首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
N. Kedar  Nira Retig  J. Katan 《Euphytica》1967,16(2):258-266
Significant deviations from the ratios expected, according to the single dominant gene hypothesis for resistance to Fusarium wilt, were found in crosses involving several susceptible and resistant tomato lines. The susceptible class was the deficient one in F2 and F3 populations, as well as in backcrosses in which the heterozygotic resistant F1 served as the male parent. The reciprocal backcross, with the F1 as the female and the homozygous susceptible as the male, gave segregations better approximating or consistent with the single gene hypothesis. Reciprocal F1 and F2 generations did not give any evidence of cytoplasmic effects.The results were interpreted assuming preferential fertilization of ovules by pollen grains carrying the dominant I allele for resistance.The practical implications of the phenomenon of preferential fertilization in breeding for Fusarium resistance are discussed.  相似文献   

2.
The inheritance of resistance to dry root rot of chickpea caused by Rhizoctonia bataticola was studied. Parental F1 and F2 populations of two resistant and two susceptible parents, along with 49 F1 progenies of one of the resistant × susceptible crosses were rested for their reaction to dry root rot using the blotting-paper technique. All F, plants of the resistant × susceptible crosses were resistant; the F2 generation fitted a 3 resistant: 1 susceptible ratio indicating monogenic inheritance, with resistance dominant over susceptibility. F3 family segregation data confirmed the results. No segregation occurred among the progeny of resistant × resistant and susceptible × susceptible crosses.  相似文献   

3.
Summary Three lentil genotypes resistant to Fusarium oxysporum f.sp. lentis viz. Pant L 234, JL 446 and LP 286 were crossed with two susceptible ones. The hybrid plants were all resistant in the eight crosses evaluated. Segregation pattern for wilt reaction in F2, BC(P1), BC(P2) and F3 generations in field and glasshouse conditions indicated that resistance to Fusarium wilt is under the control of two dominant duplicate genes in Pant L 234 and two independent dominant genes with complementary effects in JL 446 and LP 286. A third dominant gene complementary to the dominant genes in JL 446 and LP 286 is present in two susceptible lines. Allelic tests suggest the presence of five independently segregating genes for resistance. Duplicate dominant genes in Pant L 234 are non-allelic to two dominant genes with complementary effects in LP 286 and JL 446 and the third gene complementary to the two genes in JL 446 and LP 286 in susceptible lines JL 641 and L 9–12. Gene symbols among parental genotypes have been designated.  相似文献   

4.
J. Rubio    E. Hajj-Moussa  M. Kharrat    M. T. Moreno    T. Millan  J. Gil 《Plant Breeding》2003,122(2):188-191
The inheritance of resistance to fusarium wilt race 0 of chickpea and linked random amplified polymorphic DNA (RAPD) markers were studied in two F6:7 recombinant inbred line (RIL) populations. These RILs were developed from the crosses CA2156 × JG62 (susceptible × resistant) and CA2139 × JG62 (resistant × resistant), and were sown in a field infected with fusarium wilt race 0 in Beja (Tunisia) over 2 years. A1:1 resistant to susceptible ratio was found in the RIL population from the CA2156 × JG62 cross, indicating that a single gene with two alleles controlled resistance. In the second RIL population (CA2139 × JG62) a 3:1 resistant to susceptible ratio indicated that two genes were present and that either gene was sufficient to confer resistance. Linkage analysis showed a RAPD marker, OPJ20600, linked to resistance in both RIL populations, which is present in the resistant parent JG62.  相似文献   

5.
Reciprocal crosses were made between resistant hexaploid spring wheat cultivars/lines Sumai 3, Ning8331, and 93FHB21, and susceptible tetraploids Stewart 63 and DT486 to generate 35 chromosome pentaploids. Four heads from each of five F1 pentaploid plants from each cross were screened with Fusarium graminearum for fusarium head blight (FHB) reaction. No pentaploid was as resistant to FHB as the resistant parents. Pentaploids derived from several crosses were more resistant than the susceptible parents, a few were more susceptible, and all plants from crosses with 93FHB21 failed to survive. Most viable seeds were obtained from the cross Sumai 3 × DT486. From this cross four of the five F1 pentaploid parents were fertile and 354F2 seeds derived from these four pentaploids were sown and evaluated for their FHB reaction. The majority of F2 plants from pentaploids 1 and 3had the visual appearance and level of resistance of Sumai 3, whereas progeny from pentaploids 4 and 5 were more varied morphologically and generally more susceptible. Forty-three of the screened F2 plants were tested for the presence of specific D chromosomes by wheat microsatellite analysis. There was no relationship between presence/absence of D chromosomes and FHB reaction. Twenty-four lines had all D chromosomes present of which 10 were intermediate-susceptible and 14 were resistant to FHB. Three lines, one resistant and two intermediate, had no D chromosomes. The remainder had between 1 and 6 of the D chromosomes present and ranged from resistant to susceptible in FHB reaction. It appears that FHB resistance is not conferred by the D genome of Sumai 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Castor (Ricinus communis L.) is an important industrial oilseed crop grown worldwide. Wilt caused by Fusarium oxysporum f.sp. ricini is a devastating disease in castor. The inheritance mode of wilt resistance was investigated. The F1, F2 and backcross generations of four crosses involving four resistant and three susceptible parents were developed. The role of digenic (R1 and R2) epistatic interactions on wilt resistance was confirmed. The 15 : 1, 9 : 7 and 13 : 3 ratios indicated duplicate dominant, duplicate recessive and dominant and recessive epistatic interactions, respectively. Castor parents used in the crosses exhibited varied inheritance modes. All generations of a cross exhibited similar inheritance mode when parents were comparable. However, generations varied in inheritance mode when parents were not comparable in inheritance mode. These results would have practical interest when decisions are required regarding the choice of parents and methodology in resistance and hybrid breeding. The results also provided a basis for investigating molecular genetics of wilt resistance mechanisms.  相似文献   

7.
Nira Retig  N. Kedar  J. Katan 《Euphytica》1967,16(2):252-257
Tomato seedlings were inoculated, from one to ten days after emergence, with the tomato Fusarium wilt fungus race 1. The penetrance of gene I for Fusarium resistance in the homozygous resistant variety Homestead 24 was almost complete. In the F1 (Ii) between Homestead 24 and the susceptible Marmande penetrance was incomplete and ranged between 66.3% and 100% in different experiments. The age of seedlings at time of inoculation did not affect the final percentage of diseased plants while it influenced the nature and the time of appearance of disease symptoms. Possible consequences of incomplete penetrance for the resistance of F1 hybrids are discussed.  相似文献   

8.
A test to select Fusarium resistant seedlings of the Asiatic hybrid lily is described. Young seedlings of 28 populations, obtained from an incomplete diallel between eight parents with different levels of Fusarium resistance, were tested for resistance. Significant differences in Fusarium resistance between and within populations were detected. The average percentage of selected seedlings ranged from 34% in resistant × resistant crosses to 2% in susceptible × susceptible crosses. Although resistant descendants were obtained in susceptible × susceptible crosses, using at least one resistant parent produced higher percentages of resistant seedlings. The resistance level of the parents correlated highly with the general combining ability for Fusarium resistance based on the seedling test. For eight populations, seedlings selected for Fusarium resistance and non-tested (control) seedlings of the same cross were compared, after propagation, in a clonal test. Variation between and within populations, found at seedling level, was confirmed at clonal level. A positive selection response was found for all eight populations. In the seedling test, approximately 18% of the seedlings were selected as resistant of which 15% (2.7% of seedlings tested) appeared to be susceptible escapes. Comparison between selection at seedling level and at clonal level indicated that approximately 25% of the seedlings tested were missed (rejected resistant plants) in the seedling test. The practical use of a seedling test for Fusarium resistance in lily breeding programs is discussed.  相似文献   

9.
S. Kumar 《Plant Breeding》1998,117(2):139-142
The inheritance of resistance to Fusarium wilt (race 2) of chickpea was studied in a set of three crosses, i.e. ‘WR315’בC104’ (resistant × susceptible), ‘WR315’בK850’ (resistant × tolerant) and ‘K850’בGW5/7’ (tolerant × tolerant) in order to investigate the number of genes involved, their complementation and to find out whether resistant segregants are possible in a cross between two tolerant cultivars. Tests of F1, F2 and F3 generations of these crosses under controlled conditions at ICRISAT, Patancheru, India, indicated involvement of three loci (two recessive and one dominant alleles). The homozygous recessive form at the first two loci conferred resistance whereas susceptibility occurred when the first two loci were in the dominant form. A dominant allele at the third locus can complement the dominant alleles at the other two loci to confer tolerance. Occurrence of resistant segregants in a cross between two tolerant cultivars was observed.  相似文献   

10.
An introgression line derived from an interspecific cross between Oryzasativa and Oryza officinalis, IR54741-3-21-22 was found to beresistant to an Indian biotype of brown planthopper (BPH). Genetic analysisof 95 F3 progeny rows of a cross between the resistant lineIR54741-3-21-22 and a BPH susceptible line revealed that resistance wascontrolled by a single dominant gene. A comprehensive RAPD analysisusing 275 decamer primers revealed a low level of (7.1%) polymorphismbetween the parents.RAPD polymorphisms were either co-dominant (6.9%), dominant forresistant parental fragments (9.1%) or dominant for susceptible parentalfragments (11.6%). Of the 19 co-dominant markers, one primer,OPA16, amplified a resistant parental band in the resistant bulk and asusceptible parental band in the susceptible bulk by bulked segregantanalysis. RAPD analysis of individual F2 plants with the primerOPA16 showed marker-phenotype co-segregation for all, with only onerecombinant being identified. The linkage between the RAPD markerOPA16938 and the BPH resistance gene was 0.52 cM in couplingphase. The 938 bp RAPD amplicon was cloned and used as a probe on122 Cla I digested doubled haploid (DH) plants from aIR64xAzucena mapping population for RFLP inheritance analysis and wasmapped onto rice chromosome 11. The OPA16938 RAPD markercould be used in a cost effective way for marker-assisted selection of BPHresistant rice genotypes in rice breeding programs.  相似文献   

11.
In this study, the inheritance of resistance to Beet necrotic yellow vein virus (BNYVV) in accessions Holly-1-4and WB42 was investigated. Crosses between both resistant sources and susceptible parents were carried out and F1F2 and BC1 populations were obtained. Virus concentrations in WB42and its F1 populations were lower than in Holly-1-4. Observed ratios of susceptible and resistant plants in segregating populations of Holly-1-4 as well as WB42 were in agreement with hypothesis of one dominant major gene. Segregation of plants in F2 populations obtained from crosses betweenHolly-1-4 and WB42 revealed that the resistance genes in Holly-1-4 and WB42 were nonallelic and linked loci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Fusarium wilt of bananas (also known as Panama disease), caused by the soil-borne fungus Fusarium oxysporum f. sp cubense (Foc), is a serious problem to banana production worldwide. Genetic resistance offers the most promising means to the control of Fusarium wilt of bananas. In this study, the inheritance of resistance in Musa to Foc race 1 was investigated in three F2 populations derived from a cross between ‘Sukali Ndizi’ and ‘TMB2X8075-7’. A total of 163 F2 progenies were evaluated for their response to Fusarium wilt in a screen house experiment. One hundred and fifteen progenies were susceptible and 48 were resistant. Mendelian segregation analysis for susceptible versus resistant progenies fits the segregation ratio of 3:1 (χ2 = 1.72, P = 0.81), suggesting that resistance to Fusarium wilt in Musa is conditioned by a single recessive gene. We propose panama disease 1 to be the name of the recessive gene conditioning resistance to Fusarium wilt in the diploid banana ‘TMB2X8075-7’.  相似文献   

13.
Six blast‐resistant pearl millet genotypes, ICMB 93333, ICMB 97222, ICMR 06444, ICMR 06222, ICMR 11003 and IP 21187‐P1, were crossed with two susceptible genotypes, ICMB 95444 and ICMB 89111 to generate F1s, F2s and backcrosses, BC1P1 (susceptible parent × F1) and BC1P2 (resistant parent × F1) for inheritance study. The resistant genotypes were crossed among themselves in half diallel to generate F1s and F2s for test of allelism. The F1, F2 and backcross generations, and their parents were screened in a glasshouse against Magnaporthe grisea isolates Pg 45 and Pg 53. The reaction of the F1s, segregation pattern of F2s and BC1P1 derived from crosses involving two susceptible parents and six resistant parents revealed the presence of single dominant gene governing resistance in the resistant genotypes. No segregation for blast reaction was observed in the F2s derived from the crosses of resistant × resistant parents. The resistance reaction of these F2s indicated that single dominant gene conferring resistance in the six genotypes is allelic, that is same gene imparts blast resistance in these genotypes to M. grisea isolates.  相似文献   

14.
I. Eujayl    W. Erskine    B. Bayaa    M. Baum  E. Pehu 《Plant Breeding》1998,117(5):497-499
The inheritance of resistance to lentil (Lens culinaris Medik.) vascular wilt caused by Fusarium oxysporum f.sp. lentis was investigated in a cross between resistant (ILL5588) and susceptible (L692–16-l(s)) lines. F2:4 progenies and F6:8, F6:9 recombinant inbred line (RIL) populations were assessed for their wilt reaction for three seasons in a well-established wilt-sick plot. Resistance to wilt was conditioned by a single dominant gene in the populations studied. The map location of the Fw locus was identified for the first time through linkage to a random amplified polymorphic DNA (RAPD) marker (OPK-15900) at 10.8 cM. Two other RAPD markers (OP-BH800 and OP-DI5500) identified by bulked segregant analysis were associated in the coupling phase with the resistance trait, and another marker (OP-C04650) was associated with repulsion. The DNA markers reported here will provide a starting point in marker-assisted selection for vascular wilt resistance in lentil.  相似文献   

15.
Six intervarietal crosses involving two resistant and three susceptible genotypes of mungbean were attempted with the objectives to determine the mode of inheritance of gene‐specific Mungbean Yellow Mosaic Virus (MYMV) resistance. An infector row technique along with artificial inoculation was used for evaluating parents, F1, F2 and F3 plants for MYMV resistance. Disease scoring for MYMV indicated that F1s were highly susceptible as were the susceptible parents while resistant parent exhibited resistant reaction. The F2 progeny segregated in the ratio of 9 S:3 MS:3 MR:1 R suggesting that the resistance was governed by digenic recessive genes (rm1 and rm2). When one gene (rm1) was present in the homozygous recessive condition in different plants, it conferred moderately susceptible (MS) reaction, whereas when other gene (rm2) was in homozygous condition, moderately resistant (MR) reaction was obvious. When both genes (rm1 and rm2) were present together in the homozygous recessive condition, resistant reaction (R) was observed. The F2 segregation explained on the basis of phenotypic expression was further confirmed by F3 segregation.  相似文献   

16.
Genetic resistance to broomrape (Orobanche cumana Wallr.) race F in sunflower line J1, derived from the wild perennial species Helianthusgrosseserratus Martens and Helianthus divaricatus L., has been reported to be controlled by dominant alleles at a single locus, Or6. However, deviations from this monogenic inheritance have been observed. The objective of the present study was to gain insight into the inheritance of resistance to broomrape race F in the sunflower line J1. F1, F2, F3 and BC generations from crosses between J1 and three susceptible lines, P21, NR5 and HA821 were evaluated. F1 hybrids showed both resistant (R) and moderately resistant (MR) plants, the latter having a maximum of five broomrape stalks per plant compared with >10 in the susceptible parents. This indicated incomplete dominance of the Or6 alleles. F2 plants were classified as R, MR or susceptible (more than five broomrape stalks per plant). Three different segregation ratios were observed: 3 : 1, 13 : 3 and 15 : 1 (R + MR : S), suggesting the presence of a second gene, Or7, whose expression was influenced by the environment. A digenic model was confirmed, based on the evaluation of F2:3 families.  相似文献   

17.
Fusarium wilt caused by Fusarium oxysporum Schlechtend.: Fr f. sp. ciceris (Padwick) Matuo & Sato is a devastating disease of chickpea. The current study was conducted to determine the inheritance of the gene(s) for resistance to race 4 of fusarium wilt and to identify linked RAPD markers using an early wilting line, JG-62, as a susceptible parent. Genetic analysis was performed on the F1s, F2s and F3 families from the cross of JG-62 × Surutato-77. The F3 families were inoculated with a spore suspension of the race 4 wilt pathogen and the results were used to infer the genotypes of the parent F2 plants. Results indicated that two independent genes controlled resistance to race 4. Linkage analysis of candidate RAPD marker, CS-27700, and the inferred F2 phenotypic data showed that this marker locus is linked to one of the resistance genes. Allelism indicated that the two resistance sources, Surutato-77 and WR-315, shared common alleles for resistance and the two susceptible genotypes, C-104 and JG-62, carried alleles for susceptibility. The PCR-based marker, CS-27700, was previously reported to be linked to the gene for resistance to race 1 in a different population which suggested that the genes for resistance to races 1 and 4 are in close proximity in the Cicer genome. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Summary The genetics of partial resistance of lettuce to Myzus persicae was studied using F1 and F2 generations of two crosses between a susceptible and partially resistant accession (Norden x Batacer and Liba x Norden) and three crosses in which both parents were partially resistant (Batavia la Brillante x Batacer, Batacer x Liba and CGN4741 x Batacer). Partial resistance to M. persicae inherited quantitatively, without important dominance effects. Only in the cross Batacer x Liba were significant departures of the F1 and F2 from the midparent found, which were probably caused by epistatic effects. Reciprocal F1s had similar resistance levels, indicating the absence of cytoplasmic or other maternal effects. Estimates of broad-sense heritability ranged from 0.34 to 0.61. The results indicated that lines with an improved resistance level can be obtained from crosses between partially resistant accessions, preferably by line selection or the application of indirect marker aided selection.Abbreviations PR partial resistance, partially resistant - S susceptibility, susceptible  相似文献   

19.
S. P. Mishra    A. N. Asthana  Lallan  Yadav 《Plant Breeding》1988,100(3):228-229
Inheritance of Cercospora leaf spot resistance in mungbean was studied in 20 crosses involving crosses of resistant × susceptible, resistant × resistant, susceptible × susceptible lines. 3:1 ratio was observed in all 14 F2s involving resistant × susceptible parents. The inheritance of Cercospora leaf spot resistance is thus controlled by a single recessive gene. Our results are contradictory to observations of Thaklk et al. (1977 a, b) who found monogenic dominant inheritance of Cercospora leaf spot resistance in mungbean.  相似文献   

20.
Fusarium root rot (FRR) is a major disease of common bean worldwide. Knowledge of the inheritance of resistance to FRR would be important in devising strategies to breed resistant varieties. Therefore, a 12 × 12 full diallel mating scheme with reciprocal crosses was performed to generate 132 F1 progenies, which were then advanced to the F3. The progenies were evaluated for resistance to FRR under green house conditions in Uganda. General combining ability (GCA) effects were highly significant (P ≤ 0.01) for disease scores. Specific combining ability effects were not significant (P > 0.05) in the F1, but were highly significant (P < 0.01) in the F3 generation. These results indicate that resistance to FRR was governed by genes with additive effects in combination with genes with non-additive effects. Reciprocal differences were also significant (P = 0.01) at F1 and F3, primarily reflecting a large influence of maternal effects in both these generations. In fact, susceptible parents did not differ significantly (P > 0.05) for disease scores when used as paternal parents in the F3, but differed strongly as maternal parents (P = 0.0002). Generally, the progenies were distinctly more resistant when the resistant parent was used as the female in crosses, especially as observed in the F3. The maternal effects were strong in the F3 generation, suggesting a complex form of cytoplasmic–genetic interaction. The non-maternal reciprocal effects in the F3 were significant (P < 0.05) in both the resistant × resistant diallel, and in the resistant × susceptible crosses. Mid-parent heterosis (MPH) occurred in most crosses, with average heterosis approximately equal in each of the three generations, indicating that epistasis was probably more influential than dominance of individual genes. Gene-number formulas indicated that several genes were involved in resistant × susceptible crosses. Among resistant × resistant crosses, many produced continuous distributions of F1 progeny scores, suggesting polygenic inheritance, while bi-modal distributions were characteristic of the F3 distributions, and fit expected ratios for two or three loci segregating in each cross. Dominant forms of epistasis favoring resistance were strongly indicated. Parent–offspring heritability estimates were moderate. Overall, the results indicate that resistant parents contain a number of different resistance genes that can be combined with the expectation of producing strong and durable resistance. The lines MLB-49-89A, MLB-48-89, RWR719 and Vuninkingi, with large and negative GCA effects, contributed high levels of resistance in crosses and would be recommended for use in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号