首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of anaesthesia in dogs and cats with propofol   总被引:2,自引:0,他引:2  
Propofol was used to induce anaesthesia in 89 dogs and 13 cats of either sex, various breeds and of widely different ages and weights; they varied considerably in physical condition and were anaesthetised for a variety of investigations and surgical procedures. They were premedicated with acepromazine, papaveretum, diazepam, pethidine, atropine and scopolamine in different combinations. After induction with propofol, anaesthesia was maintained with halothane, isoflurane, methoxyflurane and enflurane and, or, nitrous oxide. The mean (+/- sd) induction doses of propofol in unpremedicated and premedicated animals were 5.2 +/- 2.3 mg/kg and 3.6 +/- 1.4 mg/kg respectively for dogs, and 5.0 +/- 2.8 mg/kg and 5.3 +/- 4.3 mg/kg for cats. There were no differences between the sexes. Premedication did not affect recovery times. The incidence of side effects was very low. One dog showed evidence of pain when propofol was injected. No incompatibility was observed between propofol and the premedicants and other anaesthetic agents used.  相似文献   

2.
The clinical efficacy and safety of an emulsion containing 10 mg/ml of the intravenous anaesthetic propofol were evaluated in cats and dogs by veterinary surgeons in eight practices in the United Kingdom. A total of 290 dogs and 207 cats were anaesthetised with propofol either as a single injection for procedures of short duration, or as an induction agent with maintenance provided by further incremental injections or as an induction agent with maintenance by gaseous agents. The mean induction doses of propofol for unpremedicated dogs and cats were respectively 6.55 mg/kg and 8.03 mg/kg. The mean induction doses after premedication with a tranquilliser were 4.5 mg/kg and 5.97 mg/kg for dogs and cats, respectively. Mean recovery times ranged, depending on the method of anaesthesia, from 23 to 40 minutes in dogs and from 27 to 38 minutes in cats; recovery was defined as the time at which the animals were alert and able to stand. Adverse side effects were infrequent, apnoea during induction being the commonest. Acepromazine and atropine were most often used as premedicants although in a few cases diazepam, xylazine and other agents were employed. No clinical incompatibility was observed between propofol and any of the other agents administered during the study. The rapid and usually excitement-free recovery of the animals was a valuable feature of anaesthesia with propofol.  相似文献   

3.
Cardiovascular, pulmonary and anaesthetic-analgesic responses were evaluated in 18 male and female dogs to determine the effect of the injectable anaesthetic propofol used in conjuction with acepromazine and butorphanol. The dogs were randomly divided into three groups. Dogs in Group A were premeditated with 0.1 mg/kg of intramuscular acepromazine followed by an induction dose of 4.4 mg/kg of intravenous propofol; Group B received 0.2 mg/kg of intramuscular butorphanol and 4.4 mg/kg of intravenous propofol; dogs in Group AB were administered a premeditation combination of 0.1 mg/kg of intramuscular acepromazine and 0.2 mg/kg of intramuscular butorphanol, followed by induction with 3.3 mg/kg of intravenous propofol. The induction dose of propofol was given over a period of 30-60 seconds to determine responses and duration of anaesthesia. Observations recorded in the dogs included heart and respiratory rates, indirect arterial blood pressures (systolic, diastolic and mean), cardiac rhythm, end-tidal CO, tension, oxygen saturation, induction time, duration of anaesthesia, recovery time and adverse reactions. The depth of anaesthesia was assessed by the response to mechanical noxious stimuli (tail clamping), the degree of muscle relaxation and the strength of reflexes. Significant respiratory depression was seen after propofol induction in both groups receiving butorphanol with or without acepromazine. The incidence of apnea was 4/6 dogs in Group B, and 5/6 dogs in Group AB. The incidence of apnea was also correlated to the rate of propofol administration. Propofol-mediated decreases in arterial blood pressure were observed in all three groups. Moderate bradycardia (minimum value > 55 beats/min) was observed in both Groups B and AB. There were no cardiac dysrhythmias noted in any of the 18 dogs. The anaesthetic duration and recovery times were longer in dogs premeditated with acepromazine/butorphanol.  相似文献   

4.
OBJECTIVES: To assess attributes of sevoflurane for routine clinical anaesthesia in dogs by comparison with the established volatile anaesthetic isoflurane. METHODS: One hundred and eight dogs requiring anaesthesia for elective surgery or diagnostic procedures were studied. The majority was premedicated with 0.03 mg/kg of acepromazine and 0.01 mg/kg of buprenorphine or 0.3 mg/kg of methadone before induction of anaesthesia with 2 to 4 mg/kg of propofol and 0.5 mg/kg of diazepam. They were randomly assigned to receive either sevoflurane (group S, n=50) or isoflurane (group I, n=58) in oxygen and nitrous oxide for maintenance of anaesthesia. Heart rate, respiratory rate, indirect arterial blood pressure, haemoglobin saturation, vaporiser settings, end-tidal carbon dioxide and anaesthetic concentration and oesophageal temperature were measured. Recovery was timed. Data were analysed using analysis of variance and non-parametric tests. RESULTS: Heart rate (85 to 140/minute), respiratory rate (six to 27/minute) and systolic arterial blood pressure (80 to 150 mmHg) were similar in the two groups. End-tidal carbon dioxide between 30 and 60 minutes (group S 6.4 to 6.6 and group I 5.8 to 5.9 per cent) and vaporiser settings throughout (group S 2.1 to 2.9 and group I 1.5 to 1.5 per cent) were higher in group S. There was no difference in time to head lift (18+/-16 minutes), sternal recumbency (28+/-22 minutes) or standing (48+/-32 minutes). No adverse events occurred. CLINICAL SIGNIFICANCE: Sevoflurane appeared to be a suitable volatile anaesthetic for maintenance of routine clinical anaesthesia in dogs.  相似文献   

5.
Objective   To describe and evaluate the use of Alfaxan-CD ® as an intravenous anaesthetic in young cats.
Design   Thirty-five Domestic Short-hair cats aged from 3 to 12 months were admitted into the University Veterinary Teaching Hospital-Sydney for elective surgery. Anaesthesia was induced with Alfaxan-CD® and maintained with isoflurane: 22 cats received no premedication and 13 cats received acepromazine (0.03 mg/kg) and butorphanol (0.3 mg/kg) subcutaneously 30 min prior to induction.
Qualitative and quantitative data for induction and recovery were recorded. Physiological parameters were recorded at 0, 2 and 5 min post induction, and every 5 min thereafter until the end of the procedure.
Results   Intravenous injection of Alfaxan-CD® resulted in rapid induction of anaesthesia with a mean time to intubation of 122 s. The mean dose of Alfaxan-CD® used was 4.2 mg/kg in unpremedicated cats and 2.7 mg/kg in premedicated cats. All cats maintained a heart rate above 95 beats/min. No cat developed hypoxaemia. Hypercapnoea was detected in 4 cats and hypotension was observed in 18 cats. Time to extubation ranged from 1 to 9 min. The mean time to sternal recumbency for premedicated cats was 11 min; 77% of premedicated cats and 23% of unpremedicated cats had a recovery score of 1 or 2.
Conclusion   Alfaxan-CD® is an effective anaesthetic agent in young healthy cats, providing a smooth induction and rapid recovery. Cats that were premedicated with acepromazine and butorphanol prior to induction with Alfaxan-CD® had better recovery scores than those that were not premedicated.  相似文献   

6.
Medetomidine 10 μg/kg, was combined with butorphanol 0.1 mg/kg and administered intramuscularly to 27 dogs requiring sedation for various diagnostic or therapeutic procedures. All the dogs became deeply sedated. Heart rate fell by a mean of 55 per cent. Eighteen dogs showed signs of pain as the combination was injected. Sedation was sufficient for the intended procedure to be carried out in 25 of the dogs. General anaesthesia was induced in four dogs — the mean dose of thiopentone required for induction of anaesthesia was 2 mg/kg. Administration of atipamezole at the end of the procedure produced rapid and sudden recoveries in all the dogs, with a mean time to standing of nine minutes.  相似文献   

7.
The median effective dosage (ED50) of propofol for induction of anesthesia was determined in 25 dogs premedicated with acepromazine, 0.05 mg/kg of body weight, and in 35 unpremedicated dogs. The ED50 was found to be 2.2 mg/kg in premedicated dogs and was 3.8 mg/kg in unpremedicated dogs. The mean +/- SD total dosage of propofol required to induce anesthesia in premedicated animals was 2.8 +/- 0.5 mg/kg and was 4.7 +/- 1.3 mg/kg in unpremedicated animals. Signs of excitement were observed in 5 of the unpremedicated dogs, but in none of those that were premedicated.  相似文献   

8.
Forty-eight horses subjected to elective surgery were randomly assigned to three groups of 16 horses. After premedication with 0.1 mg/kg acepromazine intramuscularly and 0.6 mg/kg xylazine intravenously, anaesthesia was induced either with 2 g thiopentone in 500 ml of a 10 per cent guaifenesin solution, given intravenously at a dose of 1 ml/kg (group TG), or with 100 mg/kg guaifenesin and 2.2 mg/kg ketamine given intravenously (group KG), or with 0.06 mg/kg midazolam, and 2.2 mg/kg ketamine given intravenously (group KM). Anaesthesia was maintained with isoflurane. The mean (sd) end tidal isoflurane concentration (per cent) needed to maintain a light surgical anaesthesia (stage III, plane 2) was significantly lower in group KM (0.91 [0.03]) than in groups TG (1.11 [0.03]) and KG (1.14 [0.03]). The mean (sd) arterial pressure (mmHg) was significantly lower in group KG (67.4 [2.07]) than in groups TC (75.6 [2.23]) and KM (81.0 [2.16]). There were no significant differences in the logarithm of the heart rate, recovery time or quality of recovery between the three induction groups. However, pronounced ataxia was observed in the horses of group KM, especially after periods of anaesthesia lasting less than 75 minutes.  相似文献   

9.
The effects of premedication with four different intravenous doses of romifidine (20, 40, 80 and 120 (μg/kg body weight) and a saline placebo were compared in a group of 20 adult beagles of both sexes, undergoing anaesthesia with propofol for a clinical dental procedure. Anaesthesia was induced 10 minutes after premedication and maintained by intravenous infusion of propofol for a period of 30 minutes. Romifidine had a marked synergistic effect with propofol and reduced the required induction and infusion doses by more than 60 per cent for a standard level of anaesthesia; the synergistic effect was dose related. Following premedication, propofol produced no significant alteration of respiratory rate, heart rate or rectal temperature. Anaesthesia was found to be more stable following romifidine premedication at all doses studied. The quality of induction was unaltered by the dose of the romifidine. Recovery from anaesthesia was smooth and of a similar quality in all cases. There were no differences in the recovery times between the unpremedicated group and the dogs premedicated with any dose of romifidine studied. There were no adverse effects noted following this anaesthetic regimen. The marked dose-related synergism with propofol induction and infusion anaesthesia is relevant should romifidine be used in the dog in clinical veterinary practice.  相似文献   

10.
OBJECTIVE :To evaluate the effect of pre- and intraoperatively administered magnesium sulphate (MgSO(4)) on the induction dose of thiopental and of halothane for maintenance of anaesthesia in dogs undergoing ovariohysterectomy (OHE). STUDY DESIGN: Prospective, double-blind, randomized, placebo-controlled study. ANIMALS: Forty-six healthy, ASA physical status 1 dogs, scheduled for elective OHE. METHODS: The dogs were randomly assigned to receive a bolus of 50 mg kg(-1) MgSO(4) intravenously (IV), just before induction of anaesthesia, followed by a constant rate infusion (CRI) of 12 mg kg(-1) hour(-1) MgSO(4) intraoperatively (group Mg, n = 27) or a placebo bolus and CRI of 0.9% sodium chloride (NaCl) (group C, n = 19), approximately 30 minutes after premedication with acepromazine (0.05 mg kg(-1), intramuscularly, IM) and carprofen (4 mg kg(-1), subcutaneously, SC). Anaesthesia was induced with thiopental administered to effect and maintained with halothane in oxygen. End-tidal halothane (ET(hal)) was adjusted to achieve adequate depth of anaesthesia. Blood samples were obtained pre- and postoperatively for measurement of total serum magnesium concentration. RESULTS: The mean dose of thiopental was statistically lower (p < 0.0005) and the mean standardized ET(hal) concentration and end-tidal carbon dioxide partial pressure (Pe'CO(2)) areas under the curve were statistically smaller (p < 0.0005 and 0.014 respectively) in group Mg. Postoperatively the mean total serum magnesium concentration was statistically higher than the preoperative value (p < 0.0005) in group Mg, but not in group C. Nausea, associated with the MgSO(4) bolus injection, was observed in six dogs in group Mg, two of which vomited prior to induction of anaesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Magnesium sulphate administration reduced the induction dose of thiopental and ET(hal) concentration for maintenance of anaesthesia in dogs undergoing OHE. Observed side effects were nausea and vomiting.  相似文献   

11.
Propofol was administered to 49 cats to induce anaesthesia. The mean dose required was 6.8 mg/kg and this was not affected by prior administration of acepromazine maleate. In 27 cases, propofol was also used as the principal maintenance agent (mean dose rate 0.51 mg/kg/minute). Inductions were very smooth and problem free. Intubation was easily achieved in 15 cats with the aid of local desensitisation by lignocaine spray or neuromuscular relaxation by suxamethonium. Heart rate did not vary significantly during induction or maintenance of anaesthesia but respiratory rates did fall significantly. Recovery from anaesthesia was remarkably smooth in all cases and there was no significant difference in recovery times between the cats in which halothane was the principal maintenance agent and cats which received propofol alone. Side effects were seen during recovery in eight cats and included retching, sneezing and pawing of the face.  相似文献   

12.
The influence of a modified open lung concept (mOLC) on pulmonary and cardiovascular function during total intravenous anaesthesia (TIVA) in horses was evaluated. Forty-two warmblood horses (American Society of Anesthesiologists class 1 to 2), scheduled for elective surgery (mean [sd] weight 526 [65] kg, age 6.4 [5.4] years) were randomly divided into three groups: ventilation with mOLC, intermittent positive-pressure ventilation (IPPV), and spontaneous breathing. Premedication (0.8 mg/kg xylazine), induction (2.2 mg/kg ketamine and 0.05 mg/kg diazepam) and maintenance of anaesthesia with TIVA (1.4 mg/kg/hour xylazine, 5.6 mg/kg/hour ketamine and 131.1 mg/kg/hour guaifenesin), with inhalation of 35 per cent oxygen in air, were identical in all horses. Heart rate, respiratory rate, mean arterial blood pressure (MAP), pH, and arterial partial pressure of oxygen (p(a)O(2)) and carbon dioxide (p(a)CO(2)) were evaluated. Data were collected every 10 minutes from 20 to 90 minutes anaesthesia time. Factorial analysis of variance and Tukey's post hoc test were used for statistical analysis (a=5 per cent). Horses in the mOLC-ventilated group had an overall significantly higher p(a)O(2) (16.9 [1.0] v 11.7 [1.34] v 10.5 [0.57] kPa) and lower MAP (93.1 [5.47] v 107.1 [6.99] v 101.2 [5.45] mmHg) than the IPPV and spontaneously breathing groups, respectively.  相似文献   

13.
Nineteen dogs were assigned randomly to one of three groups. Animals in Group 1 were pre-medicated with acepromazine, 50 μg/kg bodyweight (bwt) intramuscularly (im) and received 10 ml of 0.9 per cent saline intravenously (iv) at the time of skin incision. Dogs in Group 2 were pre-medicated with acepromazine, 50 μg/kg bwt im, and received fentanyl 2 μg/kg bwt iv at skin incision. Dogs in Group 3 were pre-medicated with acepromazine, 50 μg/kg bwt and atropine, 30 to 40 μg/kg bwt, im and received fentanyl, 2 μg/kg bwt iv at skin incision. Pulse rate, mean arterial blood pressure, respiratory rate and end tidal carbon dioxide were measured before and after fentanyl or saline injection. Fentanyl caused a short-lived fall in arterial blood pressure that was significant in dogs premedicated with acepromazine, but not in dogs pre-medicated with acepromazine and atropine. A significant bradycardia was evident for 5 mins in both fentanyl treated groups. The effect on respiratory rate was most pronounced in Group 3, in which four of seven dogs required intermittent positive pressure ventilation (IPPV) for up to 14 mins. Two of six dogs in Group 2 required IPPV, whereas respiratory rate remained unaltered in the saline controls. The quality of anaesthesia was excellent in the fentanyl treated groups; however, caution is urged with the use of even low doses of fentanyl in spontaneously breathing dogs under halothane-nitrous oxide anaesthesia.  相似文献   

14.
Propofol was administered to forty nine cats to induce anaesthesia. The mean dose required was 6.8 mg/kg and this was not affected by prior administration of acepromazine maleate. In 27 cases, propofol was also used as the principal maintenance agent (mean dose rate 0.51 mg/kg/minute). Inductions were very smooth and problem free. Intubation was easily achieved in 15 cats with the aid of local desensitization by lignocaine spray or neuromuscular relaxation by suxamethonium. Heart rate did not vary significantly during induction or maintenance of anaesthesia but respiratory rates did fall significantly.  相似文献   

15.
Ventilatory effects at induction of anaesthesia were studied following intubation in 66 dogs anaesthetised using thiopentone (10 mg/kg) or propofol (4 mg/kg, injected rapidly or 4 mg/kg, injected slowly). Acepromazine and morphine preanaesthetic medication was administered, and anaesthesia was maintained with halothane in nitrous oxide and oxygen. The time from connection of the breathing system to the first breath was measured. Apnoea was defined as cessation of spontaneous respiration for 15 seconds or longer. Respiratory rate and minute volume were measured for the first five minutes of anaesthesia. Propofol was associated with a greater incidence of apnoea than thiopentone (59 per cent and 64 per cent compared with 32 per cent), but this difference was not statistically significant. Time to first breath was significantly longer with propofol than thiopentone and longest with the slower injection of propofol (P<0.05) (median of four seconds for thiopentone, 19.5 seconds for the propofol rapid injection, and 28.8 seconds for the propofol slow injection). In conclusion, the induction agent and speed of injection affect the incidence and duration of post-intubation apnoea.  相似文献   

16.
The effects of propofol alone or propofol and ketamine for the induction of anaesthesia in dogs were compared. Thirty healthy dogs were premedicated with acepromazine and pethidine, then randomly allocated to either treatment. Anaesthesia was induced with propofol (4 mg/kg bodyweight intravenously) (group 1), or propofol and ketamine (2 mg/kg bodyweight of each intravenously) (group 2). Anaesthesia was maintained with halothane, delivered in a mixture of oxygen and nitrous oxide (1:2) via a non-rebreathing Bain circuit. Various cardiorespiratory parameters were monitored at two, five, 10, 15, 20, 25 and 30 minutes after induction, and the animals were observed during anaesthesia and recovery, and any adverse effects were recorded. During anaesthesia, the heart rate, but not the systolic arterial pressure, was consistently higher in group 2 (range 95 to 102 beats per minute) than in group 1 (range 73 to 90 beats per minute). Post-induction apnoea was more common in group 2 (11 of 15) than in group 1 (six of 15). Muscle twitching was observed in three dogs in each group. Recovery times were similar in both groups. Propofol followed by ketamine was comparable with propofol alone for the induction of anaesthesia in healthy dogs.  相似文献   

17.
Two intravenous doses of romifldine (40 and 80 μg/kg) and a placebo were compared as premedicants for anaesthesia induced with thiopentone and maintained using halothane in oxygen. Romifldine significantly and linearly reduced the induction dose of thiopentone; placebo-treated dogs required 15.1 ± 3.6 mg/kg, while dogs treated with 40 μg/kg and 80 μg/kg romifldine required 6.5 ± 1.6 and 3.9 ± 0.3 mg/kg thiopentone, respectively.
Romlfldine also significantly and linearly reduced the end tidal halothane concentration necessary to maintain a predetermined level of anaesthesia; piacebetreated dogs required 1.6 ± 0.3 per cent halothane, while dogs treated with 40 μg/kg and 80 μg/kg romifldine required 1.3 ± 0.4 and 0–8 ± 0.2 per cent, respectively.
Romifldine produced a significant shortening In the recovery from anaesthesia, and the higher dose of romlfldine significantly improved the overall quality of anaesthesia.  相似文献   

18.
To test the hypothesis that acepromazine could potentiate the sedative actions and attenuate the pressor response induced by dexmedetomidine, the effects of acepromazine or atropine were compared in six healthy adult dogs treated with this alpha2-agonist. In a randomised block design, the dogs received intravenous doses of either physiological saline, 0.05 mg/kg acepromazine or 0.04 mg/kg atropine, 15 minutes before an intravenous dose of 5 microg/kg dexmedetomidine. The dogs' heart rate was reduced by 50 to 63 per cent from baseline and their mean arterial blood pressure was increased transiently from baseline for 20 minutes after the dexmedetomidine. Atropine prevented the alpha2-agonist-induced bradycardia and increased the severity and duration of the hypertension, but acepromazine did not substantially modify the cardiovascular effects of the alpha2-agonist, except for a slight reduction in the magnitude and duration of its pressor effects. The dexmedetomidine induced moderate to intense sedation in all the treatments, but the dogs' sedation scores did not differ among treatments. The combination of acepromazine with dexmedetomidine had no obvious advantages in comparison with dexmedetomidine alone, but the administration of atropine before dexmedetomidine is contraindicated because of a severe hypertensive response.  相似文献   

19.
The median effective dosage (ED50) for induction of anesthesia with propofol was determined by using the up-and-down method in 31 unpremedicated cats, in 30 cats premedicated with butorphanol, 0.4 mg/kg body weight (BW), and acepromazine, 0.1 mg/kg BW, intramuscularly, and in 30 cats premedicated with morphine, 0.2 mg/kg BW, and acepromazine, 0.1 mg/kg BW, intramuscularly. The dose required for a satisfactory anesthetic induction in 50% of unpremedicated cats (ED50) was 7.22 mg/kg BW and of premedicated cats was 5.00 mg/kg BW. The reduction in dose was statistically significant in both premedicated groups compared with no premedication. There was no significant difference in ED50 between premedication regimes. Cyanosis was the most common adverse effect observed in all groups following anesthetic induction with propofol.  相似文献   

20.
Ketamine was used on 80 occasions to induce anaesthesia in 77 animals. Xylazine premedication was used alone on 75 occasions, in conjunction with methadone once, in conjunction with methadone and acepromazine once and, on three occasions, methadone and acepromazine only were used. Anaesthesia was maintained in seven cases with halothane and oxygen. Premedication with xylazine 5 mins previously or concurrently with ketamine gave similar results but an interval of more than 5 mins between the drugs produced less deep anaesthesia and this protocol is, therefore, not advised. Induction and recovery were judged to be good in 82 per cent and 78 per cent of cases, respectively, and analgesia and muscle relaxation were judged as adequate in 79 per cent of cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号