首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vietnam is one of the world’s top two rice exporting countries. However, rice cultivation is the primary source of agriculture’s greenhouse gas (GHG) emissions in Vietnam. In particular, strategies are required to reduce GHG emissions associated with the application of organic and inorganic fertilisers. The objective of this study was to assess the effects of various combinations of biochar (BIOC), compost (COMP) and slow-release urea (SRU) on methane (CH4) and nitrous oxide (N2O) emissions. In total, 1170 gas samples were collected from closed gas chambers in rice paddies at Thinh Long commune and Rang Dong farm in northern Vietnam between June and October 2014. The gas samples were analysed for CH4-C and N2O-N fluxes using gas chromatography. The application of BIOC alone resulted in the lowest CH4 emissions (4.8–59 mg C m?2 h?1) and lowest N2O emissions (0.15–0.26 µg N m?2 h?1). The combined application of nitrogen–phosphorus–potassium (NPK) + COMP emitted the highest CH4 (14–72 mg C m?2 h?1), while ½NPK + BIOC emitted the highest N2O (1.03 µg N m?2 h?1 in the TL commune), but it was the second lowest (0.495 µg N m?2 h?1) in the RD farm. Green urea and orange urea reduced N2O emissions significantly (p < 0.05) compared to white urea, but no significant differences were observed with respect to CH4 emissions. SRU fertilisers and BIOC alone measured the lowest greenhouse gas intensity, i.e. <2.5 and 3 kg CO2 eq. kg?1 rice grain, respectively. Based on these results, application of fertilisers in the form of BIOC and/or orange or green urea could be a viable option to reduce both CH4 and N2O emissions from rice paddy soils.  相似文献   

2.
《Plant Production Science》2013,16(4):284-292
Abstract

The suitability of anaerobically-digested manure (ADM) from a biogas plant, as an alternative to chemical fertilizers for rice cultivation was evaluated by a long-term study. At the standard nitrogen (N) application rate (10 g m?2), the aboveground biomass, N uptake, and grain yield in rice plots with ADM application (MF) were not significantly different from those in the plots treated with chemical fertilizer (CF). Split application of ADM improved the apparent N efficiency. The N application rate corresponding to maximum grain yield was approximately 15 g m?2 by a split application, and more N application by using ADM saturated grain yield due to decrease in ripened grain ratio and individual grain weight. On the whole, the soil total-C, total-N and available N in the MF plot were not significantly different from those in the CF plot. The available phosphate (P) levels was lower in the MF plot than in either the CF plot or plot without N application (NF), mainly due to lower content of P in ADM. However, the P level remained much higher than the fatal threshold level for the growth of paddy rice. These findings suggest that under appropriate fertilization conditions, ADM is a valuable organic resource, and can be used continuously as an alternative to chemical fertilization for rice cultivation, without substantial changes in soil C and N fertility.  相似文献   

3.
Methane (CH4) emission and water productivity were estimated in an experiment conducted during wet (rainy) season of 2010 at the research farm of Indian Agricultural Research Institute, New Delhi, India. Treatments comprising three methods of crop establishment viz., conventional transplanting (CT), system of rice intensification (SRI) and double transplanting (DT) were laid out in randomized block design with four replications. Scented rice (Oryza sativa L) variety ‘Pusa Basmati 1401’ was transplanted in puddle field. In CT and SRI 21 and 12-day-old seedlings, respectively, were transplanted while in DT overall 45-day-old seedlings were transplanted. In CT and DT flooded conditions while in SRI saturated conditions were maintained. Results indicated that among the methods of crop establishment, CT had maximum cumulative CH4 emission (32.33 kg ha?1) followed by DT (29.30 kg ha?1) and SRI (19.93 kg ha?1). Temporal CH4 flux fluctuated between 79.7 and 482.0 mg m?2 day?1 under CT; 46.0 and 315.0 mg m?2 day?1 in SRI and 86.7 and 467.3 mg m?2 day?1 in DT. Considerable temporal variations in the individual CH4 fluxes were observed. Flux of CH4 was generally higher in early stage of crop and peaked about 21 days after transplanting coinciding with tillering stage of crop. CH4 flux declined gradually from 75 days after transplanting and stabilized at the harvest stage of rice in all the three methods of transplanting. Global warming potential was highest in CT (807.4 kg CO2 ha?1) and lowest in SRI (498.25 kg CO2 ha?1). However, a reverse trend was observed with carbon efficiency ratio. The water savings to the extent of six irrigations was recorded in SRI over CT. A saving of 27.4 % irrigation water and 18.5 % total water was recorded in SRI over CT while the corresponding values of DT over CT were 14.5 and 9.8 %. Water productivity of SRI (3.56 kg/ha mm) was significantly higher as compared to DT (2.87 kg/ha mm) and CT (2.61 kg/ha mm).  相似文献   

4.
Arsenic contamination of shallow groundwater and related health problems are threats for the millions in endemic regions of West Bengal. Contamination of rice grain creates the food chain pathway of mineral arsenic besides drinking water contamination. Present study concentrated on association of arsenic concentration in irrigated water, paddy field soil and rice with the cropping seasons. Irrigated ground water arsenic concentration decreased significantly (p = 0.007) from summer (median 0.42 mg l?1) to winter (median 0.35 mg l?1). Carried over effect created significant decrease (p = 0.03) of paddy field soil arsenic concentration from summer (median 8.35 mg kg?1) to winter (median 6.17 mg kg?1). Seasonal variation was observed in rice straw (p = 0.03) but not in husk (p = 0.91). Arsenic concentration decreased significantly (p = 0.05) in the rice grains collected in winter season (median 0.23 mg kg?1) than the samples collected in the summer season (median 0.30 mg kg?1). In conclusion, seasonal effects need to be considered in case of human health risk assessment from arsenic consumption.  相似文献   

5.
There is a growing concern about health hazards linked to nitrate (NO3) toxicity in groundwater due to overuse of nitrogen fertilizers in rice production systems of northern Iran. Simple-cost-effective methods for quick and reliable prediction of NO3 contamination in groundwater of such agricultural systems can ensure sustainable rural development. Using 10-year time series data, the capability of adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM) models as well as six geostatistical models was assessed for predicting NO3 concentration in groundwater and its noncarcinogenic health risk. The dataset comprised 9360 water samples representing 26 different wells monitored for 10 years. The best predictions were found by SVM models which decreased prediction errors by 42–73 % compared with other models. However, using well locations and sampling date as input parameters led to the best performance of SVM model for predicting NO3 with RMSE = 4.75–8.19 mg l?1 and MBE = 3.3–5.2 mg l?1. ANFIS models ranked next with RMSE = 8.19–25.1 mg l?1 and MBE = 5.2–13.2 mg l?1 while geostatistical models led to the worst results. The created raster maps with SVM models showed that NO3 concentration in 38–97 % of the study area usually exceeded the human-affected limit of 13 mg l?1 during different seasons. Generally, risk probability went beyond 90 % except for winter when groundwater quality was safe from nitrate viewpoint. Noncarcinogenic risk exceeded the unity in about 1.13 and 6.82 % of the study area in spring and summer, respectively, indicating that long-term use of groundwater poses a significant health risk to local resident. Based on the results, SVM models were suitable tools to identify nitrate-polluted regions in the study area. Also, paddy fields were the principal source of nitrate contamination of groundwater mainly due to unmanaged agricultural activities emphasizing the importance of proper management of paddy fields since a considerable land in the world is devoted to rice cultivation.  相似文献   

6.
Duckweed (Lemna minor), a floating macrophyte belonging to the Lemnaceae family, is commonly found in subtropical paddy fields. This plant rapidly takes up nutrients from water and forms dense floating mats over the water surface that may impact the biogeochemical processes and greenhouse gas production in paddy fields. In this study, we measured CH4 and N2O emissions from duckweed and non-duckweed plots in a subtropical paddy field in China during the period of rice growth using static chamber and gas chromatography methods. Our results showed that CH4 emission rate ranged from 0.19 to 26.50 mg m?2 h?1 in the duckweed plots, and from 1.02 to 28.02 mg m?2 h?1 in the non-duckweed plots. The CH4 emission peak occurred about 1 week earlier in the duckweed plots compared to the non-duckweed counterparts. The mean CH4 emission rate in the duckweed plots (9.28 mg m?2 h?1) was significantly lower than that in non-duckweed plots (11.66 mg m?2 h?1) (p < 0.05), which might be attributed to the higher water and soil Eh in the former. N2O emission rates varied between ?50.11 and 201.82 µg m?2 h?1, and between ?28.93 and 54.42 µg m?2 h?1 in the duckweed and non-duckweed plots, respectively. The average N2O emission rate was significantly higher in the duckweed plots than in the non-duckweed plots (40.29 vs. 11.93 µg m?2 h?1) (p < 0.05). Our results suggest that the presence of duckweed will reduce CH4 emission, but increase N2O flux simultaneously. Taking into account the combined global warming potentials of CH4 and N2O, we found that growing duckweed could reduce the overall greenhouse effect of subtropical paddy fields by about 17 %.  相似文献   

7.
Drip irrigation in dry-seeded rice (DSR) is a new water-saving cultivation technology; however, very little is known of its productivity and water-saving capacities. The study was conducted for 2 years (2013 and 2014) in a split-plot design in three replicates with treatment combinations of four irrigation regimes [drip irrigation at 1.5, 2.25, and 3.0× pan evaporation (Epan) and flood irrigation at 3.0× Epan] and three nitrogen (N) levels (120, 150, and 180 kg ha?1). Drip irrigation in DSR resulted in higher grain yield (7.34–8.01 t ha?1) than flood irrigation (6.63–7.60 t ha?1) , with water savings of more than 40 %. Water-use efficiency with drip irrigation was higher (0.81–0.88 kg m?3) than flood irrigation (0.42–0.52 kg m?3) , being highest with drip irrigation at 1.5× Epan. Root density at soil depths of 15–30 cm was also higher in drip (0.86–1.05 mg cm?3) as compared to the flood (0.76–0.80 kg m?3)-irrigated crop. This study implicated that under water-scarce scenario, drip-irrigated DSR is a profitable, and water- and energy-saving technology. This study also suggested that policy focus in future must be tilted towards the promotion of solar-operated drip irrigation in those regions, where DSR is being promoted in the face of water and energy crisis.  相似文献   

8.
Three methods of rice cultivation were compared in a field experiment at New Delhi, India during 2012 for their water use and changes in nutrient availability of soil. The experiment was laid out in a split plot design with conventional transplanting (CT), system of rice intensification (SRI), and aerobic rice (AR) cultivation technologies. Five doses of nitrogen included 100 % (120 kg N ha?1), 125, and 150 % recommended dose of N(RDN) through urea, 75 % of RDN through urea (90 kg N ha?1) + 25 % of RDN (30 kg ha?1) through farm yard manure (FYM), and 100 % of RDN through FYM. Results revealed that status of available N in soil under rice at 45 and 90 days after sowing (DAS) was significantly higher in CT and SRI compared to AR method. Application of the highest dose of nitrogen through urea resulted in the highest availability of N (188.9, 174.2, and 135.2 kg ha?1 for 45 and 90 DAS and at harvest stage, respectively). The soil under AR recorded significantly low availability of phosphorus and iron. However, availability of K in soil was not affected significantly under adopted production techniques and nitrogen management. The recorded irrigation water productivity was maximum in AR cultivation (9.16 kg ha mm?1) followed by SRI (7.02 kg ha mm?1) with irrigation water saving of 54 and 36 %, respectively compared to CT.  相似文献   

9.
In order to increase the efficacy of water and control the losses of fertilizer, it is necessary to assess the influence of level of fertilization on crop responses, movement and balance of water and solutes from fertilizers in the root zone. With this goal, the reported study was undertaken to determine the effect of fertilization on crop responses and fertilizer solute transport in rice crop field in a sub-humid and sub-tropical region. Field experiment was conducted on rice crop (cultivar IR 36) during the years 2003, 2004, and 2005. The experiment included four fertilizer treatments comprising different levels of fertilizer application. The fertilizer treatments during the experiment were: F1 = control with N:P2O5:K2O as 0:0:0 kg ha?1; F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha?1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha?1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha?1. The results of the investigation revealed that the magnitudes of crop parameters such as grain yield, straw yield, and maximum leaf area index increased with increase in fertilizer application rate. The levels of fertilization had very little effect on water loss via deep percolation and water use by the crop. The levels of fertilization had considerable effect on N leaching loss and uptake of N whereas it had no significant impact on leaching loss of water-soluble phosphorus. This indicated that PO4-P leaching loss was very low in the soil solution as compared to nitrogen due to fixation of phosphorus in soils. The results also revealed that increase in level of fertilization increased water use efficiency considerably by increased crop yield. From the observed data of nutrient use efficiency, crop yield and environmental pollution, the fertilization rate of N:P2O5:K2O as 80:40:40 kg ha?1 (F2) was the most suitable fertilizer treatment for rice crop among studied treatments.  相似文献   

10.
Cyanobacteria and algae grow in California rice fields where they form large mats that may smother seedlings or cause them to dislodge, resulting in reduced rice stand establishment and potential yield loss. The most troublesome species of cyanobacteria is Nostoc spongiaeforme. It is very difficult to control using currently accepted methods, i.e., aerial applications of copper sulfate. A non-copper algicide, the mono (N,N-dimethylalkylamine) salt of endothall has been suggested as an alternative method for controlling nuisance cyanobacterial and algal growths in California rice fields. The purpose of the experiments described here was to evaluate the effect of the mono (N,N-dimethylalkylamine) salt of endothall on growth of N. spongiaeforme and the green alga, Hydrodictyon reticulatum. In laboratory experiments, the mono (N,N-dimethylalkylamine) salt of endothall reduced N. spongiaeforme growth at 0.3 mg L?1. This effect was removed when rice straw was added to the growth medium, indicating that the rice straw may have introduced bacteria capable of degrading the mono (N,N-dimethylalkylamine) salt of endothall. In outdoor experiments, which used rice field water containing decomposing rice straw, the mono (N,N-dimethylalkylamine) salt of endothall concentrations between 0 and 5 mg L?1 had little effect on N. spongiaeforme. In contrast, H. reticulatum exhibited injury symptoms at 1 mg L?1 or greater. However, H. reticulatum recovered by the end of the 7-day exposure. It is not clear how this algicide will be useful in the management of N. spongiaeforme or H. reticulatum in California rice fields.  相似文献   

11.
System of rice intensification (SRI) is an alternate method of conventional puddled, transplanted, and continuously flooded rice cultivation for higher yield, water saving, and increased farmer’s income. The SRI may also have considerable impact on greenhouse gas emission because of difference in planting, water and nutrient management practices. A field experiment was conducted with three planting methods: conventional puddled transplanted rice (TPR), conventional SRI with 12-days-old seedling (SRI) and modified SRI with 18-days-old seedling (MSRI) to study their effect on methane and nitrous oxide emission. Seasonal integrated flux (SIF) for methane was highest in the conventional method (22.59 kg ha?1) and lowest in MSRI (8.16 kg ha?1). Methane emissions with SRI and MSRI decreased by 61.1 and 64 %, respectively, compared to the TPR method. Cumulative N2O–N emission was 0.69, 0.90, and 0.89 kg ha?1 from the TPR, SRI, and MSRI planting methods, respectively. An average of 22.5 % increase in N2O–N emission over the TPR method was observed in the SRI and MSRI methods. The global warming potential (GWP), however, reduced by 28 % in SRI and 30 % in MSRI over the TPR method. A 36 % of water saving was observed with both SRI and MSRI methods. Grain yield in the SRI and MSRI methods decreased by 4.42 and 2.2 %, respectively, compared to the TPR method. Carbon efficiency ratio was highest in the MSRI and lowest in the TPR method. This study revealed that the SRI and MSRI methods were effective in reducing GWP and saving water without yield penalty in rice.  相似文献   

12.
A field experiment was conducted during rainy seasons of 2009 and 2010 at New Delhi, India to study the influence of varieties and integrated nitrogen management (INM) on methane (CH4) emission and water productivity under flooded transplanted (FT) and aerobic rice (AR) cultivation. The treatments included two rice (‘PB 1’ and ‘PB 1121’) varieties and eight INM practices including N control, recommended dose of N through urea, different combinations of urea with farmyard manure (FYM), green manure (GM), biofertilizer (BF) and vermicompost (VC). The results showed 91.6–92.5 % lower cumulative CH4 emission in AR compared to FT rice. In aerobic conditions, highest cumulative CH4 emission (6.9–7.0 kg ha?1) was recorded with the application of 100 % N by organic sources (FYM+GM+BF+VC). Global warming potential (GWP) was significantly lower in aerobic rice (105.0–107.5 kg CO2 ha?1) compared to FT rice (1242.5–1447.5 kg CO2 ha?1). Significantly higher amount of water was used in FT rice than aerobic rice by both the rice varieties, and a water saving between 59.5 and 63 % were recorded. Under aerobic conditions, both rice varieties had a water productivity of 8.50–14.69 kg ha?1, whereas in FT rice, it was 3.81–6.00 kg ha?1. In FT rice, a quantity of 1529.2–1725.2 mm water and in aerobic rice 929.2–1225.2 mm water was used to produce one kg rice. Thus, there was a saving of 28.4–39.6 % total water in both the rice varieties under AR cultivation.  相似文献   

13.
Deep placement of urea supergranules in wetland rice (Oryza sativa L.) or correct urea band application enables to protect nitrogen (N) from various loss mechanisms, but recovering of fertilizer N by plants depends upon geometric and agronomic factors. The objective of this study was to characterize the diffusion of ammoniacal N from the two urea sources, point or line application, in a typical paddy soil. A model of ammonia diffusion was developed for the two geometries. The relation between the N application rate and the transplanting geometry was studied in two fields using probes attached to urea supergranule of different mass (2 and 4 g). The transplanting pattern was adapted for obtaining 58 or 116 kg N ha?1 in the 4 g application. The ammoniacal nitrogen concentration was compared to the diffusion model prediction. The values of the diffusion coefficient were found to be 1.160 and 1.107 cm2 d?1. Ammonia disappearance below 10 mmol L?1 did not follow the same kinetics in the two treatments corresponding to 4 g application. Relative to the 2 g treatment, root ammonia uptake in the 4 g treatment was delayed and slowed in the classical geometry of 20 cm × 20 cm (116 kg N ha?1) when it was mainly delayed in the geometry provided with 58 kg N ha?1. This manipulation of the source–sink relationship enables to foresee possibilities for the development of new fertilizers adapted to wetland rice cultivation.  相似文献   

14.
Alternate wetting and drying (AWD) irrigation is widely adopted to save water in rice production. AWD practice shifts lowland paddy fields from being continuously anaerobic to being alternately anaerobic and aerobic, thus affecting nitrogen (N) transformations in paddy field soils. Using the barometric process separation technique, a large number of soil cores sampled from lowland paddy field soil profiles were measured for gross nitrification and denitrification rates under different temperature and soil moisture conditions. The gross nitrification and denitrification rates vary with rice growth stages and range between 1.18–30.8 and 0.65–13.54 mg N m?3 h?1, respectively. Results indicate that both gross nitrification and denitrification rates increased with the increase in temperature in all three studied soil layers. Gross nitrification rates significantly decrease with increasing soil moisture while denitrification rates increase, and different soil layers demonstrated different rates of variation to the increase in soil moisture. Gross nitrification rates in the cultivated horizon layer decreased more sharply with the increase in soil moisture. High soil water content is favorable to denitrification of all soil layers.  相似文献   

15.
Pools of organic carbon are quantified from the soil samples under scented rice crop from different soil layers (0–10, 10–20, and 20–30 cm) under 9 years’ long-term trials with five treatments in scented rice–potato–onion cropping system. These treatments were 100 % NPK (NPK), 50 % recommended NPK through mineral fertilizers + 50 % N as FYM (NPK + FYM), FYM + vermicompost (VC) + neem cake (NC) each equivalent to one-third of recommended N (FYM + VC + NC), 50 % N as FYM + biofertilizer for N + bone meal to substitute phosphorus requirement of crops + phosphate solubilizing bacteria (FYM + BFN + BM + PSB), FYM + vermicompost + neem cake each equivalent to 1/3rd of recommended N + PSB (FYM + VC + NC + PSB). SMBC (479 mg kg?1), HWEOC (373 mg kg?1), CWSCHO (235 mg kg?1), HWSCHO (839 mg kg?1), and ASCHO (180 mg kg?1) were found to be the highest in the soil treated with FYM + VC + NC + PSB and the lowest with NPK. The quantity of hot water-extractable carbohydrate content is highest amongst cold water, dilute acid and hot water extractable carbohydrate that decreases with the soil depth irrespective of treatments, except CWEOC. Soil microbial biomass carbon (SMBC) shows significant correlation with CWEOC (r = 0.60**), HWEOC (r = 0.94**), CWSCHO (r = 0.75**), HWSCHO (r = 0.83**), and ASCHO (r = 0.83**) that primed for better aggregate stability irrespective of soil layers up to 30 cm depth. This indicates that labile carbon pools, most specifically water-soluble carbon, carbohydrate, microbial biomass, could be a suitable indicator for evaluation of soil quality, particularly in relation to soil aggregation.  相似文献   

16.
Methane oxidation activity (MOA), methanotrophic bacteria (MOB), and CH4 emission in a paddy field fertilized with anaerobically digested slurry were compared between two varieties: a fodder rice variety Leaf star (LS) and a normal rice variety Kinuhikari (KN). Average MOA and MOB per unit dry root were significantly higher in KN (7.1?μmol?g?1 CH4?g?1 dry root h?1 and 3.7?×?107 MPN?g?1 dry root, respectively) than in LS (4.3?μmol?g?1 CH4?g?1 dry root h?1, 2.1?×?107 MPN?g?1 dry root), although MOA in the rice root per whole plant was not significantly different since root biomass of LS (1.5?g dry root plant?1) was significantly higher than that of KN (1.2?g dry root plant?1). MOA in the soil ranged from 0.031 to 0.087?μmol?g?1 CH4?g?1 dry soil h?1, but there were no significant differences in both depths (0–5 and 5–15?cm) between the two rice varieties. MOA in the rhizosphere soil was significantly different between the rice varieties at flowering, but not at tillering. Methane emission in the field was lower and MOA and MOB in the rice root were higher in LS than in KN at tillering, but the reverse results were found at flowering and maturity stages. Total CH4 emission during a growing period was not significantly different between LS (27.4?±?16.9?g CH4?m?2) and KN (24.0?±?19.5?g CH4?m?2). There was a significant negative relationship between CH4 emission and rice root MOB (P?<?0.01) or MOA (P?<?0.05) and significant positive relationship was observed between root MOA and MOB (P?<?0.01). This study revealed that choice of rice variety might be an important environmental issue in paddy cultivation since it can influence MOA and MOB in rice root and rhizosphere soil which relate with CH4 emission.  相似文献   

17.
沼液与氮肥配施对小麦产量及品质的影响   总被引:2,自引:0,他引:2  
为给小麦高产优质生产中沼液利用提供依据,在大田条件下,研究了沼液与氮肥配施对小麦籽粒产量及品质的影响.结果表明,在全生育期总施氮量240 kg·hm-2条件下,在基施化肥氮基础上追施沼液,尤其基施75%化肥氮和追施25%沼液氮配合处理(3/4U+1/4B)显著提高了淀粉糊化特性参数(峰值黏度、最终黏度、稀懈值和反弹值)、粉质参数(形成时间、稳定时间、粉质指数)和拉伸参数(拉伸面积、拉伸阻力和拉伸比).籽粒蛋白组分(总蛋白、球蛋白、醇溶蛋白和谷蛋白)含量以基施50%化肥氮和追施50%沼液氮配合处理(1/2U+1/2B)最高,3/4U+1/4B处理次之.籽粒蛋白组分、粉质与拉伸参数均以单施沼液处理(1/2B+1/2B)最低,单施化肥氮的处理(1/2U+1/2U)次之,而淀粉糊化特性参数以1/2U+1/2U处理最差,施用沼液的处理较1/2U+1/2U处理提高2.0%~6.5%.与1/2U十1/2U处理相比,基施沼液与追施化肥氮配合处理产量提高,而基施化肥氮与追施沼液氮处理的产量降低.可见在基施沼液的基础上追施化肥氮可提高小麦产量,其中1/2B+1/2U处理能够高产和优质兼顾,单施沼液效果低下.  相似文献   

18.
Rice is prone to arsenic accumulation compared to other cereals as typically grown up under waterlogged situation favoring arsenic mobility. Arsenic in rice depends on arsenic availability to plants from irrigation water, even differs among cultivars and their plant parts. Present study was concentrated on arsenic accumulation in various plant parts of five common rice cultivars grown using irrigation water from different water sources in various fields in arsenic-endemic region. Additionally, dose response experiment under laboratory net house was conducted on the same cultivars excluding open environmental factors. The common cultivars were categorized according to high to low arsenic accumulator in rice grain, straw and root parts. The cultivar Shatabdi has shown highest arsenic accumulation in rice grain compared to other rice cultivars in fields and when grown at various soil arsenic doses. In field samples, a highest grain arsenic concentration ranged between 0.69 ± 0.04 and 0.78 ± 0.12 mg kg?1 for Shatabdi, whereas lowest grain arsenic concentration ranged between 0.37 ± 0.07 and 0.41 ± 0.07 mg kg?1 for the cultivars GB3 and Lalat. Speciation study detected more inorganic arsenic than organoarsenicals with a trend of arsenite > arsenate > DMA > MMA, which would be problem for consumers. The concluding remark is the characterization of common rice cultivars according to arsenic concentration to highlight an important remediation strand by changing to low arsenic cultivar.  相似文献   

19.
This study was carried out to identify the vulnerability of rice production to salinity intrusion arising from climate change in Giao Thuy, a coastal district of Nam Dinh Province, located in Red River Delta in Vietnam. From the analysis of historical climate data at Nam Dinh city, both mean maximum and minimum temperatures increased by about 0.3 and 0.1 °C per decade, respectively, during the period of 1961–2010. Salt concentration of the river water was higher at the irrigation gate closer to river mouth (Con Nhat) than at the upstream gate (Ha Mieu), which generally increased from 2003 to 2012, with the average maximum concentration up to 2.13 % at Con Nhat gate in 2010. The salt water concentration in the riverside field outside the dyke reached 3.6 %, while among the fields within dyke the salinity was only 0.7 % at maximum in January 2013, and the values were higher in paddy fields close to the dyke than far from the dyke. Average yield among the selected 27 fields from 2011 summer to 2013 spring rice was higher in spring rice (748 g m?2) but lower in summer rice (417 g m?2) mainly due to unfavorable weather such as cold spell at flowering and flood at harvesting time. Rice yield was lowest in general in the most downstream commune Giao Thien, and was significantly lower in field located close to the dyke than those far from the dyke. This spatial variability of rice yield may not be directly attributable to salinity, but to the other factors such as shift of irrigation intake gate to further upstream and/or different management such as less input of N fertilizer and use of traditional local variety.  相似文献   

20.
The productivity of irrigated rice is low in Tanzania. We hypothesized that this is caused by the absence of a packaged application of basic cultivation techniques. A baseline survey of 31 rice irrigation schemes across the country revealed that a large proportion of fields were cultivated without a technical package. Thus, a package was introduced to each of the 31 schemes through a farmer-to-farmer (FTF) extension approach. First, selected key farmers (KFs) were trained with the basic cultivation techniques at agricultural training institutes. Second, the KFs transferred their knowledge to intermediate farmers (IFs) by working together at a demo-field established in each scheme. Third, the KFs and IFs exhibited the rice performance to other farmers (OFs). The paddy yield across the 31 schemes greatly increased from the pre-training level of 2.4 t ha?1 to 3.6 t ha?1after the FTF extension. However, the farmer interviews in the four selected schemes suggested that the technical package was not adopted by all farmers owing to the time-consuming nature of the FTF extension. It was inferred from our study that the low productivity of irrigated rice is caused by the absence of basic cultivation techniques in Tanzania. However, the post-training yield remained relatively low compared with high-yields (4.3–8.4 t ha?1) recorded in cultivar selection trials and high-performing schemes in the county. This “yield gap” could be partly ascribed to the insufficient technical diffusion and the technique-dependent adoption among OFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号