首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cage‐pond integration system is a new model for enhancing productivity of pond aquaculture system. A field trial was conducted using African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) in cages and carps in earthen ponds. There were four treatments replicated five times: (1) carps in ponds without cage, (2) tilapia at 30 fish m?3 in cage and carps in open pond, (3) catfish at 100 fish m?3 in cage and carps in open pond, (4) tilapia and catfish at 30 and 100 fish m?3, respectively, in separate cages and carps in open pond. The carps were stocked at 1 fish m?2. The cage occupied about 3% of the pond area. The caged tilapia and catfish were fed and the control ponds were fertilized. Results showed that the combined extrapolated net yield was significantly higher (P < 0.05) in the catfish, tilapia and carps integration system (9.4 ± 1.6 t ha?1 year?1) than in the carp polyculture (3.3 ± 0.7 t ha?1 year?1). The net return from the tilapia and carps (6860 US$ ha?1 year?1) and catfish, tilapia and carps integration systems (6668 US$ ha?1 year?1) was significantly higher than in the carp polyculture (1709 US$ ha?1 year?1) (P < 0.05). This experiment demonstrated that the cage‐pond integration of African catfish and Nile tilapia with carps is the best technology to increase production; whereas integration of tilapia and carp for profitability.  相似文献   

2.
The present research investigated the effect of stocking density on pond (75 m2, depth 1.2 m) production of Nile tilapia (Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) stocked at a fixed 3:1 tilapia:prawn ratio. Three stocking densities were tried in triplicate: 20 000 ha−1 (treatment TP‐20), 30 000 ha−1 (TP‐30) and 40 000 ha−1 (TP‐40). The ponds were provided with bamboo as substrate for periphyton development. Bamboo poles (mean diameter 5.5 cm and 5.0 poles m−2) were posted vertically into pond bottoms, resulting in 60% additional substrate area in each pond. On average, 43 genera of algae and 17 genera of zooplankton were identified from pond water, whereas 42 genera of algae and six genera of microfauna were attached to bamboo substrates. No differences were observed between treatments in the ash‐free dry matter (AFDM), chlorophyll a and phaeophytin a content of periphyton (P>0.05). Survival of tilapia and prawn and individual weight gain of tilapia were lower (P<0.05) in treatment TP‐40. The net yields were higher (P<0.05) in treatments TP‐30 (2209 and 163 kg ha−1 105 day−1 of tilapia and prawn respectively) and TP‐40 (2162 and 141 kg ha−1 of tilapia and prawn respectively) than in treatment TP‐20 (1505 and 136 kg ha−1 of tilapia and prawn respectively). The net tilapia yields were quadratic correlated (R2=0.92) with fish stocking density. The cost–benefit analysis shows that the net profit margin was highest in treatment TP‐30 (69%), followed by TP‐20 (50%) and TP‐40 (44%).  相似文献   

3.
An experiment was conducted in earthen ponds at the Asian Institute of Technology, Thailand to determine different phosphorus fertilizer dose effects on Nile tilapia production, water quality variables, nutrient utilization and cost‐benefit under supplemental feeding. Five phosphorus fertilization rates were used as treatments e.g. 100%, 75%, 50%, 25% and 0% of 7 kg P ha week?1. Nitrogen fertilization rate was fixed at 28 kg N ha week?1 for all the treatments. Sex‐reversed Nile tilapia were stocked at 3 fish m?2, and 30% CP floating feed fed at 50% satiation feeding rate. Nutrient budget showed higher phosphorus fertilizer input resulted in higher phosphorus sink in the sediment. Mean weight, mean weight gain, daily weight gain and net yield were not significantly different among treatments (P > 0.05). Total Kjeldahl nitrogen, total phosphorus and soluble reactive phosphorus were significantly different among treatments. Economic analysis showed phosphorus fertilization resulted in positive net returns. Though the gross income was not affected by different fertilization rates, significantly lowest cost was found in the treatment using 25% phosphorus fertilizer. It can be concluded from the research that 25% phosphorus fertilization might be used as an alternative strategy of Nile tilapia pond culture in terms of economic return and nutrient loss in sediment.  相似文献   

4.
The production performances of giant freshwater prawn Macrobrachium rosenbergii and Nile tilapia Oreochromis niloticus in C/N‐controlled periphyton‐based polyculture systems were evaluated in triplicate. Three different management practices were compared: the traditional practice without addition of periphyton substrates and carbohydrate (Control), addition of maize flour to maintain a carbon: nitrogen rate of 20:1 (treatment CN) and addition of both maize flour and periphyton substrates (treatment CN+P). This experiment used a pre‐optimized stocking density of tilapia and freshwater prawn by Asaduzzaman et al. Aquaculture [286 (2009) 72]. All ponds were stocked with prawn (3 m2) and monosex Nile tilapia (1 m?2). Bamboo side shoots were posted vertically into the pond bottoms as periphyton substrate covering an additional area of 171 m2 for periphyton development. A locally formulated and prepared feed containing 17% crude protein with C/N ratio close to 15:1 was applied twice daily in all ponds considering the body weight of freshwater prawn only. Water quality parameters, except total alkalinity did not vary significantly (> 0.05) among treatments. Both, organic matter and total heterotrophic bacterial loads (THB) in the sediment were significantly (P < 0.05) higher in treatment CN+P followed by treatment CN and control. Periphyton biomass in terms of dry matter and chlorophyll a values constantly decreased during the culture period. Substrates contributed 66% and 102% higher net yield of freshwater prawn than CN and control treatment respectively.  相似文献   

5.
Four earthen ponds (250 m2 each) were stocked each with 250 small catfish (W0=39g). In treatment A, African catfish. Clarias gariepinus (Burchell), were raised in monoculture, while in treatment B catfish were raised in polyculture with an additional 125 male Nile tilapia, Oreochromis niloticus (L.) (W0=44g). Feeding of cottonseed cake was at about 4% of catfish body weight day?1. Daily feed quantities, however, were averaged over all four ponds so that each pond received the same amount of cottonseed cake. Rearing time was 118 days. In treatment A, catfish grew to an average weight of 200g. In treatment B, catfish reached 158g and tilapia 185g, Extrapolated marketable fish production was strikingly similar in all four ponds (around 4.8 t ha?1 year?1). No synergistic effect was obtained by stocking microphagous tilapia, although the feeding of cottonseed cake enhanced dense algal blooms in all ponds. Catfish did not appear to exploit the tilapia recruits, as an indirect pathway of algae cropping.  相似文献   

6.
Supplemental Feeding of Tilapia in Fertilized Ponds   总被引:1,自引:0,他引:1  
The addition of feed to fertilized fish ponds was evaluated by adding feed alone, feed plus fertilizer, or fertilizer alone to nine ponds stocked with Nile tilapia Oreochromis niloticus . Two experiments were conducted. The first had 500 fish per 250 m2 pond in 3 treatments: ad-libitum feeding; fertilizer only; or fertilizer and ad-libitum feeding. The second experiment had 5 treatments with 750 fish per pond ad-libitum feed only; fertilizer only; or 0.25, 0.50, and 0.75 satiation ration plus fertilizer. Ponds in Thailand were maintained for 155–162 d, during which chemical and physical properties were monitored. In experiment 1 tilapia growth was highest in feed only ponds, and lowest in fertilizer only ponds. Net yield did not differ significantly among treatments, due to variation in survival. In experiment 2, tilapia growth was lowest in fertilizer only ponds, intermediate in 0.25 ration ponds, and highest in 0.50, 0.75, and ad-libitum ponds. The latter treatments were not significantly different. Multiple regressions for each experiment indicated only 47–87% of the variance in growth was explained by feed and fertilizer input, while 52–89% of the variance in yield was explained by those factors. For both experiments combined, 90.3% of the variance in growth was explained by feed input, fertilizer input, alkalinity, and total inorganic nitrogen concentration. For yield, R 2 was 0.888 and the regression included feed input, pH, and number of low dissolved oxygen events. Experiment 1 appeared to approach carrying capacity near the end, while no reduction in growth occurred in experiment 2 at higher fish density and biomass. Reductions in growth in experiment 1 were not correlated with declining water quality late in the grow out. Combinations of feed and fertilizer were most efficient in growing tilapia to large size (500 g) compared to complete feeding or fertilizing alone.  相似文献   

7.
This study investigated the effects of nursing duration on the subsequent performance of rohu (R) Labeo rohita and mrigal (M) Cirrhina mrigala in polyculture with monosex male Nile tilapia (T) Oreochromis niloticus at four levels of pond fertilization. Nile tilapia, rohu and mrigal were stocked at a ratio of 4:1:1 in a 90‐day trial based on 40 20‐m2 pens fixed in four 400‐m2 earthen ponds. Growth of carp fingerlings during prolonged nursing (5 or 12 months) was stunted compared with fish nursed over a conventional duration of 3 months (3) but showed superior growth subsequently. Mean daily weight gain of stunted rohu (12) ranged from 2.2 to 2.8 g per fish day?1 compared with 1.1–1.6 g per fish day?1 for younger fish (3). The comparable ranges for mrigal were 1.9–2.8 and 1.4–2.1 g per fish day?1. Growth of Nile tilapia was inversely related to duration of carp nursing at the four levels of fertilization. Nile tilapia showed more response to increasing levels of fertilizer input (Y=?1.421+1.716X, where Y is the daily weight gain of Nile tilapia and X is the fertilizer level, r2=0.98, P<0.01, n=12). At a high level of fertilization (3.0 kg N:1.5 kg P ha?1 day?1), performance of stunted fingerlings (5 and 12) of both rohu and mrigal was similar (range 2.3–2.8 g per fish day?1, P>0.05), but younger mrigal (M3) grew faster than rohu (2.1 g per fish day?1 and 1.6 g per fish day?1 respectively). Older rohu (12) appeared to perform particularly well, and Nile tilapia poorly at the lowest level of fertilization (1.5 N:0.75 kg P ha?1 day?1), suggesting the impact of age of seed on competition within polycultures. The net fish yield (NFY) of tilapia was not affected significantly (P>0.05) by differential stocking age of carps; therefore, combined NFY of the three experimental fish species was not affected by the age of carp, as tilapia was the dominant species in polyculture. The highest combined NFY of all species in the most intensively fertilized pond (3.0 N:1.5 P kg ha?1 day?1) was calculated at 4.06±0.08 g·m?2 day?1, which was significantly higher (P<0.001) than the yield (1.82±0.12 g·m?2 day?1) from the pond with the lowest fertilization. At the highest fertilizer level, tilapia, rohu and mrigal contributed 72%, 14% and 14%, respectively, to the NFY, whereas the ratio was 60%, 20% and 20% at the lowest fertilization level. The study indicated that yields from tilapia in polyculture with the two carp species in more eutrophic water can be optimized if advanced nursing of carps is practised. Moreover, higher inputs of inorganic fertilizer and advanced nursing of carp are economically attractive under Bangladeshi conditions. Advanced nursing of rohu also improves its performance in more extensive systems when tilapia densities are high.  相似文献   

8.
In Tanzania, Nile tilapia culture is a promising aquaculture enterprise. Information on production costs could assist fish farmers in economic and financial planning. Economic profitability of small‐scale Nile tilapia production in Tanzania is analyzed using a model that simulates individual fish growth and takes into account fish population dynamics in the pond. The results suggest that the current practiced mixed‐sex tilapia culture without predation is not economically sustainable. Extension efforts should be geared toward developing a Nile tilapia production system that is based on a hand‐sexed all‐male tilapia. Meanwhile catfish can be introduced in ponds to control overcrowding in mixed‐sex tilapia culture without predation. Studies to determine optimal pond sizes, availability of feed, and a quality fingerling supply chain are also fundamental for developing a sustainable Nile tilapia production system in Tanzania. Under improved Nile tilapia production systems, returns are high enough to justify investment through borrowed capital from formal institutions.  相似文献   

9.
The efficacy of a commercial microbial product was tested in commercial tiger shrimp, Penaeus monodon (Fabricius), ponds for one culture period in Kuala Selangor, Malaysia. Four ponds with replicates for treatment and control were used. The pond bottom was dried but the organic sludge was not removed as normally practised in pond preparation. The ponds were stocked with 15 post‐larvae at the rate of 31.m?2. Physical, chemical and biological parameters of the pond were analysed every 2 weeks during the culture period. Water quality parameters remained within the optimum range for shrimp culture except for ammonia‐nitrogen being significantly higher in control ponds and silica in treated ponds. Benthic organisms were not found in any of the ponds. The average counts of different bacteria were not significantly higher in treated ponds than control. Because of poor health, the shrimp were harvested earlier (72 days) than the usual 120 days. An average of 875.60 ± 67.00 kg shrimp ha?1 was obtained in treated ponds with a feed conversion ratio (FCR) of 1.57 ± 0.10 and survival rate of 42.35 ± 5.37% compared with 719.50 ± 130.94 kg shrimp ha?1, 2.99 ± 0.70 and 21.25 ± 3.26%, respectively, in control ponds. Neither the microbial product nor the frequent water exchange was effective in overcoming the problems caused by the poor pond bottom.  相似文献   

10.
The production performance of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) in periphyton‐based systems were studied in farmers' ponds at Mymensingh, Bangladesh. Fifteen ponds (200–300 m2 area and 1.0–1.5 m in depth) were used to compare five stocking ratios in triplicate: 100% GIFT, 75% GIFT plus 25% prawn, 50% GIFT plus 50% prawn, 25% GIFT plus 75% prawn and 100% prawn. Ponds were stocked at a total density of 20 000 GIFT and/or prawn ha?1. Bamboo poles (mean diameter 6.2 cm and 5.5 pole m?2) were posted in pond bottoms vertically as periphyton substrate. Periphyton biomass in terms of dry matter (DM), ash‐free DM and chlorophyll a were significantly higher in ponds stocked with prawn alone than in ponds with different combinations of GIFT and prawn. Survival of GIFT was significantly lower in ponds stocked with 100% GIFT (monoculture) whereas, that of prawn was significantly higher in its monoculture ponds indicating detrimental effects of GIFT on prawn's survival. Individual weight gains for both species were significantly higher in polyculture than in monoculture. The highest total fish and prawn yield (1623 kg GIFT and 30 kg prawn ha?1) over 125–140 days culture period was recorded in ponds with 75% GIFT and 25% prawn followed by 100% GIFT alone (1549 kg ha?1), 50% GIFT plus 50% prawn (1114 kg GIFT and 68 kg prawn ha?1), 25% GIFT plus 75% prawn (574 kg GIFT and 129 kg prawn ha?1) and 100% prawn alone (157 kg ha?1). This combination also gave the highest economic return. Therefore, a stocking ratio of 75% GIFT plus 25% prawn at a total density of 20 000 ha?1 appeared to be the best stocking ratio in terms of fish production as well as economics for a periphyton‐based polyculture system.  相似文献   

11.
Two experiments (E1 and E2) to assess the performance of tilapia broodstock and tilapia sex‐reversed fry in overwintering were conducted at the Research Institute for Aquaculture No.1 (RIA‐1) in the cold seasons of 1995–96 and 1996–97. Nile tilapia Oreochromis niloticus (L.) broodstock of the Thai, GIFT, Egypt and Viet strains were overwintered in deep and shallow ponds, as well as in deep and shallow hapas suspended in a single deep pond for evaluation of the influence of overwintering systems on the survival and growth of fish. Large (> 1 g) and small (< 1 g) tilapia seed were overwintered in deep hapas‐in‐ponds for comparison of their performance. In 1995–96, the coldest pond water temperature was 10–11 °C, and survival of tilapia broodfish overwintered in deep and shallow hapas‐in‐ponds was 99.6–100%. This was significantly (P < 0.05) higher than fish stocked in deep and shallow ponds (74.4–90%). The survival rate of larger monosex tilapia fry was 54%, which was significantly (P < 0.05) higher than that of smaller fry (33.4%). In 1996–97, the lowest pond water temperature was 15.8 °C, and fry showed similarly high survival rates in all treatments (97–100%). There was no significant difference between fry in the two size classes. The results of this study clearly indicate that hapas‐in‐ponds are useful for reducing the risk and improving the survival of tilapia broodstock and fry in the cold season. Differences in the decline in ambient temperatures year on year mean that the need for special overwintering conditions varies. Hapas‐in‐ponds are a low‐cost overwintering method that can be one of the appropriate strategies for tilapia seed production under the variable, cool temperature regimes in northern Vietnam.  相似文献   

12.
Twelve production trials were analysed retrospectively, covering three different rearing methods in which Nile tilapia, Oreochromis niloticus (L.), were fed with combinations or cottonseed cake and brewery waste. Highest extrapolated net pond productions, including tilapia recruits, were obtained in tilapia fingerling rearing (W0 <10 g; 11.8 t ha?1 year?1). Stocking African catfish, as police-fish (0.2 catfish m?2) in mixed tilapia (W0 > 90 g) culture was effective in controlling tilapia recruitment, but net pond production was low (4.1 t ha?1 year?1). Hand-sexing of male tilapias (W0 > 90 g) only limited recruitment but resulted in a significantly higher net pond production (8.6 t ha?1 year?1) than in mixed culture. Extrapolated marketable production in the treatment stocked with hand-sexed tilapia males (tilapia only) was also higher than the extrapolated marketable production in the mixed culture treatment (tilapia and catfish combined), although this difference was not significant. Extrapolated net pond production and extrapolated net tilapia production were both significantly correlated to the daily feeding rate of cottonseed cake but not to the daily feeding rate of brewery waste. The high relative FCRs of the feed mixture were probably due to the brewery waste.  相似文献   

13.
An experiment was conducted with tilapia-catfish polyculture at the Lagdo Fisheries Station in northern Cameroon. The objectives were: 1. To estimate the effect of supplementary cottonseed cake on net pond production in ponds already receiving dried cattle manure as basic treatment: and 2. To study the performance of African catfish, Clarias gariepinus (Burchell). in recruitment control of Nile tilapia, Oreochromis niloticus (L.). Recruitment control is essential in obtaining large tilapia sizes demanded in the market. Cottonseed cake, the most important agricultural by-product in the region, is expensive. Dried cattle manure may be collected free from corrals deserted by pastoral ethnic groups. Three treatments were tested in duplo in six earthen ponds of 525 m2 each; treatment A. daily application of dried cattle manure only (266 kg ha?1 day?1); treatment B, daily manure + cottonseed at a nominal daily rate of 3% of tilapia biomass: treatment C, daily manure + cottonseed cake at 6% of tilapia biomass. Stocking densities per pond were 250 male Nile tilapia (mean Wo 222 g), 150 female tilapia (W0= 202 g), 30 ‘large’ African catfish (Wo= 198 g); and 30 ‘small’ catfish (W0= 52 g). Mean fish densities were 0.76 tilapia m?2 and 0.11 catfish m?2. Application of dried manure and cottonseed cake was 6 days per week, and the culture period was 100 days. Fish were sampled every month and feeding rates were adjusted accordingly. Dissolved oxygen content and algal turbidity (Secchi disc) were measured once a week. Extrapolated net pond productions, including recruits, were: -0.41 ha?1 year?1 (treatment A); 4.8 t ha?1 year?1 (treatment B) and 6.5 t ha?1 year?1 (treatment C). Differences between treatments B and C were not significant(P < 0.05). Fertilization with dried cattle manure only (zero cottonseed cake) led to a negative net pond production in treatment A (negative net tilapia production but slightly positive net catfish production). Dried manure at the given application rate did not contribute sufficient nutrients to maintain the stocked fish biomass via enhanced natural production, while pond biomass was high for such an extensive system (manure only). Best fish growth was observed in treatment C (male tilapia, 0.9 gday?1: large catfish, 6.9 g day?1) although differences between treatments B and C were not significant. Growth of male and female was not significantly different, but growth rates of tilapia and catfish were significantly different (P & lt; 0.05). Average yields of tilapia recruits in treatment B (1539 kg ha?1 year?1) and C (1829 kg ha?1year?1) were about four times the average yield of recruits in treatment A (468 kg ha?1 year?1) but differences between treatments A, B and C were not significant. It was sugcess, or the reproductive efficiency of tilapia in treatment A could have been lower as a result of that treatment. However, clouds of up-swimming fry appeared to be at least as numerous in the replicate ponds of treatment A as in the ponds of treatments B and C.  相似文献   

14.
In fish production under organic standards, only organic feeds and manures can be supplied. The cost of organic pelleted feeds is twice that of regular feeds. To support the organic production of hybrid tilapia [Oreochromis niloticus (L.) ×Oreochromis aureus (Steindachner)], a series of experiments in earthen ponds, to improve natural food production for this fish while reducing costs of added feed, are in progress. To improve natural food production for tilapia, plastic substrates equivalent to 50% of the pond surface were introduced into the water column to induce periphyton growth on them. To reduce costs, the feeding rate on pelleted feed was reduced to 60%. Tilapia growth in these periphyton ponds was then compared with ponds without underwater substrates that received the full feed rate. The polyculture consisted of 90% large (320 g stocking weight) hybrid tilapia and small amounts of other fish, at a total stocking density of 13 800 fish ha?1, during 87 summer days. The results showed improved nitrification and the development of a large autotrophic periphyton biomass that competed with the phytoplankton in the periphyton ponds, and only a 10% and 15% reduction, respectively, in the tilapia daily and specific growth rates, with 40% feed saving. These results point towards periphyton‐based aquaculture as an appropriate technology for the reduction in production costs, allowing economically viable organic tilapia production.  相似文献   

15.
A series of six 0.04 ha ponds that had received varying rates of organic fertilization during 1976 and 1977 were each stocked with 200 Tilapia nilotica for a 3.5 month period during the 1978 growing season. Slotted feeding floors were placed over five of the six ponds and two growing-finishing hogs were placed on each feeding floor. The sixth pond received neither manure nor supplemental feed. Growth of T. nilotica was most rapid in ponds that had a history of relatively high manuring rates. Condition factors paralleled fish growth. Survival was 75% or more in each of the ponds with no apparent correlation between percent survival and history of manuring. Water quality was similar and acceptable for tilapia in each of the six ponds. The data indicated that a stocking rate of 50 hogs/ha can result in high fish yields; and that the history of a pond's experimental use influences subsequent experimental results.  相似文献   

16.
Catfish (mean W0 189 g) were added to ponds (525 mJ each) stocked with 230 hand-sexed, male tilapia (Wu163 g), at 0.04, 0.10 and 0.15 catfish m?2. In each pond, two female tilapias were introduced, thereby creating a sexing error of less than 1%. Feeding was fixed throughout the experiment at 2.5 kg of cottonseed cake per day per pond 6 days per week (mean feeding rate R = 41 kg ha?1 day-1). Rearing time was 125 days. Average net pond production per treatment (ranging between 7.5 and 7.9 t ha?1 year?1) and marketable production were not different between treatments but net tilapia production was significantly lower at the highest catfish density. Both catfish and tilapia growth were negatively correlated with catfish density due to feed competition near the end of the experiment. It was concluded that catfish efficiency in controlling tilapia recruitment was strongly reduced by the availability of supplementary high-protein feed. Large catfish competed with the parent tilapia for the cottonseed cake but apparently did not exploit the tilapia recruits. Yield of tilapia recruits was lowest at the highest catfish fingerling density, although this was not significant. The number of catfish fingerlings was significantly higher at the lowest catfish density, which indicated that large catfish preyed on catfish fingerlings.  相似文献   

17.
Abstract— Fertilization guidelines developed for shallow ponds (1 m) with controlled depths were tested in deeper (2.5 m) ponds to determine effectiveness of these guidelines for culture of Nile tilapia Oreochromis niloticus . Twelve ponds of 2.5-m depth were used in four treatments: (A) weekly fertilization with water addition; (B) weekly fertilization without water addition; (C) one early fertilization without water addition; and (D) fertilization frequency dependent on nutrient concentrations, without water addition. Sex-reversed Nile tilapia were stocked at 2 fish/m2 with an initial weight of 15 g, and harvested after 234 d. Depth of water declined from 2.4 m to 1.6 m over the experiment in ponds without water addition. Fish growth rate was significantly higher in treatments A and B (0.86 g/d), than in other treatments, as was yield (3,830 kg/ha). Treatment C was lowest in growth (0.086 g/d) and yield (168 kg/ha), with treatment D intermediate. Fish growth rates and yields were strongly correlated to manure input ( R2 = 0.89 and 0.94, respectively), and residuals were not correlated to any physical or chemical variables. Growth and yield in these deep ponds were somewhat lower than those in previous experiments for shallow ponds with regular water inputs. However, stagnant ponds did not accumulate nutrients and metabolites at rates higher than ponds with controlled water depths.  相似文献   

18.
Nile tilapia, Oreochromis niloticus, is one of the most popular freshwater aquaculture species in developing countries. Although formulated feed provides higher fish yield, it is expensive. Therefore, fertilizer-based fish culture using natural food sources is generally implemented in developing countries. The aim of this study was to identify the major natural foods contributing to tilapia growth in fertilizer-based fish ponds. The stomach contents of tilapia in a fertilizer-based fish pond in Lao PDR were analyzed to estimate their feeding behaviors; stable isotope ratios of carbon and nitrogen in the potential food organisms and suspended solids were measured and compared with the ratios in the fish muscle tissues. Further, the feed efficiency of chironomid larvae was compared with that of chlorella and formulated feed in a laboratory feeding experiment. Consequently, chironomid larvae were identified as the main contributors to tilapia growth in the fertilizer-based fish pond. In conclusion, benthic larvae of insects belonging to the family Chironomidae are confirmed to be a natural food source for tilapia in the fertilizer-based fish pond.  相似文献   

19.
The effects of different densities of caged Nile tilapia, Oreochromis niloticus, on water quality, phytoplankton populations, prawn, and total pond production were evaluated in freshwater prawn, Macrobrachium rosenbergii, production ponds. The experiment consisted of three treatments with three 0.04‐ha replicates each. All ponds were stocked with graded, nursed juvenile prawn (0.9 ± 0.6 g) at 69,000/ha. Control (CTL) ponds contained only prawns. Low‐density polyculture (LDP) ponds also contained two cages (1 m3; 100 fish/cage) of monosex male tilapia (115.6 ± 22 g), and high‐density polyculture (HDP) ponds had four cages. Total culture period was 106 d for tilapia and 114 d for prawn. Overall mean afternoon pH level was significantly lower (P ≤ 0.05) in polyculture ponds than in CTL ponds but did not differ (P > 0.05) between LDP and HDP. Phytoplankton biovolume was reduced in polyculture treatments. Tilapia in the LDP treatment had significantly higher (P ≤ 0.05) harvest weights than in the HDP treatment. Prawn weights were higher (P ≤ 0.05) in polyculture than prawn monoculture. These data indicate that a caged tilapia/freshwater prawn polyculture system may provide pH control while maximizing pond resources in temperate areas.  相似文献   

20.
We evaluated the water characteristics and particle sedimentation in Macrobrachium amazonicum (Heller 1862) grow‐out ponds supplied with a high inflow of nutrient‐rich water. Prawns were subject to different stocking and harvesting strategies: upper‐graded juveniles, lower‐graded juveniles, non‐graded juveniles+selective harvesting and traditional farming (non‐grading juveniles and total harvest only). Dissolved oxygen, afternoon N‐ammonia and N‐nitrate and soluble orthophosphate were lower in the ponds in comparison with inflow water through the rearing cycle. Ponds stocked with the upper population fraction of graded prawns showed higher turbidity, total suspended solids and total Kjeldahl nitrogen than the remaining treatments. An increase in the chemical oxygen demand:biochemical oxygen demand ratio from inlet (4.9) to pond (7.1–8.0) waters indicated a non‐readily biodegradable fraction enhancement in ponds. The sedimentation mean rate ranged from 0.08 to 0.16 mm day?1 and sediment contained >80% of organic matter. The major factors affecting pond ecosystem dynamic were the organic load (due to primary production and feed addition) and bioturbation caused by stocking larger animals. Data suggest that M. amazonicum grow‐out in ponds subjected to a high inflow of nutrient‐rich water produce changes in the water properties, huge accumulation of organic sediment at the pond bottom and non‐readily biodegradable material in the water column. However, the water quality remains suitable for aquaculture purposes. Therefore, nutrient‐rich waters, when available, may represent a source of unpaid nutrients, which may be incorporated into economically valued biomass if managed properly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号