首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate the sedative, analgesic, and cardiorespiratory effects of intramascular (IM) romifidine in cats. STUDY DESIGN: Prospective, randomized experimental trial. ANIMALS: Ten healthy adult cats. METHODS: Romifidine (100, 200, and 400 microg kg(-1)) or xylazine (1 mg kg(-1)) was given IM in a cross-over study design. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), hemoglobin saturation, oscillometric arterial pressure, and scores for sedation, muscle relaxation, position, auditory response, and analgesia were determined before and after drug administration. Time to recumbency, duration of recumbency, and time to recover from sedation were determined. Subjective evaluation and cardiorespiratory variables were recorded before and at regular intervals for 60 minutes after drug administration. RESULTS: Bradycardia developed in all cats that were given romifidine or xylazine. No other significant differences in physiologic parameters were observed from baseline values or between treatments. Increasing the dose of romifidine did not result in increased sedation or muscle relaxation. Cats given xylazine showed higher sedation and muscle relaxation scores over time. Analgesia scores were significantly higher after administration of romifidine (400 microg kg(-1)) and xylazine (1 mg kg(-1)) than after romifidine at 100 or 200 microg kg(-1). Duration of lateral recumbency was not significantly different between treatments; however, cats took longer to recover after administration of 400 micro g kg(-1) romifidine. CONCLUSIONS AND CLINICAL RELEVANCE: Bradycardia is the most important adverse effect after IM administration of romifidine at doses ranging from 100 to 400 microg kg(-1) or 1 mg kg(-1) of xylazine in cats. The sedative effects of romifidine at 200 microg kg(-1) are comparable to those of 1 mg kg(-1) of xylazine, although muscle relaxation and analgesia were significantly less with romifidine than with xylazine.  相似文献   

2.
OBJECTIVE: To evaluate sedative effects of IM administration of a low dose of romifidine in dogs. ANIMALS: 13 healthy adult Beagles. PROCEDURE: Physiologic saline solution (0.2 ml), 0.1 % romifidine (10, 20, or 40 microg/kg), or 10% xylazine (1 mg/kg) was given IM in a crossover study design. Heart rate, respiratory rate, rectal temperature, hemoglobin saturation, and scores for sedation, muscle relaxation, posture, auditory response, and positioning response were recorded before and at regular intervals for up to 240 minutes after drug administration. RESULTS: Scores for sedation, muscle relaxation, posture, auditory response, and positioning response increased in a dose-dependent manner after romifidine administration. Sedation induced by the highest dose of romifidine (40 microg/kg) was comparable to that induced by xylazine (1 mg/kg). Heart rate, respiratory rate, and rectal temperature decreased in a dose-dependent manner after romifidine administration, but hemoglobin saturation did not change. CONCLUSIONS AND CLINICAL IMPLICATIONS: Romifidine (10, 20, or 40 microg/kg, IM) is an effective sedative in dogs, but causes a decrease in heart rate, respiratory rate, and rectal temperature.  相似文献   

3.
ObjectiveTo evaluate and compare the antinociceptive effects of the three alpha-2 agonists, detomidine, romifidine and xylazine at doses considered equipotent for sedation, using the nociceptive withdrawal reflex (NWR) and temporal summation model in standing horses.Study designProspective, blinded, randomized cross-over study.AnimalsTen healthy adult horses weighing 527–645 kg and aged 11–21 years old.MethodsElectrical stimulation was applied to the digital nerves to evoke NWR and temporal summation in the left thoracic limb and pelvic limb of each horse. Electromyographic reflex activity was recorded from the common digital extensor and the cranial tibial muscles. After baseline measurements a single bolus dose of detomidine, 0.02 mg kg?1, romifidine 0.08 mg kg?1, or xylazine, 1 mg kg?1, was administered intravenously (IV). Determinations of NWR and temporal summation thresholds were repeated at 10, 20, 30, 40, 60, 70, 90, 100, 120 and 130 minutes after test-drug administration alternating the thoracic limb and the pelvic limb. Depth of sedation was assessed before measurements at each time point. Behavioural reaction was observed and recorded following each stimulation.ResultsThe administration of detomidine, romifidine and xylazine significantly increased the current intensities necessary to evoke NWR and temporal summation in thoracic limbs and pelvic limbs of all horses compared with baseline. Xylazine increased NWR thresholds over baseline values for 60 minutes, while detomidine and romifidine increased NWR thresholds over baseline for 100 and 120 minutes, respectively. Temporal summation thresholds were significantly increased for 40, 70 and 130 minutes after xylazine, detomidine and romifidine, respectively.Conclusions and clinical relevanceDetomidine, romifidine and xylazine, administered IV at doses considered equipotent for sedation, significantly increased NWR and temporal summation thresholds, used as a measure of antinociceptive activity. The extent of maximal increase of NWR and temporal summation thresholds was comparable, while the duration of action was drug-specific.  相似文献   

4.
ObjectiveTo compare xylazine and romifidine constant rate infusion (CRI) protocols regarding degree of sedation, and effects on postural instability (PI), ataxia during motion (A) and reaction to different stimuli.Study designBlinded randomized experimental cross-over study.AnimalsTen adult horses.MethodsDegree of sedation was assessed by head height above ground (HHAG). Effects on PI, A and reaction to visual, tactile and acoustic stimulation were assessed by numerical rating scale (NRS) and by visual analogue scale (VAS). After baseline measurements, horses were sedated by intravenous loading doses of xylazine (1 mg kg?1) or romifidine (80 μg kg?1) administered over 3 minutes, immediately followed by a CRI of xylazine (0.69 mg kg?1 hour?1) or romifidine (30 μg kg?1 hour?1) which was administered for 120 minutes. Degree of sedation, PI, A and reaction to the different stimuli were measured at different time points before, during and for one hour after discontinuing drug administration. Data were analysed using two-way repeated measures anova, a Generalized Linear Model and a Wilcoxon Signed Rank Test (p < 0.05).ResultsSignificant changes over time were seen for all variables. With xylazine HHAG was significantly lower 10 minutes after the loading dose, and higher at 150 and 180 minutes (i.e. after CRI cessation) compared to romifidine. Reaction to acoustic stimulation was significantly more pronounced with xylazine. Reaction to visual stimulation was greater with xylazine at 145 and 175 minutes. PI was consistently but not significantly greater with xylazine during the first 30 minutes. Reaction to touch and A did not differ between treatments. Compared to romifidine, horses were more responsive to metallic noise with xylazine.ConclusionsTime to maximal sedation and to recovery were longer with romifidine than with xylazine.Clinical relevanceWith romifidine sufficient time should be allowed for complete sedation before manipulation.  相似文献   

5.
ObjectiveTo evaluate the clinical effectiveness and the sedative and analgesic effects of intravenous (IV) romifidine in camels.Study designRandomized prospective study.AnimalsEighteen healthy adult Dromedary camels.MethodsRomifidine was administered IV to camels (n = 6) at three different doses (40, 80 or 120 μg kg?1). Time of onset, degree and duration of sedation and analgesia were recorded immediately after drug administration. Heart rate, respiratory rate, ruminal contractions, muscle relaxation, response to auditory and tactile stimulation, distance between ears, distance from lower lip to the ground, and degree of ataxia were also recorded pre-administration and at 5, 15, 30, 45, 60, 90, 120 and 180 minutes post-administration. Plasma glucose, blood urea nitrogen and creatinine were measured.ResultsRomifidine produced dose dependent sedation and analgesia. Significant decreases in heart rate (p < 0.001), ruminal contractions (p < 0.05), distance from lower lip to the ground (p < 0.001), response to auditory and tactile stimuli (p < 0.01), and significant increases in the degree of ataxia (p < 0.01), distance between the ear tips (p < 0.001) and blood glucose (p < 0.01) concentration were recorded after administration of romifidine until recovery. However, no significant changes in rectal temperature and respiratory rate were recorded.Conclusions and clinical relevanceIntravenous administration of romifidine at three different doses appeared to be an effective sedative and analgesic agent for camels. Bradycardia, ruminal atony, and hyperglycemia were the most important adverse effects after IV administration of romifidine. The IV administration of romifidine at a dose rate of 120 μg kg?1 caused profound sedation and analgesia. Romifidine could be used for chemical restraint for a variety of diagnostic and minor surgical procedures in camels.  相似文献   

6.
ObjectiveTo evaluate the effect of a romifidine infusion on antinociception and sedation, and to investigate its relationship with plasma concentration.Study designProspective, experimental, nonrandomized trial.AnimalsA total of 10 healthy adult warmblood horses.MethodsRomifidine (loading dose: 0.08 mg kg–1, infusion: 0.03 mg kg–1 hour–1) was administered intravenously over 120 minutes. Romifidine plasma concentrations were determined by capillary electrophoresis. Sedation quality and nociceptive thresholds were evaluated at regular time points before, during and after romifidine administration. The nociceptive withdrawal reflex was elicited by electrical stimulation at the thoracic limb using a dedicated threshold tracking algorithm and recorded by electromyography at the deltoid muscle. A pharmacokinetic–pharmacodynamic model was established and correlation between romifidine plasma concentration and main output variables tested.ResultsA two compartmental model best described the romifidine pharmacokinetic profile. The nociceptive thresholds increased compared with baseline in all horses from 10 to 146 minutes after romifidine administration (p < 0.001). Peak effect reached 5.7 ± 2.3 times the baseline threshold (mean ± standard deviation). The effect/concentration relationship followed a counter-clockwise hysteresis loop. The mean plasma concentration was weakly correlated to nociceptive thresholds (p < 0.0071, r = 0.392). The sedative effects were significant until 160 minutes but variable, not correlated to plasma concentration (p = 0.067), and weakly correlated to nociceptive thresholds (p < 0.0001, r = 0.33).Conclusions and clinical relevanceRomifidine elicited a marked antinociceptive effect. Romifidine-induced antinociception appeared with a delayed onset and lasted longer than sedation after discontinuing its administration.  相似文献   

7.
OBJECTIVE: To investigate the action of a single IV administration of romifidine on the thresholds of the nociceptive withdrawal reflex (NWR) and temporal summation in conscious horses. ANIMALS: 10 adult horses. PROCEDURE: Single electrical stimulations were applied on the digital nerves to evoke NWR from the left forelimb and hind limb. Repeated electrical stimulations (10 stimuli, 5 Hz) were given to obtain temporal summation. Surface electromyographic reflex activity was recorded from the common digital extensor and cranial tibial muscles. After baseline assessment of NWR and temporal summation thresholds, romifidine (80 microg x kg(-1), IV) was administered. Successive determinations of NWR and temporal summation thresholds were performed 5, 25, and 55 minutes after administration. RESULTS: Romifidine significantly increased the current intensities necessary to evoke NWR and temporal summation in forelimbs and hind limbs of horses. Values were significantly higher than baseline values 55 minutes after romifidine administration. After administration of romifidine, a facilitation of reflex components of tactile origin was observed when repeated stimulations were applied. CONCLUSIONS AND CLINICAL RELEVANCE: Results confirm antinociceptive activity of romifidine and may represent an objective demonstration of the well-known hypersensitivity to tactile stimuli observed in horses receiving alpha2-adrenoreceptor agonists in clinical practice. Romifidine can be included in analgesic and anesthetic protocols to provide additional analgesia in horses.  相似文献   

8.
OBJECTIVE: To determine sedative and cardiorespiratory effects of romifidine alone and romifidine in combination with butorphanol and effects of preemptive atropine administration in cats sedated with romifidine-butorphanol. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given saline (0.9% NaCl) solution followed by romifidine alone (100 microg/kg [45.4 microg/lb], i.m.), saline solution followed by a combination of romifidine (40 microg/kg [18.1 microg/lb], i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or atropine (0.04 mg/kg [0.02 mg/lb], s.c.) followed by romifidine (40 microg/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were determined before and after drug administration. Time to recumbency, duration of recumbency, time to recover from sedation, and subjective evaluation of sedation, muscle relaxation, and analgesia were assessed. RESULTS: Bradycardia developed in all cats that received saline solution and romifidine-butorphanol or romifidine alone. Preemptive administration of atropine prevented bradycardia for 50 minutes in cats given romifidine-butorphanol. Oxyhemoglobin saturation was significantly decreased 10 minutes after romifidine-butorphanol administration in atropine-treated cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that administration of romifidine alone or romifidine-butorphanol causes a significant decrease in heart rate and that preemptive administration of atropine in cats sedated with romifidine-butorphanol effectively prevents bradycardia for 50 minutes.  相似文献   

9.
The behavioural and sedative effects of intravenous (iv) romifidine (40 and 80 μg/kg bodyweight [bwt]) alone or in combination with iv butorphanol (50 μg/kg bwt) were investigated in four ponies and one Thoroughbred horse. Apparent sedation, as judged by the lowering of the head, and by the response to imposed touch, visual and sound stimuli was assessed. The combination with butorphanol reduced the animals' response to imposed stimuli when compared with the effect of the same dose of romifidine alone. Following the administration of romifidine/butorphanol combinations muzzle tremor was noted and some animals attempted to walk forward. In a separate series, the cardiopulmonary effects of iv romifidine (80 μg/kg bwt) alone, or in combination with butorphanol (50 μg/kg bwt) were investigated. Romifidine and the romifidine/butorphanol combination caused similar cardiovascular changes, these being bradycardia with heart block, and hypertension followed by hypotension. Romifidine caused a transient decrease in arterial oxygen tensions and arterial carbon dioxide tensions had increased significantly by the end of the 90 min recording period. Romifidine/butorphanol combinations produced significantly higher arterial carbon dioxide tensions during the first 15 mins after drug administration than did romifidine alone. Butorphanol at 50 μg/kg bwt iv reduced the response to imposed stimuli in horses sedated with romifidine. The combination produced no cardiovascular changes beyond those induced by romifidine alone, but did increase the degree of respiratory depression.  相似文献   

10.
The objective of this study was to determine the sedation, analgesia, and clinical reactions induced by an intravenous combination of romifidine and butorphanol in horses. The study was conducted on six saddle horses weighing 382 to 513 kg (mean ± SD; 449 ± 54 kg) and aged 6 to 14 years. The horses each underwent three treatments: intravenous romifidine 0.1 mg/kg body weight (RM; mean dose, 4.5 mL); intravenous butorphanol 0.05 mg/kg body weight (BT; mean dose, 2.4 mL); and intravenous romifidine 0.1 mg/kg body weight plus butorphanol 0.05 mg/kg body weight (RMBT; mean dose, 7.0 mL). The order of treatments was randomized. Heart rate, arterial pressure, respiratory rate, rectal temperature, sedation, and analgesia were measured at two times before treatments, 15 minutes apart (times –15 and 0) and at 5, 10, 15, 30, 45, 60, 75, 90, 120, 150, and 180 minutes after drug administration. The onset of sedation was approximately 5 minutes after intravenous injection of RM and RMBT, whereas BT did not present this effect. The duration of complete sedation was approximately 60 minutes for RMBT and approximately 35 minutes for RM. The RMBT treatment provided 30 minutes and the RM treatment 20 minutes of complete analgesia. Heart rate decreased significantly (P < .05) from basal values in the RM and RMBT treatments. Only RM caused significant decreases (P < .05) in the respiratory rate. Arterial pressure did not change significantly (P > .05) in any treatment. Intravenous administration of a romifidine−butorphanol combination to horses resulted in longer duration of sedation and analgesia than administration of romifidine or butorphanol alone. These effects probably resulted from a synergistic effect of the two drugs.  相似文献   

11.
Romifidine (STH 2130-Cl or Sedivet) is an 2-agonistic imino-imidazol sedative for intravenous use in horses recently developed by Boehringer Ingelheim, Vetmedica GmbH. An exploratory study was done in nine warm-blood horses, randomly divided into three groups, which received different dosages of romifidine (0.04, 0.08 and 0.12 mg/kg of body weight (BWT) intravenously (i.v.)) with at least one week's interval between tests.Romifidine induced a marked bradycardia accompanied by second degree atrioventricular (AV) block and some sinus blocks at all tested dosages. A placebo (NaCl 0.9% i.v.) given 5 min before and after romifidine did not affect the cardiac disturbances induced by romifidine.A low dose of atropine sulphate (0.005 mg/kg of BWT i.v.) given 5 min before romidifine counteracted the bradycardia and caused a normal to increased heart rhythm at all romifidine dosages. A higher dose of atropine sulphate (0.01 mg/kg of BWT i.v.) administered 5 min before sedation induced a tachycardia (average 70 beats/min) at all romifidine dosages and completely prevented the bradycardia and the heart blocks. The positive chronotrope effects of atropine sulphate were attenuated by increasing doses of romifidine.The effects of atropine sulphate (low or high doses) given 5 min after romifidine only appeared after 5 min. Both dosages counteracted the bradycardia and suppressed the heart blocks.No atropine-dependent side effects were observed in non-fasted horses. The degree of the romifidine induced sedation was not affected by the use of atropine sulphate given before or after romifidine.  相似文献   

12.
OBJECTIVE: To compare detomidine hydrochloride and romifidine as premedicants in horses undergoing elective surgery. ANIMALS: 100 client-owned horses. PROCEDURE: After administration of acepromazine (0.03 mg/kg, IV), 50 horses received detomidine hydrochloride (0.02 mg/kg of body weight, IV) and 50 received romifidine (0.1 mg/kg, IV) before induction and maintenance of anesthesia with ketamine hydrochloride (2 mg/kg) and halothane, respectively. Arterial blood pressure and blood gases, ECG, and heart and respiratory rates were recorded. Induction and recovery were timed and graded. RESULTS: Mean (+/- SD) duration of anesthesia for all horses was 104 +/- 28 minutes. Significant differences in induction and recovery times or grades were not detected between groups. Mean arterial blood pressure (MABP) decreased in both groups 30 minutes after induction, compared with values at 10 minutes. From 40 to 70 minutes after induction, MABP was significantly higher in detomidine-treated horses, compared with romifidine-treated horses, although more romifidine-treated horses received dobutamine infusions. In all horses, mean respiratory rate ranged from 9 to 11 breaths/min, PaO2 from 200 to 300 mm Hg, PaCO2 from 59 to 67 mm Hg, arterial pH from 7.33 to 7.29, and heart rate from 30 to 33 beats/min, with no significant differences between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Detomidine and romifidine were both satisfactory premedicants. Romifidine led to more severe hypotension than detomidine, despite administration of dobutamine to more romifidine-treated horses. Both detomidine and romifidine are acceptable alpha2-adrenoceptor agonists for use as premedicants before general anesthesia in horses; however, detomidine may be preferable when maintenance of blood pressure is particularly important.  相似文献   

13.
The sedative effects of a new alpha 2-adrenoceptor agonist, romifidine, were compared with those of xylazine and detomidine. Five horses were treated with two doses of romifidine (40 micrograms/kg body weight and 80 micrograms/kg body weight), two doses of detomidine (10 micrograms/kg body weight and 20 micrograms/kg body weight) and one dose of xylazine (1 mg/kg body weight) given by intravenous injection using a Latin-square design. The dose of 80 micrograms/kg romifidine appeared equipotent to 1 mg/kg xylazine and 20 micrograms/kg detomidine, although at these doses both xylazine and detomidine had a shorter action. Detomidine 20 micrograms/kg and xylazine both produced greater lowering of the head and a greater degree of ataxia than romifidine at either dose. Romifidine produced sedation similar to that of the other drug regimes. The effect upon imposed stimuli was similar.  相似文献   

14.
Effect of romifidine and romifidine-butorphanol for sedation in dogs   总被引:1,自引:0,他引:1  
The sedative and physiological effects of intravenous romifidine at 120 μg/kg were compared with intravenous romifidine (120 μg/kg) followed immediately by intravenous butorphanol (01 mg/kg) in 18 clinically normal adult beagles in a blinded randomised change-over study. Following the injection of romifidine alone the dogs became recumbent and there was an increase in a subjective score awarded to the degree of sedation. Heart rate and respiratory rate decreased and minor bradyarrhythmias were noted. The romifidine-butorphanol combination produced a significant decrease in the time to the onset of sedation and increase in the sedative effect and duration of action compared with romifidine alone. With the exception of a further decrease in heart rate and respiratory rate, there were no additional side effects following the use of the romifidine-butorphanol combination. The marked sedative effect associated with this combination would appear to be useful in the clinical situation where an increased degree of sedation is required.  相似文献   

15.
The effects of two intravenous doses of romifidine (80 and 120 microg/kg) and one dose of detomidine (20 microg/kg) were compared in a blinded study in 30 horses requiring to be sedated for routine dental treatment. Several physiological parameters were assessed before and for two hours after the administration of the drugs, and the horses' teeth were rasped 30 minutes after they were administered. Romifidine produced a dose-dependent effect on most parameters. Detomidine at 20 microg/kg was similar to romifidine at 120 microg/kg in the magnitude of its sedative effects, but was similar to romifidine at 80 pg/kg in its duration. There were no significant differences between the three treatments in terms of the clinical procedure score.  相似文献   

16.
ObjectiveTo compare the sedative effects of three doses of romifidine with one dose of medetomidine.Study designProspective blinded experimental cross-over.AnimalsFive adult Domestic Short Hair cats.MethodsCats were administered romifidine at 80, 120 and 160 μg kg?1 or medetomidine at 20 μg kg?1 (M20) intramuscularly (IM). Sedative effects were assessed for 3 hours by summing the scores given to posture, auditory response, resistance to positioning, muscular relaxation, and response to noxious stimuli, giving a total sedation score (TS). The area under the curve (AUC) of TS ≥7 (the score considered as clinically useful sedation) was calculated. Times to stages of sedation were determined. Some physiological parameters were measured. Data to compare treatments were analysed by anova or Kruskal–Wallis test as relevant.ResultsAll treatments gave a TS considered clinically useful. There were no significant differences between treatments for times to onset of sedation, maximum TS reached, or AUC. Differences between romifidine treatments for other sedation parameters were not significant but the time to maximum TS and to recovery was shortest in M20. Heart rate (HR) fell significantly with all treatments and, although with M20 it recovered at 65 minutes, it remained significantly depressed for 3 hours after all romifidine treatments. Most cats vomited, and/or hypersalivated after all treatments.ConclusionsDoses of 80, 120 and 160 μg kg?1 romifidine IM produce sedation in cats which is similar to that following medetomidine 20 μg kg?1. Recovery from sedation and of physiological parameters was quickest after M20.Clinical relevanceDoses of romifidine considerably lower than those investigated by previous authors give a clinically useful level of sedation, and their use might result in less side effects and a quicker recovery.  相似文献   

17.
OBJECTIVE: To study pulmonary gas exchange and cardiovascular responses to sedation achieved with romifidine and butorphanol (RB) alone, or combined with acepromazine, and during subsequent tiletamine-zolazepam anaesthesia in horses. ANIMALS: Six (four males and two females) healthy Standardbred trotters aged 3-12 years; mass 423-520 kg. STUDY DESIGN: Randomized, cross-over, experimental study. MATERIALS AND METHODS: Horses were anaesthetized on two occasions (with a minimum interval of 1 week) with intravenous (IV) tiletamine-zolazepam (Z; 1.4 mg kg(-1)) after pre-anaesthetic medication with IV romifidine (R; 0.1 mg kg(-1)) and butorphanol (B; 25 microg kg(-1) IV). At the first trial, horses were randomly allocated to receive (protocol ARBZ) or not to receive (protocol RBZ) acepromazine (A; 35 microg kg(-1)) intramuscularly (IM) 35 minutes before induction of anaesthesia. Each horse was placed in left lateral recumbency and, after tracheal intubation, allowed to breathe room air spontaneously. Respiratory and haemodynamic variables and ventilation-perfusion (; multiple inert gas elimination technique) ratios were determined in the conscious horse, after sedation and during anaesthesia. One- and two-way repeated-measures anova were used to identify within- and between-technique differences, respectively. RESULTS: During sedation with RB, arterial oxygen tension (PaO(2)) decreased compared to baseline and increased mismatch was evident; there was no O(2) diffusion limitation or increase in intrapulmonary shunt fraction identified. With ARB, PaO(2) and remained unaffected. During anaesthesia, intrapulmonary shunt occurred to the same extent in both protocols, and mismatching increased. This was less in the ARBZ group. Arterial O(2) tension decreased in both protocols, but was lower at 25 and 35 minutes of anaesthesia in RBZ than in ARBZ. During sedation, heart rate (HR) and cardiac output (Qt) were lower while arterial-mixed venous oxygen content differences and haemoglobin concentrations were higher in RBZ compared with ARBZ. Total systemic vascular resistance, mean systemic, and mean pulmonary arterial pressures were higher during anaesthesia with RBZ compared to ARBZ. CONCLUSIONS AND CLINICAL RELEVANCE: Acepromazine added to RB generally improved haemodynamic variables and arterial oxygenation during sedation and anaesthesia. Arterial oxygenation was impaired as a result of increased shunt and mismatch during anaesthesia, although acepromazine treatment reduced disturbances and falls in PaO(2) to some extent. Haemodynamic variables were closer to baseline during sedation and anaesthesia when horses received acepromazine. Acepromazine may confer advantages in healthy normovolaemic horses.  相似文献   

18.
OBJECTIVE: To determine the cardiopulmonary and sedative effects of medetomidine hydrochloride in adult horses and to compare those effects with effects of an equipotent dose of xylazine hydrochloride. ANIMALS: 10 healthy adult female horses. PROCEDURE: 5 horses were given medetomidine (4 microg/kg of body weight, i.v.), and the other 5 were given xylazine (0.4 mg/kg, i.v.). Heart rate, respiratory rate, arterial blood pressures, pulmonary arterial blood pressures, and cardiac output were recorded, and sedation and ataxia scores were assigned before and every 5 minutes after drug administration for 60 minutes. Rectal temperature and blood gas partial pressures were measured every 15 minutes after drug administration. RESULTS: Arterial blood pressure was significantly decreased throughout the study among horses given medetomidine and was significantly decreased for 40 minutes among horses given xylazine. Compared with baseline values, cardiac output was significantly decreased 10, 20, and 40 minutes after administration of medetomidine and significantly increased 40 and 60 minutes after administration of xylazine. Despite the significant decrease in respiratory rate in both groups, results of blood gas analyses were not significantly changed over time. Ataxia and sedation scores were of similar magnitude for the 2 groups, but ataxia persisted slightly longer among horses given medetomidine. Horses resumed eating hay 10 to 55 minutes after drug administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that equipotent low doses of medetomidine and xylazine induce comparable levels of ataxia and sedation and similar cardiopulmonary changes in adult horses.  相似文献   

19.
OBJECTIVE: To evaluate the effect of intratesticular administration of lidocaine on cardiovascular responses and cremaster muscle tension during castration of isoflurane-anesthetized stallions. ANIMALS: 28 healthy stallions (mean +/- SD age, 4.2 +/- 2.8 years) with no testicular abnormalities that were scheduled for castration. PROCEDURE: Each horse was given acepromazine (20 microg/kg, IM), romifidine (50 microg/kg, IV), and butorphanol (20 microg/kg, IV). Anesthesia was induced with ketamine (2.5 mg/kg, IV) and midazolam (50 microg/kg, IV) and maintained with isoflurane (1.7% end-tidal concentration). After 10 minutes at a stable anesthetic plane, a needle was placed in each testicle and either no fluid or 15 mL of 2% lidocaine was injected; 10 minutes after needle placement, surgery was commenced. Pulse rate and arterial blood pressures were measured invasively at intervals from 5 minutes prior to castration (baseline) until 5 minutes after the left spermatic cord was clamped. The surgeon subjectively scored the degree of cremaster muscle tension. In 2 horses, lidocaine labeled with radioactive carbon (C(14)) was used and testicular autoradiograms were obtained. RESULTS: Compared with baseline values, castration significantly increased blood pressure measurements; intratesticular injection of lidocaine decreased this blood pressure response and cremaster muscle tension. In 2 horses, autoradiography revealed diffuse distribution of lidocaine into the spermatic cord but poor distribution into the cremaster muscle. CONCLUSIONS AND CLINICAL RELEVANCE: In isoflurane-anesthetized stallions, intratesticular injection of lidocaine prior to castration appeared to decrease intraoperative blood pressure responses and cremaster muscle tension and may be a beneficial supplement to isoflurane anesthesia.  相似文献   

20.
OBJECTIVE: To evaluate by echo- and electrocardiography the cardiac effects of sedation with detomidine hydrochloride, romifidine hydrochloride or acepromazine maleate in horses. STUDY DESIGN: An experimental study using a cross-over design without randomization. ANIMALS: Eight clinically normal Standardbred trotters. MATERIALS AND METHODS: Echocardiographic examinations (two-dimensional, guided M-mode and colour Doppler) were recorded on five different days. Heart rate (HR) and standard limb lead electrocardiograms were also obtained. Subsequently, horses were sedated with detomidine (0.01 mg kg(-1)), romifidine (0.04 mg kg(-1)) or acepromazine (0.1 mg kg(-1)) administered intravenously and all examinations repeated. RESULTS: Heart rate before treatment with the three drugs did not differ significantly (p = 0.98). Both detomidine and romifidine induced a significant decrease (p < 0.001) in HR during the first 25 minutes after sedation; while acepromazine had a varying effect on HR. For detomidine, there was a significant increase in LVIDd (left ventricular internal diameter in diastole; p = 0.034) and LVIDs (left ventricular internal diameter in systole; p < 0.001). In addition, a significant decrease was found in IVSs (the interventricular septum in systole; p < 0.001), LVFWs (the left ventricular free wall in systole; p = 0.002) and FS% (fractional shortening; p < 0.001). The frequency of pulmonary regurgitation was increased significantly (p < 0.001). Romifidine induced a significant increase in LVIDs (p < 0.001) and a significant decrease in IVSs (p < 0.001) and FS% (p = 0.002). Acepromazine had no significant effect upon any of the measured values. CONCLUSIONS: and clinical relevance The results indicate that sedation of horses with detomidine and to a lesser extent romifidine at the doses given in this study has a significant effect on heart function, echocardiographic measurements of heart dimensions and the occurrence of valvular regurgitation. Although the clinical significance of these results may be minimal, the potential effects of sedative drugs should be taken into account when echocardiographic variables are interpreted in clinical cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号