首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, I show that mianserin, a chemical with serotonin and adrenoceptor antagonist activities, increases fish vulnerability to a potential predator threat, when prey fish must deal with this threat based on conspecific chemical alarm cues. For that, I evaluated whether mianserin, diluted in the water, influences the behavioral responses of Nile tilapia (Oreochromis niloticus) to conspecific skin extract (chemical alarm cues). I found that, while mianserin did not abolished antipredator responses, this drug mitigates some components of this defensive reaction. Thus, a potential decrease in serotonin and adrenergic activities reduces the ability of dealing with predators when perceiving conspecific chemical alarm cues.  相似文献   

2.
An individual's behaviour patterns can be conceptualized as a series of threat‐sensitive trade‐offs between ambient predation pressure and a suite of fitness‐related activities, such as resource defence, foraging and mating. Individuals that can reliably assess local predation risk could increase their fitness potential by exhibiting predator avoidance behaviours only at appropriate times. However, such learned risk assessment requires reliable information regarding current predation risks. A diverse range of prey fishes are known to possess chemical alarm cues, which when detected by conspecifics and some heterospecifics, elicit a variety of overt and covert responses. These chemical cues, either alone or as a part of a predator's dietary odour, provide reliable information regarding local predation risk. In this review, I describe recent works examining the role of chemosensory information in: (i) acquired predator recognition, (ii) predator inspection behaviour and (iii) the use of conspecific and heterospecific cues as social information sources.  相似文献   

3.
Learned predator recognition and antipredator responses in fishes   总被引:8,自引:0,他引:8  
Early research into the causes of geographical variation in antipredator behaviour in fishes revealed that population differences have an underlying genetic basis. However, evidence from a variety of fish species suggests that learning plays an important role in the development of antipredator responses. Here, we consider the opportunities for learning during the three main stages of a predator–prey interaction: detection, recognition and assessment, and attack avoidance. Much of the evidence for learning is based on the recognition and assessment stage of the predator–prey interaction, but this may reflect methodological biases. We also examine the relative roles of different sensory cues, in particular, vision and olfaction, and the importance of individual vs. social learning. We provide evidence that visual predator recognition skills are largely built on unlearned predispositions, whereas olfactory recognition typically involves experience with conspecific alarm cues. Populations display variation in their propensity to learn, and we predict that ecological factors are likely to mediate the balance between individual and social learning.  相似文献   

4.
Predation after release is one of the major concerns of hatchery fish propagation. However, size-specific interaction between predator and prey on the survival of hatchery-released salmonid fish is largely unknown. To understand the size-selective predation risk, 24-h predation experiments were conducted on masu salmon Oncorhynchus masou in tanks. Four ranges of fork length (FL) were examined for masu salmon as a prey, in combination with three ranges of FL for white-spotted charr Salvelinus leucomaenis as a predator. The results show that not only predator and prey sizes, but also interaction between prey size and predator size, strongly affected the survival rate of masu salmon. Predation on masu salmon with the FL exceeding 40% of the FL of white-spotted charr was rare in the experiment. A logistic regression suggests that 37% relative FL of masu salmon to white-spotted charr results in the 50% survival of masu salmon. Our results suggest that adjusting relative size of hatchery fish to the size of local fish predators at the time of hatchery release will have a significant impact on the survival of hatchery fish in the wild. From this perspective, site-specific, adaptive management might be important to improve the effectiveness of hatchery fish propagation.  相似文献   

5.
Predator conditioning can be used to improve post‐release antipredator recognition of hatchery‐reared salmonids. However, possible negative stress‐related effects of prolonged predator conditioning on juvenile fish physiology are poorly understood. We studied the effects of prolonged (91 days) predator odour exposure on whole‐body cortisol level and spleen size in six full‐sib families of juvenile hatchery‐bred Arctic charr (Salvelinus alpinus). Chemical cues from water containing charr‐fed pikeperch (Sander lucioperca) were used as the predator exposure stimuli and lakewater was used as a chemical control. Our study revealed that juvenile body cortisol levels post‐predator conditioning were affected by treatment, fish size and their interaction. Importantly, among the smaller (i.e. slowest growing) charr, the predator‐exposed fish had higher cortisol levels than control fish, while the opposite pattern was true for the larger fish. These results suggest that chemical cues from charr‐fed predators induce a prolonged stress response in juvenile charr. As prolonged predation exposure seems to elevate stress levels in a size‐dependent manner, the larger, faster growing fish could possibly have intrinsically lower stress responses to predation threats than smaller, slower growing fish. Possible coupling between stress sensitivity and growth requires further attention due to the likely implications for the management of unintended domestication among captive‐reared salmonids.  相似文献   

6.
Abstract –  Foraging juvenile fish with relatively high food demands are usually vulnerable to various aquatic and avian predators. To compromise between foraging and antipredator activity, they need exact and reliable information about current predation risk. Among direct predator-induced cues, visual and olfactory signals are considered to be most important. Food intake rates and prey-size selectivity of laboratory-reared, naive young-of-the-year (YOY) perch, Perca fluviatilis , were studied in experiments with Daphnia magna of two size classes: 2.8 and 1.3 mm as prey and northern pike, Esox lucius , as predator. Neither total intake rate nor prey-size selectivity was modified by predator kairomones alone (water from an aquarium with a pike was pumped into the test aquaria) under daylight conditions. Visual presentation of pike reduced total food intake by perch. This effect was significantly more pronounced (synergistic) when visual and olfactory cues were presented simultaneously to foraging perch. Moreover, the combination of cues caused a significant shift in prey-size selection, expressed as a reduced proportion of large prey in the diet. Our observations demonstrate that predator-induced olfactory cues alone are less important modifiers of the feeding behaviour of naive YOY perch than visual cues under daylight conditions. However, pike odour acts as a modulatory stimulus enhancing the effects of visual cues, which trigger an innate response in perch.  相似文献   

7.
Ectoparasitic sea lice are the most important parasite problem to date for the salmon farming industry in the northern and southern hemispheres. An understanding of host location in the specialist species, Lepeophtheirus salmonis , the most important louse species in the North Atlantic, is now being realized using behavioural in vitro and in vivo bioassays coupled with chemical analysis of fish conditioned waters. Both physical and chemical cues are important in host location. Responses of sea lice to physical cues such as light and salinity may enable them to gather in areas where host fish are likely to be found. Mechanoreception is an important sensory modality in host location and acts by switching on specific behaviours that enable landing on a fish. Chemoreception plays a defining role in host location and recognition. The detection of host kairomones switches on 'host search' behavioural patterns and also induces landing responses whereas non-host kairomones fail to induce attraction or significant landing behaviour. Semiochemicals derived from salmon and also non-host fish have been identified, and may prove useful for the development of integrated pest management strategies, by the introduction of odour traps for monitoring lice numbers, and by the use of stimulo-deterrent diversionary (push:pull) strategies in their control.  相似文献   

8.
Predation is a major ecological constraint shaping behaviour and communication in animals. Several fish species are known to modify their foraging, agonistic and reproductive behaviour in the presence of predators. However, close to nothing is known about how predators affect sound production in fishes. This paper reviews how vocal fish increase their chance of survival by modifying intraspecific acoustic communication and by producing sounds directed towards predators. Field studies showed that toadfish, drums and squirrelfish reduced the number and loudness of calls when dolphin sounds were played back. These studies lack behavioural observations, leaving the question open how individual fish respond to predation threat. Croaking gouramis (Trichopsis vittata, Osphronemidae) reduced acoustic and visual signalling during dyadic contests and refrained from escalated behaviour when detecting a predator in an adjacent tank. This indicates that gouramis increase their vigilance by reducing agonistic behaviour. Vocal fish have been observed to emit sounds when predators approach or when being caught. However, none of the predators (or even conspecifics nearby) responded to these calls. Therefore, the term “predator-related” sound has been introduced in this paper to avoid implying unproven functions (alarm, startling, warning, distress and disturbance). Interestingly, the readiness of numerous taxa (e.g. catfishes) to vocalize when hand-held or netted was frequently exploited to investigate sound production in fish in relation to weight, sex, sonic organs, temperature or phylogeny. Increasing levels of noise in aquatic habitats call for more research on predator–prey interactions because of potential negative effects on detection of sounds produced by predators or prey.  相似文献   

9.
Abstract – In natural systems, prey frequently interact with multiple predators and the outcome often cannot be predicted by summing the effects of individual predator species. Multiple predator interactions can create emergent effects for prey, but how those change across environmental gradients is poorly understood. Turbidity is an environmental factor in aquatic systems that may influence multiple predator effects on prey. Interactions between a cruising predator (largemouth bass Micropterus salmoides) and an ambush predator (muskellunge Esox masquinongy) and their combination foraging on a shared prey (bluegill Lepomis macrochirus) were examined across a turbidity gradient. Turbidity modified multiple predator effects on prey. In clear water, combined predators consumed in total more prey than expected from individual predator treatments, suggesting risk enhancement for prey. In moderately turbid water, the predators consumed fewer prey together than expected, suggesting a risk reduction for prey. At high turbidity, there were no apparent emergent effects; however, the cruising predator consumed more prey than the ambush predator, suggesting an advantage for this predator. Understanding multiple predator traits across a gradient of turbidity increases our understanding of how complex natural systems function.  相似文献   

10.
Our collaborative work focused on understanding the system of mechanisms influencing the mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Coordinated field studies, data analysis and numerical modelling projects were used to identify and explain the mechanisms and their roles in juvenile mortality. In particular, project studies addressed the identification of major fish and bird predators consuming juvenile salmon and the evaluation of three hypotheses linking these losses to (i) alternative prey for predators (prey‐switching hypothesis); (ii) salmon foraging behaviour (refuge‐dispersion hypothesis); and (iii) salmon size and growth (size‐refuge hypothesis). Two facultative planktivorous fishes, Pacific herring (Clupea pallasi) and walleye pollock (Theragra chalcogramma), probably consumed the most juvenile pink salmon each year, although other gadids were also important. Our prey‐switching hypothesis was supported by data indicating that herring and pollock switched to alternative nekton prey, including juvenile salmon, when the biomass of large copepods declined below about 0.2 g m?3. Model simulations were consistent with these findings, but simulations suggested that a June pteropod bloom also sheltered juvenile salmon from predation. Our refuge‐dispersion hypothesis was supported by data indicating a five‐fold increase in predation losses of juvenile salmon when salmon dispersed from nearshore habitats as the biomass of large copepods declined. Our size‐refuge hypothesis was supported by data indicating that size‐ and growth‐dependent vulnerabilities of salmon to predators were a function of predator and prey sizes and the timing of predation events. Our model simulations offered support for the efficacy of representing ecological processes affecting juvenile fishes as systems of coupled evolution equations representing both spatial distribution and physiological status. Simulations wherein model dimensionality was limited through construction of composite trophic groups reproduced the dominant patterns in salmon survival data. In our study, these composite trophic groups were six key zooplankton taxonomic groups, two categories of adult pelagic fishes, and from six to 12 groups for tagged hatchery‐reared juvenile salmon. Model simulations also suggested the importance of salmon density and predator size as important factors modifying the predation process.  相似文献   

11.
Abstract – Non‐native predators may have negative impacts on native communities, and these effects may be dependent on interactions among multiple non‐native predators. Sequential invasions by predators can enhance risk for native prey. Prey have a limited ability to respond to multiple threats since appropriate responses may conflict, and interactions with recent invaders may be novel. We examined predator–prey interactions among two non‐native predators, a recent invader, the African jewelfish, and the longer‐established Mayan cichlid, and a native Florida Everglades prey assemblage. Using field enclosures and laboratory aquaria, we compared predatory effects and antipredator responses across five prey taxa. Total predation rates were higher for Mayan cichlids, which also targeted more prey types. The cichlid invaders had similar microhabitat use, but varied in foraging styles, with African jewelfish being more active. The three prey species that experienced predation were those that overlapped in habitat use with predators. Flagfish were consumed by both predators, while riverine grass shrimp and bluefin killifish were eaten only by Mayan cichlids. In mixed predator treatments, we saw no evidence of emergent effects, since interactions between the two cichlid predators were low. Prey responded to predator threats by altering activity but not vertical distribution. Results suggest that prey vulnerability is affected by activity and habitat domain overlap with predators and may be lower to newly invading predators, perhaps due to novelty in the interaction.  相似文献   

12.
Abstract –  The ability to recall the location of a predator and later avoid it was tested in nine populations of rainbowfish ( Melanotaenia spp.), representing three species from a variety of environments. Following the introduction of a model predator into a particular microhabitat, the model was removed, the arena rotated and the distribution of the fish recorded again. In this manner it could be determined what cues the fish relied on in order to recall the previous location of the predator model. Fish from all populations but one (Dirran Creek) were capable of avoiding the predator by remembering either the location and/or the microhabitat in which the predator was recently observed. Reliance on different types of visual cues appears to vary between populations but the reason for this variation remains elusive. Of the ecological variables tested (flow variability, predator density and habitat complexity), only the level of predation appeared to be correlated with the orientation technique employed by each population. There was no effect of species identity, which suggests that the habitat that each population occupies plays a strong role in the development of both predator avoidance responses and the cues used to track predators in the wild.  相似文献   

13.
Abstract –  We investigated how Arctic charr young respond behaviourally to olfactory cues from skin-damaged conspecifics, charr-fed pikeperch, and the combination of food-deprived pikeperch and skin-damaged conspecific cues in a two-channel Y-maze fluviarium test arena. Significant antipredator responses were found to skin-damaged conspecifics in three behavioural traits, to charr-fed pikeperch in two traits and to the combination of pikeperch and skin-damaged conspecific cues in all six behaviours investigated. The combination of predator and conspecific cues significantly increased spatial avoidance and cautiousness to approach the source of scent compared with odours from charr-fed predators. The results suggest that damage-released alarm cues exist in charr, and they strengthen the antipredator responses in conspecifics. As the charr used different behaviours and levels of response in the presence of different cues, they seem to have sophisticated skills to distinguish between different odour combinations and be able to adjust their behaviour according to the current predation risk level.  相似文献   

14.
Abstract – We explored the incidence of individual feeding specialisation among a naïve predator (non‐native rainbow trout postsmolts) and two native experienced predators (sea‐run Arctic charr and sea‐trout) in a subarctic Norwegian fjord. Interindividual foraging niche stability was obtained by combining information on stomach contents (recent dietary niche) with trophically transmitted parasite infestation (time‐integrated historical dietary niche) of individual predators. Individual fish showed a high degree of resource specialisation as prey items such as gammarids and small fish (both potential intermediate host of parasites) rarely co‐occurred in stomachs. In both naïve and veteran predators, positive associations between the intensity of a specific parasite species and the occurrence of their respective intermediate host (gammarids or fish) in the stomachs of individual predators demonstrated temporally interindividual feeding specialisations. Several behavioural phenotypes clearly co‐existed in both naïve and veteran predator populations, including gammaridivore (benthic feeders), piscivore (pelagic feeders) or insectivore (pleuston feeders) individuals. The likely mechanism of this observed interindividual resource specialisation in the non‐native naïve predators involves a behavioural component of which rapid learning seems to be a key factor.  相似文献   

15.
Two hypotheses related to effects of juvenile pink salmon (Oncorhynchus gorbuscha) foraging behaviour and size on their predation risk were evaluated using field data collected in Prince William Sound, Alaska 1 995–97. My results supported the hypothesis that low macrozooplankton density leads to dispersion of juvenile salmon from shallow nearshore habitats and greater predation risk, but zooplankton type was an important factor. When the biomass of large copepods (primarily Neocalanus spp.) declined, salmon dispersed from shallow nearshore habitats, and mean daily individual predator consumption of salmon increased by a factor of 5. A concomitant five‐fold increase in the probability of occurrence of salmon in predator stomachs supported the notion that increased predation on salmon was caused by a greater overlap between predator and prey when salmon dispersed offshore, not an increase in the number of salmon consumed per feeding bout. The results also generally supported the hypothesis that the timing of predation events modifies the nature of size‐dependent predation losses of salmon to different predator groups (small and large planktivores and piscivores). Size‐dependent vulnerabilities of salmon to predators were a function of both predator and prey sizes. When simulated predation was shifted from May to June, the vulnerability of salmon became more dependent on their growth than initial size. But, the size‐ and growth‐dependent vulnerabilities of salmon differed more among predator groups than between May and June, suggesting that changes in the composition of predator fields could more strongly affect the nature of size‐dependent predation than changes in the timing of predation losses.  相似文献   

16.
The development of the octavolateralis system in fish ancestors created the phenomenon of sensory reafference associated with the fish's own locomotion. Particularly in fish species living and moving in groups, there is a potential to produce complex pressure waves and other water movements interfering with the octavolateralis perception of critical environmental signals. The hypothesis presented is that the development of the octavolateralis system may have initiated, or been a factor in, the evolutionary development of synchronized group locomotion, eventually leading to schooling behaviour. Theoretical models suggest that schooling may be related to a reduction in masking of environmental signals, as well as to survival mechanisms, e.g. confusion of the lateral line and electro-sensory systems of predators by overlapping pressure waves and overlapping electrical fields. The combined effects of reduced masking and predator confusion may help explain why schooling became an evolutionary success. Including pressure waves and other water movements in the model of join, stay or leave decisions might shed some light on fish shoal assortment. A model encompassing the complex effects of synchronized group locomotion on octavolateralis and electro-sensory perception of both prey and predator fish might increase the understanding of schooling behaviour.  相似文献   

17.
Abstract – After release to the wild, captive reared salmon have shown lower foraging rates on natural prey and impaired ability to avoid natural predators and thus lower survival compared with wild‐born conspecifics. Here, we examine whether captive breeding influences learning of foraging on natural prey and how enriched rearing methods may improve foraging on natural prey by Atlantic salmon (Salmo salar) parr. We reared offspring of hatchery or wild salmon of the same population in either a standard or enriched environment at production‐scale densities. The enriched environment featured submerged overhead shelter, varying water current, depth and direction and consequently alterations in food dispersion. Parr reared in the enriched environment expressed higher feeding rates, and parr of wild origin started to forage earlier on natural prey. The enriched method promoted foraging of hatchery reared parr on natural prey and is easily applicable to commercial production of salmonids for reintroduction or stock enhancement purposes.  相似文献   

18.
Learning of foraging skills by fish   总被引:6,自引:0,他引:6  
This chapter outlines the relationships between a number of key factors that influence learning and memory, and illustrates them by reference to studies on the foraging behaviour of fish. Learning can lead to significant improvements in foraging performance in only a few exposures, and at least some fish species are capable of adjusting their foraging strategy as patterns of patch profitability change. There is also evidence that the memory window for prey varies between fish species, and that this may be a function of environmental predictability. Convergence between behavioural ecology and comparative psychology offers promise in terms of developing more mechanistically realistic foraging models and explaining apparently ‘suboptimal’ patterns of behaviour. Foraging decisions involve the interplay between several distinct systems of learning and memory, including those that relate to habitat, food patches, prey types, conspecifics and predators. Fish biologists, therefore, face an interesting challenge in developing integrated accounts of fish foraging that explain how cognitive sophistication can help individual animals to deal with the complexity of the ecological context.  相似文献   

19.
Size-dependent predation rates on marine fish larvae by the ctenophore Mnemiopsis leidyi , scyphomedusa Chrysaora quinquecirrha , and planktivorous fish Anchoa mitchilli were estimated via experiments in 3.2 m3 me-socosms. Predation rates on larvae of the goby Gobio-soma bosci were estimated in relation to 1) length of larval prey, 2) presence or absence of alternative < 1 mm zooplankton prey, and 3) a predator-prey interaction between the scyphomedusa and ctenophore. The consumption rate of larvae by the three predators generally declined as larval length increased. The ctenophore ate fewer (1.0 d-1 per predator) larvae than did the medusa (7.8 d -1 per predator) or bay anchovy (4.0 d -1 per predator), but it consumed larvae in all size classes tested (3.0–9.5 mm SL). Predation by bay anchovy and the medusa was more size-dependent: 3.0–5.0 mm larvae were most vulnerable. Fewer larvae were eaten by the ctenophore and bay anchovy when zooplankton alternative prey was available, but predation on larvae by the medusa was not influenced by alternative zooplankton prey. Consumption rate of fish larvae by the medusa was reduced 20–25% when the ctenophore was present as its alternative prey. An encounter-rate model was developed and its parameters estimated from the experimental results. Model simulations indicated that the relationship between larval size and vulnerability is dependent on size, swimming speed, and behavior of both predators and larvae, and that bigger or faster-growing fish larvae are not always less vulnerable to predation.  相似文献   

20.
Five years of field, laboratory, and numerical modelling studies demonstrated ecosystem‐level mechanisms influencing the mortality of juvenile pink salmon and Pacific herring. Both species are prey for other fishes, seabirds, and marine mammals in Prince William Sound. We identified critical time‐space linkages between the juvenile stages of pink salmon and herring rearing in shallow‐water nursery areas and seasonally varying ocean state, the availability of appropriate zooplankton forage, and the kinds and numbers of predators. These relationships defined unique habitat dependencies for juveniles whose survivals were strongly linked to growth rates, energy reserves, and seasonal trophic sheltering from predators. We found that juvenile herring were subject to substantial starvation losses during a winter period of plankton diminishment, and that predation on juvenile pink salmon was closely linked to the availability of alternative prey for fish and bird predators. Our collaborative study further revealed that juvenile pink salmon and age‐0 herring exploit very different portions of the annual production cycle. Juvenile pink salmon targeted the cool‐water, early spring plankton bloom dominated by diatoms and large calanoid copepods, whereas young‐of‐the‐year juvenile herring were dependent on warmer conditions occurring later in the postbloom summer and fall when zooplankton was composed of smaller calanoids and a diversity of other taxa. The synopsis of our studies presented in this volume speaks to contemporary issues facing investigators of fish ecosystems, including juvenile fishes, and offers new insight into problems of bottom‐up and top‐down control. In aggregate, our results point to the importance of seeking mechanistic rather than correlative understandings of complex natural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号