首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Narrowing the uncertainties in carbon (C) and nitrogen (N) dynamics during decomposition of coarse woody debris (CWD) can significantly improve our understanding of forest ecosystem functioning. We examined C, N and pH dynamics in the least studied CWD component—tree bark in a 66-year-long decomposition chronosequence. The relative C concentration decreased by ca. 32% in pine bark, increased by ca. 18% in birch bark and remained stable in spruce and aspen bark. Nitrogen increased in bark of all tree species. In conifer bark, it increased along with epixylic succession. Over 45 years, the relative C/N ratio in bark decreased by 63 and 45% for coniferous and deciduous species, respectively. Bark pH did not change. Due to bark fragmentation, the total C and N amounts in bark of individual logs of aspen, birch, pine and spruce decreased at average rates of 0.03, 0.02, 0.26 and 0.05 year?1, and 0.02, 0.02, 0.03 and 0.03 year?1, respectively. At the forest stand level, the total amounts of C and N in log bark were 853 and 21 kg ha?1 or 11.2 and 45.5% of the C and N amounts stored in downed logs and ca. 2.3–3.8 and 2.2–2.4%, respectively, of total C and N amounts stored in forest litter. In boreal forests, decomposing log bark may act as a long-term source of N for wood-inhabiting communities.  相似文献   

2.
Tree stumps are integral constituents of managed forest ecosystems, but their role in nutrient cycling is poorly understood. We studied phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) dynamics in decomposing Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and silver birch (Betula pendula) stumps in southern Finland in a chronosequence of 0-, 5-, 10-, 20-, 30- and 40-year-old clear-cut areas. Along with the decomposition of pine and spruce stumps, the amount of P in stumps increased, but K and Ca were released, and the amount of Mg initially decreased and then increased. All nutrients, except K, accumulated in birch stumps during the first ten years, but were released thereafter. After 40 years of decomposition, pine and spruce stumps contained 180% and 202% of their initial amounts of P, respectively. In addition, the amounts of Mg were larger than the initial amounts in 40-year decomposed pine (126%) and spruce (202%) stumps. In contrast, birch stumps lost 64% and 75%, respectively, of their initial amounts of P and Mg over a 40-year period. The stumps of all the species were found to release K and Ca. Pine, spruce and birch stumps lost 48%, 64% and 87% of their initial amount of K, and 49%, 35% and 42% of their initial amount of Ca, respectively, during the 40-year period. The results indicate that decomposing stumps of the major tree species in Fennoscandian forests are long-term nutrient pools and they serve as P sinks, thus potentially reducing P leaching after clear-cutting.  相似文献   

3.
Stumps are the largest coarse woody debris component in managed forests, but their role in nutrient cycling is poorly understood. We studied carbon (C) and nitrogen (N) dynamics in Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and silver birch (Betula pendula) stumps, which had decomposed for 0, 5, 10, 20, 30 and 40 years after clear-cutting in southern Finland. Carbon and N were released significantly faster from birch stumps than from conifer stumps. In 40 years, conifer stumps lost 78% and birch stumps 90% of their initial C. In contrast, the amount of N in stumps increased, indicating that external N accumulated in the stumps. After 40 years of decomposition, the amount of N was 1.7 and 2.7 times higher than the initial amount in pine and spruce stumps, respectively. Nitrogen was released from birch stumps, but only after they had decomposed for 20 or more years. On average, 59% of N stored in birch stumps was released during 40 years. The results indicate that the stumps of the major tree species in Fennoscandian forests are long-term C and, especially, N pools which serve as N sinks, thus potentially diminishing N leaching into ground water and watercourses after harvesting. This suggests that the removal of stumps for bioenergy production may markedly affect the nutrient status and nutrient cycling of boreal forests.  相似文献   

4.
Abstract

Stump harvesting as a way to increase wood biomass production in order to meet the European Union targets for reduced CO2 emissions is starting up in Sweden. The knowledge about if and how Collembola species can use low stumps as a substrate is very limited. Stumps of three different ages (4, 14 and 75 years) were sampled to see if Collembola used the dead wood during the whole rotation period of a forest. Stumps of spruce, pine and birch were compared. Both the bark and the splint wood of the stumps were sampled. To determine whether the stump also influenced the nearby soil, the soil close to the stump were sampled as well as the soil further away. In total, five Collembola species that are known to prefer dead wood as a substrate were found in the stumps. Wood specialists were more dominating in young stumps, but occurred also in the oldest stumps. No preference was found for any specific tree species. Wood-living Collembola seem to be able to survive in low stumps for a whole rotation period, at least in low numbers. There is, however, a risk for extinction debt due to their low capacity for active long-distance dispersal.  相似文献   

5.
The demand for quantifying the biomass of stumps and roots and the carbon stored therein is related to aspects of biodiversity, site productivity, atmospheric carbon cycling issues, and the demand for bioenergy. This, in turn, creates a need to develop high-quality tools for estimating biomass and carbon-equivalents in the ground. The objective of this study was to develop decomposition functions for quantifying the remaining dry weight of the biomass of individual stumps and their associated roots in Norway spruce (Picea abies (L.) Karst.). The negative exponential model was chosen for this purpose, combined with a chronosequence approach, involving 99 stumps and their roots from three sites in Sweden. The results showed a relative decay rate of 4.6% annually for stump and root systems. Based on this rate, the time required for the loss of 50% (t0.5) and 95% (t0.95) of the wood is 15 and 64 years, respectively. Although there are many variables that affect decomposition, residual studies indicated that the remaining biomass could be predicted fairly accurately on the basis of the independent variables stump diameter and time.  相似文献   

6.
The occurrence of Heterobasidion annosum in stumps and growing trees was investigated on 15 forest sites in southern Finland where the previous tree stand had been Norway spruce (Picea abies) infected by H. annosum, and the present stand was either Scots pine (Pinus sylvestris), lodgepole pine (Pinus contorta), Siberian larch (Larix siberica), silver birch (Betula pendula) or Norway spruce 8–53 years old. Out of 712 spruce stumps investigated of the previous tree stand, 26.3% were infected by the S group and 0.3% by the P group of H. annosum. The fungus was alive and the fruit bodies were active even in stumps cut 46 years ago. In the subsequent stand, the proportion of trees with root rot increased in spruce stands and decreased in stands of other tree species. On average, one S type genet spreading from an old spruce stump had infected 3.0 trees in the following spruce stand, 0.5 trees in lodgepole pine, 0.3 trees in Siberian larch, 0.05 trees in Scots pine and 0.03 trees in silver birch stand. Although silver birch generally was highly resistant to the S type of H. annosum, infected trees were found on one site that was planted with birch of a very northern provenance.  相似文献   

7.
The present research examines the joint effects of climate change and management on the dead wood dynamics of the main tree species of the Finnish boreal forests via a forest ecosystem simulator. Tree processes are analyzed in stands subject to multiple biotic and abiotic environmental factors. A special focus is on the implications for biodiversity conservation thereof. Our results predict that in boreal forests, climate change will speed up tree growth and accumulation ending up in a higher stock of dead wood available as habitat for forest-dwelling species, but the accumulation processes will be much smaller in the working landscape than in set-asides. Increased decomposition rates driven by climate change for silver birch and Norway spruce will likely reduce the time the dead wood stock is available for dead wood-associated species. While for silver birch, the decomposition rate will be further increased in set-aside in relation to stands under ordinary management, for Norway spruce, set-asides can counterbalance the enhanced decomposition rate due to climate change thereby permitting a longer persistence of different decay stages of dead wood.  相似文献   

8.
Variation in the number and diversity of bark beetles in spaced mature lodgepole pine stands in the East Kootenay region of British Columbia was analyzed in relation to location (site), spacing treatment and years following treatment. We analyzed the number of bark beetles and the number of bark beetle species that emerged from stumps or were captured in flight traps in the first five years following spacing. We also investigated the incidence of bark beetle attacks on the remaining trees and the mean dates of emergence from stumps and of capture in flight traps for the common species. Observations were made on three sites, each having three treatments: 4 m × 4 m spacing, 5 m × 5 m spacing, and an untreated control. The mean density of bark beetles emerged from stumps was different among sites and years but not between spacing treatments. There was no statistically significant variation in the number of bark beetle species captured in flight traps by site, spacing treatment, years, or spacing treatment and years. Significantly more bark beetles were captured in the 4 m × 4 m spacing treatment than in the control. The number of bark beetles captured was the highest in the first 2 years following treatment. Up to 26 species of bark beetles, excluding ambrosia beetles, were captured in flight barrier traps. There was no difference in species diversity by site or treatment indicating that species diversity in mature lodgepole pine is relatively stable over large areas. Of the 213 trees that sustained at least 10 attacks by bark beetles on the lower 2 m of the bole, 59.1% occurred in the spaced plots but only 18.2% of those were successful, versus 74.7% success in the infested trees in the control plots. The majority of infested trees contained Ips sp., Dendroctonus valens and D. murrayanae. Of the seven trees attacked by mountain pine beetle (D. ponderosae) only one tree was located in a spaced plot.  相似文献   

9.
A process-based ecosystem model was used to assess the impacts of changing climate on net photosynthesis and total stem wood growth in relation to water availability in two unmanaged Norway spruce (Picea abies) dominant stands with a mixture of Scots pine (Pinus sylvestris) and birch (Betula sp.). The mixed stands were grown over a 100-year rotation (2000-99) in southern and northern Finland with initial species shares of 50, 25 and 25% for Norway spruce, Scots pine and birch, respectively. In addition, pure Norway spruce, Scots pine and birch stands were used as a comparison to identify whether species' response is different in mixed and pure stands. Soil type and moisture conditions (moderate drought) were expected to be the same at the beginning of the simulations irrespective of site location. Regardless of tree species, both annual net canopy photosynthesis (P(nc)) and total stem wood growth (V(s)) were, on average, lower on the southern site under the changing climate compared with the current climate (difference increasing toward the end of the rotation); the opposite was the case for the northern site. Regarding the stand water budget, evapotranspiration (E(T)) was higher under the changing climate regardless of site location. Transpiration and evaporation from the canopy affected water depletion the most. Norway spruce and birch accounted for most of the water depletion in mixed stands on both sites regardless of climatic condition. The annual soil water deficit (W(d)) was higher on the southern site under the changing climate. On the northern site, the situation was the opposite. According to our results, the growth of pure Norway spruce stands in southern Finland could be even lower than the growth of Norway spruce in mixed stands under the changing climate. The opposite was found for pure Scots pine and birch stands due to lower water depletion. This indicates that in the future the management should be properly adapted to climate change in order to sustain the productivity of mixed stands dominated by Norway spruce.  相似文献   

10.
The aim of this study was to determine how soil chemistry and the distribution of fine roots (<1 mm) in the organic and upper mineral soil horizons were affected by an admixture of birch (Betula pendula Roth and B. pubescens Ehrh.) in Norway spruce (Picea abies (L.) Karst) stands. The surface organic horizons (LF and H) and mineral soil were characterized to a depth of 10 cm on three sites in southern and central Sweden. On these sites, replicated plots had been established that contained either ca. 30-year-old birch growing as a shelter over similar-aged spruce (mixed plots) or spruce only. The treatments had been created 8–11 years before this study was done. A fourth site, with plots containing ca. 90-year-old spruce or birch/spruce, and a fifth site, with 30-year-old spruce and a low admixture (12% by basal area) of birch, were also included in the study. Concentrations of Ca and Mg and pH in the LF layer were significantly higher in plots with a birch admixture. In the H-horizon, concentrations of K, Ca and Mg were significantly higher in mixed plots than in plots with pure spruce. Consequently, base saturation was higher in mixed plots than in pure spruce plots. A shelter of birch decreased the total amount of spruce fine roots (<1 mm), as revealed at one of the sites. Total fine root biomass (birch + spruce) in the organic and mineral soil horizons (to 10 cm) did not differ significantly between the pure spruce stands and the spruce stands with a birch shelter.  相似文献   

11.
The attacks of bark‐ and wood‐boring Coleoptera on broken conifer stems after severe snow‐breakage in early 1988 were studied in autumn 1988 and 1989. The study included twelve stands in the county of Värmland in central Sweden differing in age and edaphic conditions. The tops on the ground as well as the remaining rooted stem stumps of 94 Picea abies and 61 Pinus sylvestris were inspected. The presence of living branches on the stumps strongly influenced the incidence of insect attack. All stumps without branches were attacked during the two‐year period, whereas only a few spruce stumps with more than ten branches and no pine stumps with more than five branches were attacked. On spruce stumps, the most frequently encountered Coleoptera were all scolytids, i.e. the species Pityogenes chalcographus, Hylurgops palliatus, and the genera Polygraphus, Dryocoetes, and Trypodendron. On pine stumps, Tomicus piniperda was the most common species. Most of the spruce tops and virtually all pine tops were attacked during the two‐year period, and most of these attacks occurred during the first summer. P. chalcographus, Dryocoetes, and weevils of the genus Pissodes were the most frequent Coleoptera on spruce tops. On pine tops, the dominant insects belonged to the genera Pissodes and Pityogenes.  相似文献   

12.
Two greenhouse experiments were conducted to study intraspecific variation in growth of the root rot fungus Heterobasidion annosum in living host sapwood. In experiment 1, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings were inoculated with H. annosum isolates, 14 each of the S-and P-intersterility groups, collected from various parts of Sweden. In pine, the P-group isolates were more virulent than the S-group isolates both in terms of infection frequency, induced mortality rate (p < 0.05), and fungal growth in sapwood (p < 0.05). In spruce, the P-group isolates were also more virulent on average, but the difference was not statistically significant. Both S and P isolates had a higher infection frequency and a significantly longer sapwood growth on spruce than on pine. The P-group caused higher mortality on pine than on spruce. The length of the lesion in the inner bark was strongly correlated with fungal growth in spruce, but not in pine where the lesions were short or absent. In experiment 2, ten Norway spruce clones were inoculated with 18 S-isolates, originating from nine live-decayed trees and from nine spore-infected stumps in a single Norway spruce stand. The objective was to test whether any selection for growth rate in sapwood was detectable among individuals of H. annosum originating either from stumps or trees. The results gave no support for such selection since no difference in sapwood growth between the two groups of isolates was found.  相似文献   

13.
Carbon (C) sequestration was studied in managed boreal forest stands and in wood products under current and changing climate in Finland. The C flows were simulated with a gap-type forest model interfaced with a wood product model. Sites in the simulations represented medium fertile southern and northern Finland sites, and stands were pure Scots pine and Norway spruce stands or mixtures of silver and pubescent birch.

Changing climate increased C sequestration clearly in northern Finland, but in southern Finland sequestration even decreased. Temperature is currently the major factor limiting tree growth in northern Finland. In southern Finland, the total average C balance over the 150 year period increased slightly in Scots pine stands and wood products, from 0.78 Mg C ha−1 per year to 0.84 Mg C ha−1 per year, while in birch stands and wood products the increase was larger, from 0.64 Mg C ha−1 per year to 0.92 Mg C ha−1 per year. In Norway spruce stands and wood products, the total average balance decreased substantially, from 0.96 Mg C ha−1 per year to 0.32 Mg C ha−1 per year. In northern Finland, the total average C balance of the 150 year period increased under changing climate, regardless of tree species: in Scots pine stands and wood products from 1.10 Mg C ha−1 per year to 1.42 Mg C ha−1 per year, in Norway spruce stands and wood products from 0.69 Mg C ha−1 per year to 0.99 Mg C ha−1 per year, and in birch stands and wood products from 0.43 Mg C ha−1 per year to 0.60 Mg C ha−1 per year.

C sequestration in unmanaged stands was larger than in managed systems, regardless of climate. However, wood products should be included in C sequestration assessments since 12–55% of the total 45–214 Mg C ha−1 after 150 years' simulation was in products, depending on tree species, climate and location. The largest C flow from managed system back into the atmosphere was from litter, 36–47% of the total flow, from vegetation 22–32%, from soil organic matter 25–30%. Emissions from the production process and burning of discarded products were 1–6% of the total flow, and emissions from landfills less than 1%.  相似文献   


14.
In this study, the effect of girdling on the moisture content of small-sized trees for heat energy production was clarified. The moisture content was measured for Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and Downy birch (Betula pubescens) during two growing seasons after girdling. The trees were girdled at breast height for around 30 cm by removing the bark, phloem, and cambium from around the stem. At the beginning of the growing season the mean moisture content of the living Scots pine (P. sylvestris) and Norway spruce (P. abies) was 60%, and for Downy birch (B. pubescens) it was 50%. During the first growing season the effect of girdling on the moisture content was low, but during the second growing season the moisture content decreased significantly. The moisture content of the Norway spruce (P. abies) (23%) and Downy birch (B. pubescens) (33%) was at its lowest point at 14 months after girdling. There were no significant changes in the moisture content of the Scots pine (P. sylvestris) in this study. The results of this study can be used in basic research and in the development of energy wood production.  相似文献   

15.
The biological control agent Rotstop® composed of a suspension of spores of Phlebiopsis gigantea (Fr.) Jül. is widely used for protecting conifer stumps from aerial infection by Heterobasidion species. The efficacy of Rotstop application on Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) stumps was determined in several locations and at different seasons in Latvia. Mean efficacy in controlling natural infection by Heterobasidion spp. in spruce stumps was 64%, calculated on the basis of number of infected stumps, and 89%, calculated on the basis of area of infected wood on sample discs cut from the stumps. Corresponding proportions for pine were 82% and 95%. The results show that Rotstop can be successfully used for stump treatment in Latvia, although improved efficacy is desirable, particularly in spruce. A Latvian isolate of P. gigantea, selected from numerous isolates in preliminary tests, was included in one experiment and was shown to be as effective as the Rotstop isolate. In untreated spruce stumps Heterobasidion spp. and P. gigantea were present in the same stump three times more frequently than in untreated pine stumps. Heterobasidion spp. infection in untreated spruce stumps was low when P. gigantea covered more than 10% of stump dissection.  相似文献   

16.
Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.  相似文献   

17.
From 2001 to 2003, the litter decomposition dynamics of dominant tree species were conducted using a litterbag burying method in the broadleaf-Korean pine forest, spruce-fir forest and Ermans birch forest, which represents three altitudinal belts in Changbai Mountain, northeast China. The spatial and temporal dynamics of litter decomposition and the effects of litter properties were examined. Furthermore, the decomposition trend of different species was simulated by the Olson model, and results showed that annual mass loss rates increased over time, but was not significantly correlated. Leaf decomposition rates increased after decomposing for 638 days (1.75 years), and the order of dry weight remaining rates of leaf litter for different species is: Asian white birch (Betula platyphylla) (24.56%) < Amur linden (Tilia amurensis) (24.81%) < Korean pine (Pinus koraiensis) (38.48%) < spruce (Picea jezoensis var. microsperma) (41.15%) < Ermans birch (Betula ermanii) (41.53%) < fir (Abies nephrolepis) (42.62%). The dry weight remaining rates of twig litter was smaller than that of leaf litter, and followed the order of Amur linden (44.98%) < fir (64.62%) < Korean pine (72.07%) < spruce (73.51%) < Asian white birch (77.37%) < Ermans birch (80.35%). The simulation results by the Olson model showed that, in leaf, the 95%-decomposition rates ranged from 4.5 to 8.0 years, and annual decomposition rate (k) followed the order of Amur linden (0.686) > Asian white birch (0.624) > Korean pine (0.441) > spruce (0.406) > fir (0.397) > Ermans birch (0.385); in twig, it ranged from 7.8 to 29.3 years, and k follows the order: Amur linden (0.391) > fir (0.204) > Korean pine (0.176) > spruce (0.157) > Asian white birch (0.148) > Ermans birch (0.102). In general, the differences of decomposition rate are evident between leaf and twig litter and among species, and were higher in broad-leaved species compared with coniferous species at the same elevation, and decreased with the ascending of elevation. __________ Translated from Acta Ecologica Sinica, 2006, 26(4): 1,037–1,046 [译自: 生态学报]  相似文献   

18.

Mean age, mean and top heights and yield were studied in 20 mixed stands of birch ( Betula pubescens Ehrh. and B. pendula Roth) and Picea abies (L.) Karst. and nine mixed stands of birch and Pinus sylvestris L. in south-eastern Norway. Each mixed stand and the adjacent pure coniferous stand (control) were growing under the same site conditions and had not been commercially thinned. There were no significant differences in mean age at breast height or in top heights between birch and conifers in the mixed stands, while mean height was significantly higher for birch than for spruce. A growth index was calculated based on total volume and age at breast height. For the spruce sites the growth in young mixed stands (birch < 17 m) was superior to that of pure spruce, while the difference was insignificant in older stands. The growth index correlated positively with the ratio between generatively and vegetatively regenerated birch trees, and negatively with the age of the oldest species in the mixture and with site quality. For the pine sites there was no significant difference in the growth index between mixed birch-pine and pure pine stands. A mixture effect of birch on the volume yield of spruce or pine could not be demonstrated.  相似文献   

19.

New silvicultural regimes with high within-stand competition require new functions for estimation of standing stock and growth of biomass components, since the allometry of trees is changed by light competition. This paper presents functions for estimation of the aboveground biomass dry weights for stem wood, stem bark, branches and leaves of young (diameter at breast height <10 cm) Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and birch (Betula pendula Roth. and Betula pubescens Ehrh.) trees growing in dense mixed stands. The functions were derived from a sample consisting of 84 Scots pine, 43 Norway spruce and 66 birch trees from six stands in northern Sweden with high stand densities (>10000 st ha-1). The logarithmically transformed power function displayed a good ability to stabilize the variance of dry weights and showed a good fit to the material (0.37< R 2 <0.99). A comparison with the most commonly used biomass functions in Sweden today showed that they overestimated the weight of stem wood and branches, while the weight of foliage was underestimated. The nature of these discrepancies suggested that the precision of biomass estimations might also be improved for young trees at wider spacing.  相似文献   

20.
The profitability of growing a naturally emerged birch (Betula pendula Roth or Betula pubescens Ehrh.) overstory in a young Norway spruce (Picea abies (L.) Karst.) plantation was examined with empirical stand structure, growth and yield, logging cost, and logging damage models. In the projected alternatives, an overstory of either birch species was thinned to 200–1000 stems per ha at the age of 15 years and retained for another 15 years. Development of the remaining spruce stand was simulated up to rotation age (70–85 years). Alternative treatments included removing the overstory completely at 15 years, and managing a pure spruce stand that was kept free of birch throughout.

Growing a birch overstory of 200–1000 stems per ha up to age 30 years resulted in a 61–93 m3 ha−1 or 9.1–16.8% yield loss for the spruce stand due to growth retardation, and a mortality of 382–498 out of 1900 stems per ha through logging damage. This was compensated for or exceeded by the additional yield of the birch (54–173 m3 ha−1) except for the lowest stocking (200–400 stems per ha) alternatives with B. pubescens. Treatment regimes with a birch overstory were clearly the most profitable alternatives, yielding up to 151% (B. pendula) and 113% (B. pubescens) of the net present value of the pure spruce alternative, at 4% interest rate. Removing the birch overstory already at 15 years was the least profitable alternative with 79 and 83% net present values, respectively. The most profitable treatment with current technology, price, and cost structure appears to be to grow 500–800 birch per ha up to about age 40 years for B. pendula and 45–50 years for B. pubescens.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号