentration (Tmax), and λZ were 7.49 ng/ml, 1.72, and 6.20 days, respectively. MXD had a considerably low absolute pour‐on bioavailability of 9.2%, but the mean residence time (MRT) for pour‐on administration 10.88 ± 1.75 days was longer than 8.99 ± 2.48 days for intravenous administration. These results showed that MXD was absorbed via skin rapidly and eliminated slowly. The obtained data might contribute to refine the dosage regime for topical MXD administration.  相似文献   

7.
Bayesian population pharmacokinetic models of florfenicol in healthy pigs were developed based on retrospective data in pigs either via intravenous (i.v.) or intramuscular (i.m.) administration. Following i.v. administration, the disposition of florfenicol was best described by a two‐compartment open model with the typical values of half‐life at α phase (t 1/2α), half‐life at β phase (t 1/2β), total body clearance (Cl), and volume of distribution (V d) were 0.132 ± 0.0289, 2.78 ± 0.166 hr, 0.215 ± 0.0102, and 0.841 ± 0.0289 L kg?1, respectively. The disposition of florfenicol after i.m. administration was best described by a one‐compartment open model. The typical values of maximum concentration of drug in serum (C max), elimination half‐life (t 1/2Kel), Cl, and Volume (V ) were 5.52 ± 0.605 μg/ml, 9.96 ± 1.12 hr, 0.228 ± 0.0154 L hr?1 kg?1, and 3.28 ± 0.402 L/kg, respectively. The between‐subject variabilities of all the parameters after i.m. administration were between 25.1%–92.1%. Florfenicol was well absorbed (94.1%) after i.m. administration. According to Monte Carlo simulation, 8.5 and 6 mg/kg were adequate to exert 90% bactericidal effect against Actinobacillus pleuropneumoniae after i.v. and i.m. administration.  相似文献   

8.
The pharmacokinetic profiles of florfenicol in the spotted halibut (Verasper variegatus) were investigated at 15 and 20°C water temperatures, respectively. Florfenicol content in plasma samples was analyzed using an HPLC method. Drug concentration versus time data were best fitted to a three‐compartment model after a single intravenous administration (15 mg/kg BW), and fitted to a two‐compartment model after an oral administration (30 mg/kg BW) at 15 and 20°C. The florfenicol concentration in the blood increased slowly during the 12 hr following an oral administration at 15°C, with a peak concentration (Cmax) of 9.1 mg/L, and then declined gradually. The half‐lives of absorption, distribution, and elimination phase were 2.18, 5.66 and 14.25 hr, respectively. The bioavailability (F) was calculated to be 24.14%. After an oral administration at 20°C, shorter half‐lives of absorption (1.33 hr), distribution (2.51 hr) and elimination (9.71 hr), a higher Cmax (12.2 mg/L), and a similar F (23.98%) were found. Based on the pharmacokinetics and pharmacodynamics, an oral dose of 30 mg/kg BW was suggested to be efficacious for bacterial disease control in spotted halibut farming.  相似文献   

9.
10.
The dog CYP1A2 enzyme is likely an important contributor to the metabolism of veterinary drugs. Dog CYP1A2 is expressed in liver, plus it is inducible and polymorphic, creating the potential for intersubject differences in pharmacokinetics. Hence, the ability to probe dog CYP1A2 activity and inhibition is relevant toward veterinary drug development and drug–drug interaction assessment. Previous studies have relied on human probes with questionable specificity for CYP1A2, so it was hypothesized that recombinant CYP1A2 could be used to find a specific CYP1A2 substrate. Intrinsic clearance experiments demonstrated that tizanidine was a substrate of CYP1A2. Profiling of tizanidine metabolites generated by CYP1A2 identified the imidazole metabolite that was detectable in dog plasma. The imidazole metabolite was subsequently used to evaluate tizanidine as a CYP1A2 probe. Co‐administration of the CYP1A inhibitor enrofloxacin with tizanidine significantly decreased (30%; = 3) the formation of the imidazole metabolite vs. control experiments. As enrofloxacin is a weak inhibitor, further studies are required to confirm the sensitivity of tizanidine as an in vivo probe. However, tizanidine may be a more selective CYP1A2 probe than phenacetin when conducting in vitro studies due to the presence of other phenacetin‐metabolizing enzymes in dog liver microsomes.  相似文献   

11.
For most bacterial lung infections, the concentration of unbound antimicrobial agent in lung interstitial fluid has been considered as the gold standard for estimating the antibacterial efficacy. In this study, the pharmacokinetics of florfenicol (FF) in porcine lung interstitial fluid was investigated after single intramuscular administration at two different doses (20 and 50 mg/kg). Twelve pigs underwent thoracotomy under general anesthesia. Then, the CMA/30 probe was implanted into the lung and perfused at 1 μL/min. The microdialysis (MD) samples were collected on a preset schedule and analyzed by high‐performance liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis was performed. FF exhibited rapid distribution and slow elimination in porcine lung interstitial fluid. The main pharmacokinetic parameters at 20 and 50 mg/kg were 4.88 ± 0.54 and 10.36 ± 2.52 μg/mL for the maximum concentration (Cmax), 3.25 ± 0.32 and 3.50 ± 0.27 h for the time to Cmax (Tmax), 9.47 ± 6.84 and 7.75 ± 3.23 h for the half‐life (t1/2), 0.10 ± 0.06 and 0.10 ± 0.04 1/h for the terminal elimination rate constant (λz), 13.85 ± 7.97 and 11.42 ± 2.79 h for the mean residence time (MRT), 37.77 ± 8.13 and 71.15 ± 16.99 h·μg/mL for the area under the curve from time 0 to 18.25 h (AUC0–18.25), and 51.18 ± 20.11 and 88.78 ± 27.58 h·μg/mL for the area under the curve from time 0 to infinity (AUC0–∞), respectively.  相似文献   

12.
The pharmacokinetics and residue elimination of florfenicol (FFC) and its metabolite florfenicol amine (FFA) were studied in healthy blunt‐snout bream (Megalobrama amblycephala, 50 ± 10 g). The study was conducted with a single‐dose (25 mg/kg) oral administration at a water temperature of 18 or 28°C, while in the residue elimination study, fish were administered at 25 mg/kg daily for three consecutive days by oral gavage to determine the withdrawal period (WDT) at 28°C. The FFC and FFA levels in plasma and tissues (liver, kidneys and muscle) were analysed using high‐performance liquid chromatography (HPLC). A no‐compartment model was used to analyse the concentration versus time data of M. amblycephala. In the two groups at 18 and 28°C, the maximum plasma concentration (Cmax) of FFC was 5.89 and 6.21 μg/ml, while the time to reach Cmax (Tmax) was 5.97 and 2.84 hr, respectively. These suggested that higher temperature absorbed more drug and more quickly at M. amblycephala. And the elimination half‐life (T1/2) of FFC was calculated as 26.75 and 16.14 hr, while the total body clearance (CL) was 0.09 and 0.15 L kg?1 hr?1, and the areas under the concentration–time curves (AUCs) were 265.87 and 163.31 μg hr/ml, respectively. The difference demonstrated that the elimination rate of FFC in M. amblycephala at 28°C was more quickly than that at 18°C. The results of FFA showed the same trend in tissues of M. amblycephala. After multiple oral doses (25 mg/kg daily for 3 days), the k (eliminate rate constant) of FFA in M. amblycephala muscle was 0.017, the C0 (initial concentration) was 3.07 mg/kg, and the WDT was 10 days (water temperature 28°C).  相似文献   

13.
Florfenicol, a monofluorinated analogue of thiamphenicol, has a broad antibacterial spectrum. The pharmacokinetics of florfenicol was studied following a single intravenous (i.v.) or intramuscular (i.m.) injection at a dose of 20 mg/kg body weight in healthy male camels, sheep and goats. The concentration of florfenicol in plasma was determined using a microbiological assay. Pharmacokinetic analysis was performed using a two-compartment open model. Following i.m. administration, the maximum plasma concentration of florfenicol (C max) reached in camels, sheep and goats was 0.84±0.08, 1.04±0.10 and 1.21±0.10 g/ml, respectively, the the time required to reach C max (t max) in the same three respective species was 1.51±0.14, 1.44±0.10 and 1.21±0.10 h. The terminal half-life (t 1/2) and the fraction of the drug absorbed (F%) in camels, sheep and goats were 151.3±16.33, 137.0±12.16 and 127.4±11.0 min, and 69.20%±7.8%, 65.82%±6.7% and 60.88%±5.9%, respectively. The MRT in the same three respective species was 4.01±0.45, 3.42±0.39 and 2.98±0.32 h. Following i.v. administration, the terminal half-life (t 1/2) and total body clearance (ClB) in camels, sheep and goats were 89.5±9.2, 78.8±8.3 and 71.1±8.9 min and 0.33±0.04, 0.30±0.03 and 0.27±0.03 L/h per kg, respectively. The area under the curve (AUC0–) and the mean residence time (MRT) in the same three respective species were 60.61±6.98, 62.45±6.56 and 74.07±7.85 g/ml per h, and 2.71±0.31, 2.34±0.25 and 2.11±0.23 h. These data suggest that sheep and goats absorb and clear florfenicol to a broadly similar extent, but the rate and extent of absorption of the drug tends to be higher in camels. Drug treatment caused no clinically overt adverse effects. Plasma enzyme activities and metabolites indicative of hepatic and renal functions measured 1, 2, 4 and 7 days following the drug treatment were within the normal range, indicating that the drug is safe at the dose used.  相似文献   

14.
本研究通过建立人肝微粒体体外孵育试验,考察泰妙菌素对4种CYP450亚酶的探针底物睾酮、非那西丁、氯唑沙宗、氢溴酸右美沙芬代谢的影响,以反映泰妙菌素对人CYP3A4、CYP1A2、CYP2E1、CYP2D6酶活性的作用。试验分为3组:药物试验组、阳性对照组(不含NADPH)、阴性对照组(不含CYP450抑制剂),孵育体系为100 μL,孵育试验在96孔板中进行。终止反应后使用高效液相色谱串联质谱仪(LC-MS/MS),以内标法检测96孔板中孵育液的剩余探针底物浓度。根据药物试验组与阴性对照组的探针药物代谢浓度之比,计算药物试验组的探针药物代谢率。使用Graphpad Prism 6.0软件,以药物试验组相对代谢率为纵坐标,药物浓度对数值为横坐标作图,计算试验组药物IC50值。针对泰妙菌素与CYP3A4的孵育试验设置多个孵育时间点观察孵育时间对IC50值的影响。试验结果显示,酮康唑对CYP3A4的IC50值为0.044 μmol/L,α-萘黄酮对CYP1A2的IC50值为0.030 μmol/L、4-甲基吡唑对CYP2E1的IC50值为0.022 μmol/L、奎尼丁对CYP2D6的IC50值为0.096 μmol/L。泰妙菌素对CYP1A2及CYP2D6的IC50值均大于50 μmol/L,对CYP2E1的IC50值为0.045 μmol/L,对CYP3A4的IC50值为1.609 μmol/L。延长泰妙菌素与CYP3A4的孵育时间(10~50 min)后,泰妙菌素对CYP3A4的IC50值由1.609 μmol/L增加至 8.657 μmol/L。本研究中4种亚酶常用抑制剂的IC50值与参照值相近,表明所建立人肝微粒体体外孵育试验方法可靠。以IC50值为指标显示泰妙菌素对CYP1A2和CYP2D6无抑制作用,对CYP2E1和CYP3A4存在强抑制作用,泰妙菌素可能是CYP3A4的可逆性抑制剂。  相似文献   

15.
Plasma disposition of florfenicol in channel catfish was investigated after an oral multidose (10 mg/kg for 10 days) administration in freshwater at water temperatures ranging from 24.7 to 25.9 °C. Florfenicol concentrations in plasma were analyzed by means of liquid chromatography with MS/MS detection. After the administration of florfenicol, the mean terminal half‐life (t1/2), maximum concentration at steady‐state (Css(max)), time of Css(max) (Tmax), minimal concentration at steady‐state (Css(min)), and Vc/F were 9.0 h, 9.72 μg/mL, 8 h, 2.53 μg/mL, and 0.653 L/kg, respectively. These results suggest that florfenicol administered orally at 10 mg/kg body weight for 10 days could be expected to control catfish bacterial pathogens inhibited in vitro by a minimal inhibitory concentration value of <2.5 μg/mL.  相似文献   

16.
Mammalian spermatogenesis involves highly regulated temporal and spatial dynamics, carefully controlled by several signalling processes. Retinoic acid (RA) signalling could have a critical role in spermatogenesis by promoting spermatogonia differentiation, adhesion of germ cells to Sertoli cells, and release of mature spermatids. An optimal testicular RA concentration is maintained by retinaldehyde dehydrogenases (ALDHs), which oxidize RA precursors to produce RA, whereas the CYP26 class of enzymes catabolizes (oxidize) RA into inactive metabolites. The objective was to elucidate gene expression of these RA‐metabolizing enzymes (ALDH1A1, ALDH1A2, ALDH1A3, CYP26A1, CYP26B1 and CYP26C1) and their protein presence in testes of young, peripubertal and adult dogs. Genes encoding RA‐synthesizing isozymes ALDH1A1, ALDH1A2 and ALDH1A3 and RA‐catabolizing isomers CYP26A1, CYP26B1 and CYP26C1 were expressed in testis at varying levels during testicular development from birth to adulthood in dogs. Based on detailed analyses of mRNA expression patterns, ALDH1A2 was regarded as a primary RA‐synthesizing enzyme and CYP26B1 as a critical RA‐hydrolysing enzyme; presumably, these genes have vital roles in maintaining RA homeostasis, which is imperative to spermatogenesis and other testicular functions in post‐natal canine testis.  相似文献   

17.
The objectives of this study were to determine the pharmacokinetics of toltrazuril and its metabolites in pregnant and nonpregnant ewes following a single oral dose and to determine the plasma concentrations of these compounds in milk, allantoic fluid, and newborn plasma. Eighteen healthy ewes were randomly divided into three groups (n = 6 each): pregnant ewes at 12–13 weeks of gestation (group A), nonpregnant ewes (group B), and pregnant ewes at 1–2 weeks before expected lambing date (group C). Ewes in all groups received a single oral dose of toltrazuril at 20 mg/kg body weight. In groups A and B, blood samples were collected at 1, 3, 5, 7, 9, 12, 15, 18 hr, every 6 hr to day 3, every 12 hr to day 7 and thereafter every 24 hr to day 14 post-toltrazuril administration. In group C, parturition was induced 24–36 hr after toltrazuril administration then milk, allantoic fluid, and newborn plasma samples were collected immediately after birth. Drug metabolites were assayed using ultra high-performance liquid chromatography–ultraviolet detection method (UHPLC-UV). The maximum concentration (Cmax), area under the plasma concentration-time curve (AUC0–t), AUC to 24 and 48 hr (AUC0–24), and (AUC0–48) were significantly higher in pregnant ewes. Longer apparent half-life (T1/2), significantly higher apparent volume of distribution (Vd/F) and total clearance (Cl/F) were observed in nonpregnant ewes. The time to maximum plasma concentration (Tmax), mean residence time (MRT) and elimination rate constant (Kel) were similar in both groups. The AUC0–24 and AUC0–48 were significantly higher in nonpregnant ewes. The AUC0–t was significantly higher in pregnant ones. The ratio of plasma toltrazuril concentrations in ewes and toltrazuril concentrations in newborn lambs' plasma, allantoic fluid, and milk were 68%, 2.3%, and 5.3%, respectively. Results of this study showed that toltrazuril is well absorbed after a single oral dose in ewes with widespread distribution in different body tissues.  相似文献   

18.
This study evaluates changes in the pharmacokinetic behavior of a single oral dose of florfenicol in rainbow trouts experimentally infected with Lactococcus garvieae or Streptococcus iniae. One hundred and fifty fish were randomly divided into three equal groups: 1—healthy fish, 2—fish inoculated with S. iniae (2.87 × 107 CFU/ml, i.p.), and 3—fish inoculated with L. garvieae (6.8 × 105 CFU/ml, i.p.). Florfenicol was administered to all groups at 15 mg/kg by oral gavage. Blood sampling was performed at 0, 2, 3, 6, 8, 12, 24, 48, 72, and 120 hr after drug administration to each group, and plasma concentration of florfenicol was assayed by HPLC method. The MICs of florfenicol were 1.2 μg/ml and 5 μg/ml against L. garviae and S. iniae, respectively. Healthy fish showed higher values for most of the PK/PD parameters as compared to fish infected with L. garvieae which was reversed in fish infected with S. iniae. Fish infected with L. garvieae showed decreased relative bioavailability accompanied by increased volume of distribution at steady‐state (Vdss) and total body clearance (ClB). Infection with S. iniae increased the peak concentration of drug after administration (Cmax) and decreased elimination half‐life (T1/2 β), central compartment volume (Vc), and Vdss. In conclusion, infection with these bacteria can affect the pharmacokinetic behavior of florfenicol in rainbow trouts as shown by decreased bioavailability and increased total body clearance and volume of distribution in L. garvieae infection and decreased volume of distribution accompanied by increased Cmax in S. iniae‐infected fish.  相似文献   

19.
2-(l-Menthoxy)ethanol has been frequently employed as a flavoring agent; however, data regarding 2-(l-menthoxy)ethanol toxicity remain limited. We performed a 13-week subchronic toxicity study of 2-(l-menthoxy)ethanol in male and female F344 rats, with doses of 0, 15, 60, or 250 mg/kg body weight (BW)/day orally administered by gavage using corn oil as the vehicle. No significant toxicological changes in general condition, body weight, or food intake were observed in any groups. The hematological assessment showed decreased hemoglobin, hematocrit, mean corpuscular volume, and mean corpuscular hemoglobin and increased platelet count in the male 250 mg/kg group. Serum biochemistry revealed elevated total cholesterol in the 250 mg/kg group of male and female rats, reduced triglyceride in the female 250 mg/kg group, and increased total protein in the male 250 mg/kg group, indicating effects on lipid metabolism and protein synthesis. For organ weights, absolute and relative weights of the liver and adrenal glands were increased in the 250 mg/kg group of both sexes and the male 250 mg/kg group, respectively. Histopathological analysis showed chronic nephropathy in the male 15 mg/kg or higher groups, with increased absolute and relative kidney weights, as well as elevated serum creatinine, in the male 60 and 250 mg/kg groups. However, eosinophilic granules containing α2u-globulin were identified in proximal tubules, suggesting α2u-globulin nephropathy specific to male rats and without toxicological significance. These results indicated that the no-observed-adverse-effect level of 2-(l-menthoxy)ethanol was 60 mg/kg BW/day for both sexes.  相似文献   

20.
A bioavailability and pharmacokinetics study of powder and liquid tilmicosin formulations was carried out in 18 healthy chickens according to a single-dose, two-period, two-sequence, crossover randomized design. The two formulations were Provitil and Pulmotil AC. Both drugs were administered to each chicken after an overnight fast on two treatment days separated by a 2-week washout period. A modified rapid and sensitive HPLC method was used for determination of tilmicosin concentrations in chicken plasma. Various pharmacokinetic parameters including area under plasma concentration–time curve (AUC0−72), maximum plasma concentration (C max), time to peak concentration (t max), elimination half-life (t 1/2β), elimination rate (k el), clearance (ClB), mean residence time (MRT) and volume of distribution (V d,area) were determined for both formulations. The average means of AUC0−72 for Provitil and Pulmotil AC were very close (24.24 ± 3.86, 21.82 ± 3.14 (μg.h)/ml, respectively), with no significant differences based on ANOVA. The relative bioavailability of Provitil as compared to Pulmotil AC was 111%. In addition, there were no significant differences in the C max  (2.09 ± 0.37, 2.12 ± 0.40 μg/ml), t max  (3.99 ± 0.84, 5.82 ± 1.04 h), t 1/2β (47.4 ± 9.32, 45.0 ± 5.73 h), k el (0.021 ± 0.0037, 0.022 ± 0.0038 h−1), ClB (19.73 ± 3.73, 21.37 ± 4.54 ml/(min/kg)), MRT (71.20 ± 12.87, 67.15 ± 9.01 h) and V d,area (1024.8 ± 87.5, 1009.8 ± 79.5 ml/kg) between Pulmotil AC and Provitil, respectively. In conclusion, tilmicosin was rapidly absorbed and slowly eliminated after oral administration of single dose of tilmicosin aqueous and powder formulations. Provitil and Pulmotil AC can be used as interchangeable therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号