首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The 2006 reauthorisation of the Magnuson‐Stevens Fishery Conservation and Management Act requires annual catch limits for all target and non‐target species within federally managed fisheries in the United States. In Alaska, both target and non‐target species in the Alaska groundfish fisheries have been managed using catch limits since the early 1990s. Non‐target species that are caught incidentally in a fishery require monitoring to ensure that the population is not negatively impacted by commercial fishing. Resource assessment scientists have been challenged with obtaining sufficient data to recommend an acceptable catch level for management of these species. This paper reviews three case studies where a catch limit is determined for non‐target species when certain data are limited: (1) varying levels of biomass and catch data for all species within a species group or complex; (2) adequate catch data but no biomass data; (3) emerging target fishery of data‐poor species, plus an example of how a complex of ecosystem component species is managed.  相似文献   

2.
It is important to consider the potential effectiveness of regulations for reducing total harvest levels when developing fishery management plans. A random forest (RF) modelling approach was used to examine how changing per‐angler harvest or minimum size limit regulations affected sport fishery harvest in US Atlantic coast recreational fisheries. Harvest limits per angler (i.e. bag limits) were typically high initially and subsequently reduced, whereas almost half of minimum length limits were initially below the length‐at‐maturity and subsequently increased. Across most fisheries examined, extreme reductions in harvest limits (e.g. from unlimited to catch‐and‐release) were largely ineffective at limiting total fishery harvest. Increasingly restrictive minimum length limits caused a greater average harvest reduction than per‐angler harvest limits. Some regulation changes were associated with higher angling effort and thus increased harvest, which suggests that when effort cannot be constrained, more direct harvest limitations should be considered.  相似文献   

3.
Guidelines for the assessment and management of developing swordfish fisheries are derived through an examination of five swordfish fisheries. As they develop, swordfish fisheries may be inclined to local depletion around underwater features, such as seamounts and banks. Few nations have applied the precautionary approach in managing their developing swordfish fisheries. Without controls, swordfish fisheries expand geographically and fishing effort increases, often overshooting optimum levels. However, it is difficult to distinguish clear evidence of fishery collapse; modern longliners harvest widely distributed tuna and swordfish and they are able to relocate to distant areas or switch between target species in response to fluctuations in species abundance and price. Furthermore, the wide distribution of swordfish combined with year‐round spawning and high growth rates amongst juveniles probably contribute to the apparent resilience of swordfish stocks to intensive harvesting. Over half the world’s swordfish catch is taken as an incidental catch of longliners fishing for tuna. In several areas, such as the North Atlantic, catch quotas have sometimes caused tuna longline fishers to discard swordfish. Minimum size limits have also resulted in discarding of swordfish in tuna fisheries and in dedicated swordfish fisheries. In addition to weakening the effectiveness of those management measures, bycatch and discarding add to the complexities of managing swordfish fisheries and to uncertainties in assessing the stocks. Longliners that target swordfish often fish at high latitudes where interactions with marine wildlife, such as seabird, are generally more frequent than at low latitudes. Concern over incidental catches of marine wildlife and other species is becoming a driving force in the management of several swordfish fisheries. Fishery management organisations will need to implement management measures to protect non‐target species and gather reliable data and information on the situation by placing observers on boats fishing for swordfish.  相似文献   

4.
The precautionary approach to fisheries management advocates for risk-averse management strategies that include biological reference points and account for scientific uncertainty (i.e. process, model and observation uncertainty). In this regard, two approaches have been recommended: (a) biomass reference points to safeguard against low stock biomass, and (b) uncertainty buffers that reduce the catch limit as a function of the scientific uncertainty. This study compares the effectiveness of these two precautionary approaches in recovering over-exploited fish stocks. We evaluate the performance of more than 80 harvest control rules (HCRs) within a stochastic management strategy evaluation (MSE) framework for three stocks with contrasting life-history parameters and under various levels of scientific uncertainty. The results show that both approaches reduce the risk of overfishing at the expense of expected yield. This risk-yield trade-off strongly depends on the HCRs, life-history parameters of the species, as well as the level of the scientific uncertainty. Nevertheless, some combinations of biomass threshold and limit reference points as well as uncertainty buffers lead to a more favourable risk-yield trade-off than other rules. This study elucidates the multiple factors affecting the effectiveness of management strategies and highlights key features of HCRs for precautionary fisheries management.  相似文献   

5.
Managing fisheries using length‐based harvest regulations is common, but such policies often create trade‐offs among conservation (e.g. maintaining natural age‐structure or spawning stock biomass) and fishery objectives (e.g. maximizing yield or harvest numbers). By focusing harvest on the larger (older) fish, minimum‐length limits are thought to maximize biomass yield, but at the potential cost of severe age and size truncation at high fishing mortality. Harvest‐slot‐length limits (harvest slots) restrict harvest to intermediate lengths (ages), which may contribute to maintaining high harvest numbers and a more natural age‐structure. However, an evaluation of minimum‐length limits vs. harvest slots for jointly meeting fisheries and conservation objectives across a range of fish life‐history strategies is currently lacking. We present a general age‐ and size‐structured population model calibrated to several recreationally important fish species. Harvest slots and minimum‐length limits were both effective at compromising between yield, numbers harvested and catch of trophy fish while conserving reproductive biomass. However, harvest slots consistently produced greater numbers of fish harvested and greater catches of trophy fish while conserving reproductive biomass and a more natural population age‐structure. Additionally, harvest slots resulted in less waste in the presence of hooking mortality. Our results held across a range of exploitation rates, life‐history strategies and fisheries objectives. Overall, we found harvest slots to represent a valuable option to meet both conservation and recreational fisheries objectives. Given the ubiquitous benefits of harvest slots across all life histories modelled, rethinking the widespread use of minimum‐length limits is warranted.  相似文献   

6.
An assessment of vulnerability in Alaska groundfish   总被引:1,自引:0,他引:1  
Federal fishery management rules in the United States have recently changed, necessitating an examination of which fish stocks require annual catch limits and how appropriate stock complexes are formed. We used an analytical approach termed productivity-susceptibility analysis (PSA) to analyze the vulnerability of federally managed Alaska groundfish stocks to overfishing. The focus of the effort was non-target stocks that have limited data available for determining stock status and vulnerability. The PSA approach was originally created to assess risks to bycatch in Australian trawl fisheries and compares productivity attributes (e.g. life-history traits) to factors that determine a stock's susceptibility to fishing impacts, producing a combined score indicative of a stock's relative vulnerability to overfishing. We used a form of the PSA developed by a working group from the U.S. National Marine Fisheries Service specifically for use in assessing vulnerability in federally managed fisheries. Alaska groundfish displayed a wide range of vulnerability scores, and this result was mainly due to variability in productivity scores. Susceptibility scores varied less than productivity scores and were centered on an intermediate value. The inclusion of target stocks in the PSA was valuable for assessing the relative vulnerability of the non-target stocks. Sensitivity analyses indicated that PSAs respond differently to changes in attribute scores depending on their initial conditions, and managers should be careful in interpreting changes in PSA results when stocks are re-evaluated.  相似文献   

7.
The status of federally managed fisheries in the United States is well monitored, but the condition of other marine fisheries, whether state-managed, territory-managed or unmanaged, is less understood and often unknown. We used expert surveys to characterize the management systems of non-federally managed fisheries in US coastal marine states and overseas territories. For 311 fisheries, we estimated an overall Fisheries Management Index (FMI) and a qualitative stock status score. These measures were positively correlated, and while a wide range of research, management, enforcement and socioeconomic criteria were partially met (FMI ≥ 0.5) for 66% of fisheries, stock status was considered as partially acceptable (score ≥ 0.5) for only 45% of fisheries and acceptable (score = 1) for only 16% of fisheries. Higher FMI was typically observed in fisheries with greater commercial landed weight, value, or greater recreational catches. Fisheries from continental states had higher FMI than those from overseas territories. Invertebrates and diadromous fish species had higher FMI on average compared to those of marine fishes. Extrapolating results for surveyed fisheries to nearly 2000 non-federally managed US fisheries while stratifying by state and importance designation (based on commercial, recreational, cultural or ecological importance), we estimate a mean overall FMI of 0.48, and estimate that only 19% of fisheries have a reliable estimate of stock status available; both measures are lower than similar estimates for federally managed fisheries. Funding or capacity constraints and information or data limitations were identified as common challenges faced by state agencies in managing fisheries under their jurisdiction.  相似文献   

8.
Time/area closures have been widely used in fisheries management to prevent overfishing and the destruction of marine biodiversity. To a lesser degree, such spatio‐temporal management measures have been used to reduce by‐catch of finfish or protected species. However, as ecosystem‐based management approaches are employed and more fisheries are managed through multispecies, multiobjective models, the management of by‐catch will likely become increasingly important. The elimination of by‐catch has become a primary goal of the fishing policies of many countries. It is particularly relevant in the United States, as the deadline for setting annual catch limits (ACLs) in all fisheries passes in 2011. This will result in a dramatic expansion of the number of catch and by‐catch quotas. Such catch measures may result in the early closure of otherwise sustainable fisheries when by‐catch quotas are exceeded. To prevent such closures and the consequent economic hardship to fishers and the economy, it is imperative that managers be given the tools necessary to reduce by‐catch and improve fishing selectivity. Targeted spatio‐temporal fishery closures are one solution open to managers. Here, we examine how the spatio‐temporal and oceanographic characteristics of by‐catch may be used by managers to design fishery closures, and place these methods within a decision tree to assist managers to identify appropriate management measures. We argue that the current movement towards marine spatial planning (MSP) presents an important impetus to examine how we manage fisheries spatially, and we offer a first step towards the objective participation of fisheries in the MSP process.  相似文献   

9.
Catches are commonly misreported in many fisheries worldwide, resulting in inaccurate data that hinder our ability to assess population status and manage fisheries sustainably. Under‐reported catch is generally perceived to lead to overfishing, and hence, catch reconstructions are increasingly used to account for sectors that may be unreliably reported, including illegal harvest, recreational and subsistence fisheries, and discards. However, improved monitoring and/or catch reconstructions only aid in the first step of a fisheries management plan: collecting data to make inferences on stock status. Misreported catch impacts estimates of population parameters, which in turn influences management decisions, but the pattern and degree of these impacts are not necessarily intuitive. We conducted a simulation study to test the effect of different patterns of catch misreporting on estimated fishery status and recommended catches. If, for example, 50% of all fishery catches are consistently unreported, estimates of population size and sustainable yield will be 50% lower, but estimates of current exploitation rate and fishery status will be unbiased. As a result, constant under‐ or over‐reporting of catches results in recommended catches that are sustainable. However, when there are trends in catch reporting over time, the estimates of important parameters are inaccurate, generally leading to underutilization when reporting rates improve, and overfishing when reporting rates degrade. Thus, while quantifying total catch is necessary for understanding the impact of fisheries on businesses, communities and ecosystems, detecting trends in reporting rates is more important for estimating fishery status and setting sustainable catches into the future.  相似文献   

10.
Inland waters support the livelihoods of up to 820 million people and provide fisheries that make an essential contribution towards food security, particularly in the developing world where 90% of inland fisheries catch is consumed. Despite their importance, inland fisheries are overlooked in favour of other water use sectors deemed more economically important. Inland fisheries are also driven by external factors such as climate change and habitat loss, which impedes our ability to manage them sustainably. Using a river basin approach to allocate fish catch, we have provided an integrated picture of how different inland water bodies contribute to global inland fisheries catches. There is a substantial amount of information available on inland fisheries, but it has never been synthesised to build this global picture. Fishery statistics from river basins, lakes, floodplains, hydrobasins, and countries covering a time span from 1960–2018 were analysed. Collation of basin-scale fisheries statistics suggests a global inland catch of ≈17.4 million tonnes (PSE = ±3.93 million tonnes) in 2010, considerably more than the 10.8 million tonnes published by the United Nations Food and Agriculture Organization (FAO), but in line with estimates based on household consumption. The figure is considered a likely maximum due to recent reductions in catches because of closures, threats, and fisheries declines in the most productive fisheries. It is recommended that sentinel fisheries, which are important for food provision, employment, or where threats facing a fishery could cause a deterioration in catch, are identified to provide the baseline for a global monitoring programme.  相似文献   

11.
Climate change is projected to redistribute fisheries resources, resulting in tropical regions suffering decreases in seafood production. While sustainably managing marine ecosystems contributes to building climate resilience, these solutions require transformation of ocean governance. Recent studies and international initiatives suggest that conserving high seas biodiversity and fish stocks will have ecological and economic benefits; however, implications for seafood security under climate change have not been examined. Here, we apply global‐scale mechanistic species distribution models to 30 major straddling fish stocks to show that transforming high seas fisheries governance could increase resilience to climate change impacts. By closing the high seas to fishing or cooperatively managing its fisheries, we project that catches in exclusive economic zones (EEZs) would likely increase by around 10% by 2050 relative to 2000 under climate change (representative concentration pathway 4.5 and 8.5), compensating for the expected losses (around ?6%) from ‘business‐as‐usual’. Specifically, high seas closure increases the resilience of fish stocks, as indicated by a mean species abundance index, by 30% in EEZs. We suggest that improving high seas fisheries governance would increase the resilience of coastal countries to climate change.  相似文献   

12.
Increasingly, fisheries are being managed under catch quotas that are often further allocated to specific permit holders or sectors. At the same time, serious consideration is being given to the effects of discards on the health of target and non‐target species. Some quota systems have incorporated discard reduction as an objective by counting discards (including unmarketable fish) against the overall quota. The potential effect of the introduction of a quota system that includes accountability for discards on the fishing strategies employed by fishermen is enormous. This is particularly true for multispecies fisheries where healthy and depleted stocks co‐exist; resulting in a trip's catch being applied to very large and very small stock quotas simultaneously. Under such a scenario, fishermen have a strong incentive to minimize (i) catch of low‐quota or ‘choke’ stocks, (ii) regulatory discards due to minimum size limits and (iii) catch partially consumed by predators. ‘Move‐on’ rules (i.e. event‐triggered, targeted, temporary closure of part of a fishery when a catch or bycatch threshold is reached) have been employed in a variety of fisheries. However, their efficacy has been limited by a lack of empirical analyses underpinning the rules. Here, we examine the utility of spatiotemporal autocorrelation analyses to inform ‘move‐on’ rules to assist a sector of the New England Multispecies Fishery to reduce discards and maximize profits. We find the use of empirical move‐on rules could reduce catch of juvenile and choke stocks between 27 and 33%, and depredation events between 41 and 54%.  相似文献   

13.
Fishing can drive changes in important phenotypic traits through plastic and evolutionary pathways. Size‐selective harvest is a primary driver of such trait change, has received much attention in the literature and is now commonly considered in fisheries management. The potential for selection on behavioural traits has received less study, but mounting evidence suggests that aggression, foraging behaviour and linked traits can also be affected by fishing. An important phenomenon that has received much less attention is selection on reproductive phenology (i.e., the timing of breeding). The potential for this type of “temporal selection” is widespread because there is often substantial variability in reproductive phenology within fish populations, and fisheries management strategies or fishermen's behaviours can cause fishing effort to vary greatly over time. For example, seasonal closures may expose only early or late breeding individuals to harvest as observed in a range of marine and freshwater fisheries. Such selection may induce evolutionary responses in phenological traits, but can also have demographic impacts such as shortened breeding seasons and reduced phenotypic diversity. These changes can in turn influence productivity, reduce the efficacy of management, exacerbate ongoing climate‐driven changes in phenology and reduce resilience to environmental change. In this essay, we describe how fisheries management can cause temporal variability in harvest, and describe the types of selection on temporal traits that can result. We then summarize the likely biological consequences of temporally selective fishing on populations and population complexes and conclude by identifying areas for future research.  相似文献   

14.
Murray cod Maccullochella peelii peelii is one of the world’s largest freshwater fish and supports popular fisheries in southeast Australia, but no previous modelling efforts have evaluated the effects of fisheries regulations or attempted to develop sustainable harvest policies. We compiled existing population metrics and constructed an age-structured model to evaluate the effects of minimum length limits (MLLs) and fishing mortality rates on Murray cod fisheries. The model incorporated a Beverton and Holt stock recruit curve, age-specific survivorship and vulnerability schedules, and discard (catch and release) mortality for fish caught and released. Output metrics included yield (kg), spawning potential ratio (SPR), total angler catch, total harvest, and the proportion of angler trips that would be influenced by each regulation based on recent creel survey data. The model suggested that annual exploitation (U) should be held to less than 0.15 under the current MLL of 500 mm total length to achieve an SPR > 0.3, a target usually considered to prevent recruitment overfishing. Exploitation rates at or exceeding 0.3 would cause SPR values to drop below typical management targets unless the MLL was set at or above 700 mm. Regulations that protected Murray cod from overfishing created higher angler catches and higher catch of trophy fish, but at a cost of reducing the proportion of angler trips resulting in a harvested fish. Expressing model output on a per-angler trip basis may help fishery managers explain regulation trade offs to anglers.  相似文献   

15.
Tropical fisheries are among the most productive fisheries in the world, often providing the primary source of protein for the local population. Despite their importance, data on these systems are relatively limited, thus hampering management and policy development. Here, the implications of increasing fishing pressure are explored by critically evaluating the perceptions of the fishers who rely on these ecosystems to survive. A total of 169 fishers in 26 different fish‐dependent communities in the Tonlé Sap Lake, Cambodia, were surveyed to understand their perceptions of the impact that fishing has had on the ecosystem. The Tonlé Sap is one of the largest, yet poorest studied, freshwater fisheries in the world. Consistent with “fishing down the food web” theory of fisheries, survey data revealed that although fishers observed the total size of fish catch remaining consistent over recent years there has been a drastic decline in the size of individual fish, as well as a reduction in the diversity of species caught. These perceptions are examined with reference to food web theories that explore how fishing pressure leads to ecosystem change, including the more recent “indiscriminate fisheries” theory.  相似文献   

16.
Catch‐and‐release fishing has increased in many fisheries, but its contribution to fishing mortality is rarely estimated. This study estimated catch and release mortality rates of striped bass, Morone saxatilis (Walbaum), for the spring recreational fishery in the Hudson River. Treatment fish (caught with live bait on spinning gear) and control fish (captured by electric fishing) were placed in in situ holding pens for 5 days. Mortality rates were estimated using conditional instantaneous mortality rates and additive finite mortality rates. Influences of variables (playing and handling time, hook location, degree of bleeding and fish length) on hooking mortality rates were examined by logistic regression. Conditional instantaneous mortality rates and additive finite mortality rates were 31 and 28%, respectively. Hook location significantly affected the survival of striped bass. Angling catch, effort, and release rates must be integrated with associated hooking mortality rates before this component of overall population mortality can be incorporated into management decisions.  相似文献   

17.
This paper provides an update on an earlier review [Fish & Fisheries 8 (2007) 31] of mitigation methods used to reduce seabird by‐catch in trawl fisheries. Interactions of seabirds with trawl vessels fall into two broad categories: those focused on the trawl warps and those focused around trawl nets. For reducing seabird strikes on trawl warps, the use of bird‐scaring lines has been proved to be the most effective mitigation device in the trawl fisheries in which comparative studies have been undertaken. However, the retention or strategic management of fish waste (offal and discards) is recommended as the most effective primary measure for by‐catch reduction, and as such should be viewed as the best long‐term solution to reducing seabird by‐catch in trawl fisheries. Coincident with effective fish waste management, measures such as cleaning the net prior to shooting and reducing the time the net is on the surface should be viewed as best practice measures and incorporated into normal fishing activities. While a number of methods have been trialled to reduce the incidence of warp strikes, there continues to be the need for more work on effective measures for reducing interactions of seabirds with the trawl net.  相似文献   

18.
We searched major electronic databases to identify peer‐reviewed literature investigating the role of temperature on the stress response and mortality of captured and released fish. We identified 83 studies that fit these criteria, the majority of which were conducted in North America (81%) on freshwater fish (76%) in the orders Perciformes (52%) and Salmoniformes (28%). We found that hook‐and‐line fisheries (65% of all studies) were more commonly studied than all net fisheries combined (24%). Despite the wide recognition for many species that high water temperatures exacerbate the effects of capture on released fish, this review is the first to quantitatively investigate this problem, finding that warming contributed to both mortality and indices of stress in 70% of articles that measured each of those endpoints. However, more than half (58%) of the articles failed to place the experimental temperatures into a biological context, therefore limiting their broad applicability to management. Integration of survival and sublethal effects to investigate mechanisms of fish mortality was relatively rare (28%). Collectively, the results suggest that capture–release mortality increases at temperatures within, rather than above, species‐specific thermal preferenda. We illustrate how knowledge of ecologically relevant high temperatures in the capture and release of fish can be incorporated into management, which will become increasingly important as climate change exerts additional pressure on fish and fisheries.  相似文献   

19.
Changes in mean trophic level (MTL) of catches have been widely used to reflect the impact of industrial fisheries on aquatic ecosystems because this measure represents the relative abundance of fished species across the trophic level spectrum. In this study, fisheries data from six important freshwater lakes at the middle‐lower Yangtze River and Huaihe River reach of Southern China from 1949 to 2009 were used to evaluate changes in catch MTL. After fishery markets opened at 1985, fish catches increased significantly in all the lakes. Lakes Poyang and Dongting, which were dominated by omnivores and connected to the Yangtze River, showed no significant change in catch MTL before and after 1985. Catch MTL in lakes Taihu and Hongze increased significantly due to an increase in the proportion of pelagic zooplanktivorous. Catches in Lake Chaohu were dominated by zooplankton‐feeding lake anchovy, Coilia ectenes Temminck & Schlegel and icefish, Neosalanx taihuensis Chen, while Lake Donghu was dominated by phytoplanktivorous carps. Due to low biodiversity, catch MTL of these two lakes showed no significant change before and after 1985. Both fisheries‐based and human activities‐based drivers influenced the structure and catch MTL of fisheries in Chinese freshwater lakes.  相似文献   

20.
Effort rights‐based fisheries management (RBM) is less widely used than catch rights, whether for groups or individuals. Because RBM on catch or effort necessarily requires a total allowable catch (TAC) or total allowable effort (TAE), RBM is discussed in conjunction with issues in assessing fish populations and providing TACs or TAEs. Both approaches have advantages and disadvantages, and there are trade‐offs between the two approaches. In a narrow economic sense, catch rights are superior because of the type of incentives created, but once the costs of research to improve stock assessments and the associated risks of determining the TAC and costs of monitoring, control, surveillance and enforcement are taken into consideration, the choice between catch or effort RBM becomes more complex and less clear. The results will be case specific. Hybrid systems based on both catch and effort are increasingly employed to manage marine fisheries to capture the advantages of both approaches. In hybrid systems, catch or effort RBM dominates and controls on the other supplements. RBM using either catch or effort by itself addresses only the target species stock externality and not the remaining externalities associated with by‐catch and the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号