首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 251 毫秒
1.
遮挡条件下基于MSF-PPD网络的绿萝叶片点云补全方法   总被引:1,自引:0,他引:1  
针对在自然场景中,由于遮挡、视角限制和操作不当等问题,导致传感器获取的植物或器官点云不完整,提出了一种基于多尺度特征提取模块结合点云金字塔解码器(Multi scale feature extraction model with point cloud pyramid decoder,MSF-PPD)的叶片形状补全网络。首先,采用多尺度特征提取模块实现不同维度特征信息的全局提取和融合,其次,通过点云金字塔解码器进行叶片点云的多阶段生成补全,最终得到完整的目标叶片形状。使用曲面参数方程构建绿萝叶片仿真模型库,并将其离散成点云作为网络模型训练的训练集和验证集,使用Kinect v2相机获取绿萝叶片点云作为网络模型补全性能评估的测试集。试验结果表明,本文网络结构对叶片点云补全的效果理想,证明本文方法能够对遮挡情况下的绿萝叶片进行高效、完整的补全。  相似文献   

2.
针对我国油茶果采摘过程中存在的自动化水平落后、采摘效率低、适采周期短的现状,应用于机器人收获技术的机器视觉技术受限于真实场景中复杂背景干扰从而导致识别精度较低的问题。以自然场景下的油茶果为研究对象,提出一种基于Mask-RCNN的自然场景下油茶果目标识别与检测算法,首先获取油茶果图像并建立数据集,利用ResNet卷积神经网络提取油茶果果实图片的特征,获得果实目标分割结果,再采用RPN对所得到的特征图进行操作,并增加全连接层,提取每个样本mask像素面积,并对目标类别进行预测。利用测试集分别测试油茶果的分割网络模型及目标识别算法,结果表明,网络模型的分割准确率为89.85%,油茶果目标识别的平均检测精度为89.42%,召回率为92.86%。本算法能够自动检测油茶果目标,并有效降低不同光照情况下叶片与花苞遮挡、果实重叠、果实色泽等因素干扰,为自然场景中果实自动化采摘提供可靠的视觉支持。  相似文献   

3.
针对温室番茄智能化管理需要,研究茎秆、叶片和绿果等3类相近色目标的多波段图像融合方法,以凸显目标与背景亮度差异,提高目标视觉识别效率。根据其各自在300~1000 nm范围的反射光谱特征差异,建立了针对其光谱数据分类的Lasso正则化逻辑回归模型。基于模型的稀疏解特征,确定具有较大权值系数的450、600和900 nm等3个波段作为最优成像波段,在此基础上构建了温室番茄植株多波段图像在线采集系统。结合最优成像波段下相近色目标图像特征分析,提出了基于NSGA-II的多波段图像加权融合方法,以增强特定目标与近色背景物体的图像亮度差异。最后通过现场试验对多波段图像融合效果进行评估。结果表明,分别以茎秆、叶片和绿果器官作为识别目标,通过多波段图像融合处理后,目标与背景之间的图像灰度差异绝对差值相应达到单波段图像的2.02、8.63和7.89倍,即被识别目标与其他近色背景的亮度差异显著增强,且背景物的亮度波动得到抑制。本研究结果可以为农业环境近色目标视觉识别相关研究提供参考。  相似文献   

4.
为了实现无损检测生菜叶片中重金属镉的污染程度,以计算机视觉技术为研究手段,结合图像处理方法和特征选择方法,对4个梯度重金属镉胁迫的生菜叶片进行识别。首先利用数码相机获取生菜叶片图像,然后使用K-means聚类算法分割图像,对分割出的目标图像提取图像颜色、形状和纹理特征,共获取46个图像特征。为了使模型更简便和减少数据量,利用基于变量组合的变量重要性分析(VIAVC)和竞争性自适应重加权算法(CARS)对图像特征进行降维。采用偏最小二乘法判别分析(PLS-DA)和随机森林(RF)构建模型,用于生菜镉胁迫程度的识别。结果表明,在7个组合特征模型中,颜色形状纹理融合特征所建立的模型给出了最优结果,测试集分类正确率为92%。用VIAVC和CARS对颜色形状纹理融合特征进行特征选择,发现VIAVC的降维效果优于CARS。使用特征选择的变量建立模型,RF模型的训练集分类正确率和预测集分类正确率均高于PLS-DA,其中,基于VIAVC的RF模型的训练集和预测集分类正确率分别为98.0%和96.0%。可见,基于VIAVC的RF模型在大大降低了特征维数的前提下,能够较好地对不同镉胁迫程度的生菜叶片进行识别。  相似文献   

5.
苏宝峰  沈磊  陈山  米志文  宋育阳  陆南 《农业机械学报》2021,52(11):226-233,252
针对田间自然背景下葡萄品种鉴别缺乏有效识别方法的问题,提出了一种基于融合注意力机制的残差网络ResNet50-SE,对自然背景下不同生长时期的葡萄品种进行分类鉴别,分析并验证了网络的识别效果。将SE注意力模块引入ResNet-50网络,并通过迁移学习实现基于不同时期下葡萄的嫩梢、幼叶及成熟叶片特征的识别;同时为了揭示注意力机制的作用机制,利用Grad-CAM可视化方法,对ResNet50-SE模型每一层所提取的不同生长阶段下的葡萄特征进行可视化解释;通过t-SNE算法对模型提取到的不同葡萄品种的多特征进行聚类分析,进而直观评估模型对多特征提取的性能。结果表明:提出的ResNet50-SE网络在田间复杂背景条件下对于葡萄不同时期的多特征识别具有较高的识别率和较强的鲁棒性,模型测试集准确率达到88.75%,平均召回率达到89.17%,相比于AlexNet 、GoogLeNet、ResNet-50、VGG-16,测试集准确率分别提高了13.61、7.64、0.70、6.53个百分点;注意力机制能明显降低背景影响,强化有效特征;模型对训练集提取的不同生长时期的特征聚类效果较强。可见,SE模块可明显提升ResNet-50模型在特征提取过程的效果,有效降低田间复杂背景对分类结果的影响,为田间复杂背景下葡萄品种的分类识别及田间多特征分类问题提供借鉴。  相似文献   

6.
基于多源图像融合的自然环境下番茄果实识别   总被引:1,自引:0,他引:1  
蔬果采摘机器人面对的自然场景复杂多变,为准确识别和分割目标果实,实现高成功率采收,提出基于多源图像融合的识别方法。首先,针对在不同自然场景下单图像通道信息不充分问题,提出融合RGB图像、深度图像和红外图像的多源信息融合方法,实现了机器人能够适应自然环境中不同光线条件的番茄果实。其次,针对传统机器学习训练样本标注低效问题,提出聚类方法对样本进行辅助快速标注,完成模型训练;最终,建立扩展Mask R-CNN深度学习算法模型,进行采摘机器人在线果实识别。实验结果表明,扩展Mask R-CNN算法模型在测试集中的检测准确率为98.3%、交并比为0.916,可以满足番茄果实识别要求;在不同光线条件下,与Otsu阈值分割算法相比,扩展Mask R-CNN算法模型能够区分粘连果实,分割结果清晰完整,具有更强的抗干扰能力。  相似文献   

7.
近年来,基于叶片图像的番茄病害识别研究受到广泛关注。本研究利用番茄叶部病害图像中病斑的颜色和纹理的差异,通过提取番茄病害叶片图像的颜色矩(CM)、颜色聚合向量(CCV)和方向梯度直方图(HOG)等颜色纹理特征,引入核相互子空间法(KMSM),建立了番茄叶部病害快速识别模型(CCHKMSM)。该模型首先通过高斯核函数,将从不同类别叶部病害图像数据中抽取的颜色及纹理特征映射到高维空间;然后对映射的高维空间进行主成分分析,建立非线性病害特征空间;最后基于非线性特征空间最小正则角对病害进行识别。本研究分别以公共农业病虫害数据集PlantVillage中的9种番茄病害类和1类健康番茄叶片图像,以及实际场景下采集的3种叶部病虫害图像数据集开展算法验证试验。基于PlantVillage的试验结果表明,当每类样本集数量为350张时,本研究所提出的CCHKMSM模型识别率达到100%,模型训练时间为0.1540 s,平均识别时间为0.013 s;同时,在样本数量150张到1000张的测试区间内,模型平均识别率为99.14%。该识别率高于其他典型的机器学习模型,与基于深度学习的识别方法相当。基于实际复杂场景下采集病害图像集的实验中,通过对原始图像切割分块后,对各病害的平均识别率为96.21%。试验结果表明,本研究提出的CCHKMSM模型识别准确率高且计算量小,其训练时间和测试时间都远低于深度学习等方法。该方法对系统要求低,具有在手持设备、边缘计算终端等低配置感知系统中的应用潜力。  相似文献   

8.
为实现苹果树叶片病虫害快速且准确地识别与分类,研究基于迁移学习的多种神经网络模型,对比不同模型在苹果树叶片病虫害识别上的准确度。构建VGG16,ResNet50,Inception V3三种神经网络模型,利用从PlantVillage上获取的4种不同的苹果树叶片图片,分别为苹果黑星病叶片,苹果黑腐病叶片,苹果锈病叶片以及健康苹果叶片。按照8∶1∶1的比例将图片分为训练集,测试集和验证集对模型进行训练。在相同的试验条件下对比分析VGG16,ResNet50和Inception V3的试验结果。三种模型在使用迁移学习技术的情况下对苹果树叶片病虫害识别准确率分别达到97.67%,95.34%和100%。与不使用迁移学习的模型相比,使用迁移学习能够明显提升模型的收敛速度以及准确率,为常见的苹果树病虫害识别提供了新的方法。  相似文献   

9.
基于深度学习与复合字典的马铃薯病害识别方法   总被引:4,自引:0,他引:4  
为解决自然环境下小样本病害叶片识别率低、鲁棒性不强的问题,以马铃薯病害叶片为研究对象,提出一种基于深度卷积神经网络与复合特征字典结合的病害叶片识别方法。首先,利用迁移学习技术对Faster R-CNN模型进行训练,检测出病害叶片的斑块区域;然后,采用高密度采样方法对整个斑块区域提取颜色特征和SIFT特征,建立颜色特征和SIFT特征词汇表,再由K-均值聚类算法对两类表观特征词汇表进行聚类,构造出复合特征字典;最后,将病害区域提取的特征在复合特征字典中映射后获得特征直方图,利用支持向量机训练出病害的识别模型。试验结果表明,复合特征字典中视觉单词数为50时,病害识别的鲁棒性和实时性最佳,平均识别准确率为90.83%,单帧图像耗时1.68 s;在颜色特征和SIFT特征组合下,本文方法在自然光照条件下对病害的平均识别准确率最高,达到84.16%;在相同数据集下,与传统词袋法相比,本文方法的平均识别准确率提高了25.45个百分点。  相似文献   

10.
基于田间图像的局部遮挡小尺寸稻穗检测和计数方法   总被引:1,自引:0,他引:1  
大田水稻生长环境复杂,稻穗尺寸相对较小,且与叶片之间贴合并被遮挡严重,准确识别复杂田间场景中的水稻稻穗并自动统计穗数具有重要意义。为了实现对局部被叶片遮挡的小尺寸稻穗的计数,设计了一种基于生成特征金字塔的稻穗检测(Generative feature pyramid for panicle detection,GFP-PD)方法。首先,针对小尺寸稻穗在特征学习时的特征损失问题,量化分析稻穗尺寸与感受野大小的关系,通过选择合适的特征学习网络减少稻穗信息损失;其次,通过构造并融合多尺度特征金字塔来增强稻穗特征。针对稻穗特征中因叶片遮挡产生的噪声,基于生成对抗网络设计遮挡样品修复模块(Occlusion sample inpainting module,OSIM),将遮挡噪声修复为真实稻穗特征,优化遮挡稻穗的特征质量。对南粳46水稻的田间图像进行模型训练与测试,GFP-PD方法对稻穗计数的平均查全率和识别正确率为90.82%和99.05%,较Faster R-CNN算法计数结果分别提高了16.69、5.15个百分点。仅对Faster R-CNN算法构造特征金字塔,基于VGG16网络的平均查全率和识别正确率分别为87.10%和93.87%,较ZF网络分别提高3.75、1.20个百分点;进一步使用OSIM修复模型、优化稻穗特征,识别正确率由93.87%上升为99.05%。结果表明,选择适合特征学习网络和构建特征金字塔能够显著提高田间小尺寸稻穗的计数查全率; OSIM能够有效去除稻穗特征中的叶片噪声,有利于提升局部被叶片遮挡的稻穗的识别正确率。  相似文献   

11.
实现果园机械化智能采摘是解决农村劳动力不足、降低果实采摘成本的重要途径,对果园中果实的准确识别是其关键技术。以枣为研究对象,建立最适合多品种、实用性强的枣果实成熟度识别模型,将YOLO算法引入到枣果实在自然环境下的成熟度识别中,将枣果实分为成熟果实、未熟果实和完熟果实、半红果实、未熟果实两种标注方式,建立YOLO V3、YOLO V4、YOLO V4-Tiny和Mobilenet-YOLO V4-Lite四种识别模型。研究表明YOLO算法中YOLO V3与YOLO V4-Tiny两个模型均可适用于两种标注方式,验证集mAP约为94%,证明YOLO算法能够对枣果实进行有效的成熟度识别。  相似文献   

12.
基于树木整体图像和集成迁移学习的树种识别   总被引:2,自引:0,他引:2  
为解决自然场景中拥有复杂背景的树木整体图像识别问题,提出了一种基于树木整体图像和集成迁移学习的树种识别方法。首先使用Alex Net、Vgg Net-16、Inception-V3及ResNet-50这4种在Image Net大规模数据集上预训练的模型对图像进行特征提取,然后迁移到目标树种数据集上,训练出4个不同的分类模型,最后通过相对多数投票法和加权平均法建立集成模型。构建了一个新的树种图像数据集——Trees Net,基于该数据集,设计了多类实验,并将该方法与传统的图像识别方法进行了分析比较。实验结果表明:该方法对复杂背景下树种图像识别准确率达到99. 15%,对于树木整体图像识别具有较好的效果。  相似文献   

13.
基于迁移学习和双线性CNN的细粒度菌菇表型识别   总被引:1,自引:0,他引:1  
为了对细粒度菌菇进行表型识别,在双线性卷积神经网络细粒度图像识别框架基础上,提出了一种基于迁移学习和双线性Inception-ResNet-v2网络的菌菇识别方法。利用Inception-ResNet-v2网络的特征提取能力,结合双线性汇合操作,提取菌菇图像数据的细粒度特征,采用迁移学习将ImageNet数据集上预训练的模型参数迁移到细粒度菌类表型数据集上。试验表明,在开源数据集和个人数据集上,识别精度分别达到87.15%和93.94%。开发了基于Flask框架的在线菌类表型识别系统,实现了细粒度菌菇表型的在线识别与分析。  相似文献   

14.
李丹 《农业工程》2020,10(6):36-40
针对在黄瓜叶部病害识别过程中使用传统卷积神经网络存在模型训练时间长、识别准确率低等问题,提出一种迁移学习和改进残差神经网络相结合的方法对黄瓜叶部病害进行识别。首先对数据集图像进行预处理,将数据集划分为训练集和测试集;然后对传统残差神经网络进行改进;最后使用迁移学习的方式对网络模型进行训练。利用该研究方法对不同的黄瓜叶部病害进行识别试验,结果表明该方法具有较高的识别准确率,可为其他作物的识别方法研究提供参考。   相似文献   

15.
基于改进ResNet的植物叶片病虫害识别   总被引:1,自引:0,他引:1  
轻量化植物叶片病虫害识别算法设计是实现移动端植物叶片病虫害识别的关键。研究提出一种基于改进ResNet模型的轻量化植物叶片病虫害识别算法Simplify ResNet。以人工采集图像和PlantVillage数据集图像为实验数据,根据移动端植物病虫害识别对准确率、速度和模型大小的实际需求,改进ResNet模型。使用5×5卷积替代7×7卷积,采用残差块的瓶颈结构代替捷径结构,采用模型剪枝处理训练后的模型。通过测试集5 786幅图像测试Simplify ResNet模型,证明5×5卷积和残差块的瓶颈结构可有效降低模型参数量,模型剪枝可有效降低训练后的模型大小。Simplify ResNet模型对测试集图像的识别准确率为92.45%,识别时间为48 ms,内存大小为36.14 Mb。与LeNet、AlexNet和MobileNet等模型相比,其准确率分别高18.3%,7.45%和1.2%。为移动端植物病虫害识别解决最重要的算法设计问题,为移动端植物病虫害识别做出有益探索。  相似文献   

16.
针对鱼种类多、数据采集难度大,且需要细粒度图像识别等问题,提出了一种基于度量学习的小样本学习方法.采用基于度量学习的小样本学习网络以及ResNet18的残差块结构,提取鱼图像的深层次特征,并将其映射至嵌入空间进而在嵌入空间判断鱼的种类.为了进一步提升识别准确率,利用小样本学习模型在mini-ImageNet数据集进行预...  相似文献   

17.
枣发源于山东省滨州市沾化区下洼镇,是枣树的一个栽培品种,果皮赭红光亮,皮薄肉脆、甘甜清香且营养丰富,可食率达95%。冬枣的鲜果质量等级以果实色泽、着色面积和果实大小的不同为衡量标准。目前市场销售的冬枣存在品种繁多和大小不一等问题,对冬枣进行分级分选是非常必要的。针对目前冬枣人工分级效率低、工人劳动强度大和分级效果不准确等现状,对冬枣分级分选装置进行了介绍。   相似文献   

18.
基于改进YOLO v3的自然场景下冬枣果实识别方法   总被引:4,自引:0,他引:4  
为实现自然场景下冬枣果实的快速、精准识别,考虑到光线变化、枝叶遮挡、果实密集重叠等复杂因素,基于YOLO v3深度卷积神经网络提出了一种基于改进YOLO v3(YOLO v3-SE)的冬枣果实识别方法。YOLO v3-SE模型利用SE Net 的SE Block结构将特征层的特征权重校准为特征权值,强化了有效特征,弱化了低效或无效特征,提高了特征图的表现能力,从而提高了模型识别精度。YOLO v3-SE模型经过训练和比较,选取0.55作为置信度最优阈值用于冬枣果实检测,检测结果准确率P为88.71%、召回率R为83.80%、综合评价指标F为86.19%、平均检测精度为82.01%,与YOLO v3模型相比,F提升了2.38个百分点,mAP提升了4.78个百分点,检测速度无明显差异。为检验改进模型在冬枣园自然场景下的适应性,在光线不足、密集遮挡和冬枣不同成熟期的情况下对冬枣果实图像进行检测,并与YOLO v3模型的检测效果进行对比,结果表明,本文模型召回率提升了2.43~5.08个百分点,F提升了1.75~2.77个百分点,mAP提升了2.38~4.81个百分点,从而验证了本文模型的有效性。  相似文献   

19.
我国葡萄产量逐年上升,田间葡萄品质检测有益于提高葡萄收获后流入市场的经济效益。传统田间葡萄品质检测主要依靠人工进行破坏性检测,存在经验差异导致的误差。随着深度学习、图像检测技术的发展,基于机器视觉的田间葡萄品质检测克服了传统人工检测的局限性,以快速精准、实时无损检测的优势得到了大量应用。葡萄品种不同,衡量其内、外在品质评级的指标也不同。本文根据葡萄品种与品质评价指标,从品种的机器视觉检测方法、品质的机器视觉检测方法展开,对国内外基于机器视觉技术的田间葡萄品质无损检测相关研究进行系统性分析与总结。总结了不同机器视觉检测方法对葡萄品质指标检测的优缺点,并对田间葡萄品质无损检测研究面临的问题进行了讨论,指出了今后的发展趋势与研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号