首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在黄土旱塬区长期试验(1985-1997年)中,选取对照(不施肥,CK)、磷肥(P2O5.60.kg/hm2,P)、氮肥(N.120kg/hm2,N)、氮磷(N,120.kg/hm2,P2O5,60.kg/hm2,NP)、氮磷有机肥(N.120.kg/hm2,P2O560.kg/hm2,有机肥75.t/hm2,NPM),种植方式为冬小麦连作的5种有代表性的施肥处理,研究了石灰性土壤磷素吸附特性的演变及其与土壤磷素形态、土壤有机碳(SOC)含量的关系。结果表明,P素的最大吸附量(Qm),1997年对照(CK)、N处理比1985年分别提高了18%和14%;而P、NP和NPM处理分别降低了26%、13%和24%。吸附能常数(k值)随时间延长,对照和N处理相对稳定,P和NP处理呈升高趋势,而NPM处理有降低趋势。土壤磷素吸附饱和度(DPS)和零净吸附磷浓度(EPC0)对照和N处理随时间延长呈降低趋势,P、NP和NPM处理呈升高趋势。Qm与Ca8-P、Al-P存在极显著相关关系(P0.001),与Ca2-P、Pe-P存在显著相关关系(P0.05)。Ca2-P、有机磷含量变化与土壤DPS的相关性达到显著水平(P0.05)。EPC0只与有机磷间存在显著的相关关系(P0.05)。Qm、DPS和EPC0变化与SOC存在显著或极显著的线性相关关系(P0.001)。  相似文献   

2.
The phosphorus (P) forms in long-term fertilization determine the fate and transport of P in soil. However, the fate of various pools of organic P of added P in the long-term measured with sequential chemical fractionation is not well-understood. Four soil physical aggregates (>250, 125–250, 63–125 and <63 μm) from 0- to 20-cm depth after 35 years of long-term fertilization treatments including control (CK), nitrogen and phosphorus fertilizer (NP) and NP combined with farmyard manure (NPM) under continuous winter wheat were separated using settling tube apparatus. Results showed that the application of long-term P fertilization had no apparent effects on promoting the mass proportion of soil aggregates except for >250 μm, where the NP and NPM treatments significantly increased the mass proportion by 60% and 70% over CK, respectively. Compared with CK, P fertilizer (NP and NPM) treatments significantly increased organic P (Po) contents in each size aggregate. In particular, mean labile Po increased by 35% and 246%, moderately labile Po by 125% and 161%, nonlabile Po by 105% and 170% and total Po (TPo) by 101% and 178%, respectively, under NP and NPM treatments, respectively. There was a significant correlation between soil organic carbon (SOC) and Po fractions. SOC was exponentially positively correlated with labile Po but linearly positively correlated with moderately labile Po, nonlabile Po and TPo fractions among soil aggregates. A reduced C:Po ratio (<100) in soil aggregates among treatment indicates a large amount of available P accumulated in soils, and soil P loss risk in the study site is still high. Our results show that the Po pool measured by sequential chemical fractionation may represent an important, yet often overlooked, source of P in agriculture ecosystems. According to the result, long-term mineral P fertilizer combined with organic amendments better sustains soil structural stability in large aggregates, contributing more Po availability in the moderately labile P followed by labile P in soil aggregates.  相似文献   

3.
长期施肥对黑垆土无机磷形态的影响研究   总被引:9,自引:0,他引:9       下载免费PDF全文
王平  李凤民  刘淑英  吴银明  王娟 《土壤》2005,37(5):534-540
对黄土高原旱地黑垆土进行25年长期定位肥料试验,对土壤无机P形态、数量和对作物的有效性进行了研究。结果表明,石灰性土壤无机P的组成以Ca10-P占绝对优势,约占无机P总量的57.7%,其次是闭蓄态P(O-P),占17.9%,而Al-P、Fe-P、Ca8-P分别占5.9%、5.7%、10.1%,最少的为Ca2-P,只有2.8%。所有施肥处理中,各形态无机P均以土粪 NP含量最高;Ca2-P、Ca8-P、Al-P以N处理最低,而Fe-P、O-P、Ca10-P以CK处理最低;长期施肥对无机P各组分相对含量也有影响,耗P处理主要是Ca2-P、Ca8-P、Al-P的降低,而施P处理是Ca10-P的降解和Ca2-P的积累。与1990年比较,CK处理均有下降;N处理除O-P、Ca10-P有增加外,其他各组分含量均下降;而NP、秸杆. NP、土粪、土粪. NP处理均呈增加趋势。不同处理对土壤有效P和缓效态P均有不同程度的影响,而与无效态P关系不大。同时做了各形态无机P与作物产量的相关性分析,在各级无机P与产量的相关性中,Ca2-P、Ca8-P、Al-P都达到了极显著水平,其中以Ca8-P与产量的相关性最高,而Fe-P、O-P、Ca10-P也都达到了显著水平。  相似文献   

4.
 Soil P availability and efficiency of applied P may be improved through an understanding of soil P dynamics in relation to management practices in a cropping system. Our objectives in this study were to evaluate changes in plant-available (Olsen) P and in different inorganic P (Pi) and organic P (P0) fractions in soil as related to repeated additions of manure and fertilizer P under a soybean-wheat rotation. A field experiment on a Typic Haplustert was conducted from 1992 to 1995 wherein the annual treatments included four rates of fertilizer P (0, 11, 22 and 44 kg ha–1 applied to both soybean and wheat) in the absence and presence of 16 t ha–1 of manure (applied to soybean only). With regular application of fertilizer P to each crop the level of Olsen P increased significantly and linearly through the years in both manured and unmanured plots. The mean P balance required to raise Olsen P by 1 mg kg–1 was 17.9 kg ha–1 of fertilizer P in unmanured plots and 5.6 kg ha–1 of manure plus fertilizer P in manured plots. The relative sizes of labile [NaHCO3-extractable Pi (NaHCO3-Pi) and NaHCO3-extractable P0 (NaHCO3-P0)], moderately labile [NaOH-extractable Pi (NaOH-Pi) and NaOH-extractable P0 (NaOH-P0)] and stable [HCl-extractable P (HCl-P) and H2SO4/H2O2-extractable P (resisual-P)] P pools were in a 1 : 2.9 : 7.6 ratio. Application of fertilizer P and manure significantly increased NaHCO3-Pi and -P0 and NaOH-Pi, and -P0 fractions and also total P. However, HCl-P and residual-P were not affected. The changes in NaHCO3-Pi, NaOH-Pi and NaOH-P0 fractions were significantly correlated with the apparent P balance and were thought to represent biologically dynamic soil P and act as major sources and sinks of plant-available P. Received: 23 October 1997  相似文献   

5.
Abstract

Soil cultivation influences organic carbon storage and soil structures. To evaluate the impact of different soil‐management practices on soil organic carbon (SOC) pools and aggregate stability in black soils, SOC in whole soil, various size aggregates, and density‐separated fractions from three long‐term experiments (20 years) was examined. The three soil‐management systems were grassland (GL), bare land (BL), and croplands. The croplands had two treatments: nitrogen and phosphorus fertilizer application (NP) and NP together with organic manure (NPM). The SOC in the 0‐ to 10‐cm layer decreased in the order NPM>GL>NP>BL and also declined with the soil depth. The SOC of GL increased by 9.7% as compared to NP after 20 years of natural vegetation restoration. The SOC of NPM increased by 11% over NP after 13 years of organic manure application. The percentages of water‐stable aggregate (>0.25 mm) (WSA>0.25mm) decreased in the order GL>BL>NPM>NP in the top 0‐ to 20‐cm horizon. WSA>2mm, the most important fraction for carbon (C) storage in GL and NPM, accounted for 33 and 45% of the whole soil for GL in the depths of 0–10 and 10–20 cm, respectively, and 25 and 18% for NPM in the same soil layers. A significant positive correlation was found between the C stored in WSA>2mm and total SOC (r=0.81, P<0.05) and between the mean weight diameters (MWD) of aggregates and total SOC (r=0.78, P<0.05). Water‐stable aggregate0.25–2mm was the largest fraction of WSA>0.25mm, ranging from 54 to 72% for the 0‐ to 10‐cm layer and 46 to 71% for the 10‐ to 20‐cm layer; thus these aggregates would play a major role in soil sustainability as well as the resistance to soil erosion. The organic carbon (OC) of heavy fraction (HF) accounted for 94–99% of the OC in the WSA0.25–2mm, whereas free particulate organic matter (fPOM) and occluded particulate organic matter (oPOM) contributed a minor fraction of the OC in the WSA0.25–2mm, suggesting that C sequestration in HF could enhance the stability of aggregates and C pools in black soil.  相似文献   

6.
黄土高原旱地不同施肥对土壤肥力与产量的影响   总被引:11,自引:0,他引:11  
Long-term fertility experiments have become an important tool for investigating the sustainability of cropping systems. Therefore, a long-term (18-year) fertilization experiment was conducted in Changwu County, Shaanxi Province, China, to ascertain the effect of the long-term application of chemical fertilizers and manure on wheat yield and soil fertility in the Loess Plateau, so as to provide a scientific basis for sustainable land management. The experiment consisted of nine fertilizer treatments with three replicates arranged in a completely randomized design: 1) CK (no fertilizer); 2) N (N 120 kg ha-1); 3) P (P 26.2 kg ha-1); 4) NP (N 120, P 26.2 kg ha-1-2); 5) M (manure 75 t ha-1); 6) NM (N 120 kg ha-1, manure 75 t ha-1); 7) PM (P 26.2 kg ha-1, manure 75 t ha-1); 8) NPM (N 120 , P 26.2 kg ha-1, manure 75 t ha-1); and 9) fallow (no fertilizer, no crop). N fertilizer was applied in the form of urea and P was applied as calcium super phosphate. The results showed that precipitation had a large effect on the response of wheat yield to fertilization. Manure (M), NP, PM, NM, and NPM treatments significantly increased (P < 0.05) average yield. In the NP, PM, NM and NPM treatments, the percentage increases in yield due to fertilization were highest in normal years, and lowest in the drought years. Long-term P application enhanced soil available P markedly, and manure applications contributed more to soil fertility than chemical fertilizers alone. Chemical fertilizers applied together with manure distinctly improved soil fertility. The results also showed that the soil nutrient concentration changed mainly in the 0--60 cm layers and fertilization and planting only slightly affected soil nutrients below the 100 cm layers.  相似文献   

7.
不同土地利用下黑土磷素肥力特征的研究   总被引:4,自引:0,他引:4  
宋春  韩晓增 《土壤通报》2007,38(5):928-933
通过对海伦农田生态系统国家野外科学观测研究站内3种土地利用下共5个处理(裸地、草地、无肥耕地、施化肥耕地、施化肥和有机肥耕地)的典型黑土中的磷素进行了测定,结果表明经过20年长期定位试验后,3种土地利用方式下的土壤中草地全磷含量比裸地高17.5%,速效磷含量比裸地高22.9%;无肥耕地土壤全磷含量比裸地高7.9%,速效磷含量比裸地高80.1%。施化肥耕地全磷含量比无肥耕地高17.1%,速效磷含量是无肥耕地的3.3倍;施化肥和有机肥耕地全磷含量比施化肥耕地高46.3%,速效磷含量是施化肥耕地的3.3倍。土壤无机磷分级结果表明,不同土地利用下土壤中Ca2-P、Ca8-P、Al-P、Fe-P含量差异显著,而O-P、Ca10-P含量无明显变化,其中Ca2-P、Ca8-P、Al-P、Fe-P的含量,草地与裸地相比分别提高了30%、38%、17%、6.2%;无肥耕地与裸地相比提高了110%、75%、7.7%、-25%,与草地相比提高了62%、27%、-7.8%、-29%。施化肥耕地与无肥耕地相比,土壤中Ca2-P、Ca8-P、Al-P、Fe-P的含量分别提高了13%、153%、124%、92%;施化肥和有机肥耕地与施化肥耕地相比分别提高了341%、357%、136%、69%。对土壤磷的吸附性能测定结果表明,3种土地利用下土壤对磷的吸附能力为:无肥耕地>草地>裸地;耕地的3个处理中施化肥和有机肥可明显提高土壤对磷的吸附能力。  相似文献   

8.
Intensive agriculture (IA) is widespread in South Italy, although it requires frequent tillage, large amounts of fertilizers and irrigation water. We have assessed the efficacy of reversing IA to sustainable agriculture (SA) in recovering quality of a typical South Italy soil (Lithic Haploxeralf). This reversion, lasting from 2000 to 2007, replaced 75% of nutrients formerly supplied inorganically by farmyard manuring and reduced the tillage frequency. Several chemical and biochemical properties, functionally related to C and N mineralisation–immobilisation processes and to P and S nutrient cycles, were monitored annually from 2005 to 2007 in the spring. Reversing IA to SA decreased soil bulk density, almost doubled the soil organic matter (SOM) as favoured the immobilisation of C and N, increased most soil microbial indicators but decreased contents of nitrate, mineral N and K2SO4-extractable C. The K2SO4-extractable C/K2SO4-extractable organic N ratio suggested that substrate quality rather than the mass of readily available C and N affected biomass and activity of soil microflora. Also, the largely higher 10-day-evolved CO2–C-to-inorganic N ratio under SA than IA indicated that higher C mineralisation, associated with higher microbial biomass N immobilisation, occurred under SA than IA. Decreases in most soil enzyme activities under IA, compared to SA, were much higher than concomitant decreases in SOM content. Soil salinity and sodicity were always higher in IA than SA soil, although not critically high, likely due to the intensive inorganic fertilisation as irrigation waters were qualitatively and quantitatively the same between the two soils. Thus, we suggest that the cumulative small but long-term saline (osmotic) and sodic (dispersing) effects in IA soil decreased the microbial variables more than total organic C and increased soil bulk density.  相似文献   

9.
Paddy soils in subtropical China are usually deficient in phosphorus (P) and require regular application of chemical fertilizers. This study evaluated the effects of chemical fertilizers on the distribution of soil organic carbon (SOC), total nitrogen (N) and available P, and on the activity of the associated enzymes in bulk soil and aggregates. Surface soils (0–20 cm) were collected from a 24‐yr‐old field experiment with five treatments: unfertilized control (CK), N only (N), N and potassium (NK), N and P (NP), and N, P and K (NPK). Undisturbed bulk soils were separated into >2, 1–2, 0.25–1, 0.053–0.25 and <0.053 mm aggregate classes using wet sieving. Results showed that both NP‐ and NPK‐treated soils significantly increased mean weight diameter of aggregates, SOC, available P in bulk soil and aggregates, as compared to CK. Most SOC and total N adhered to macro‐aggregates (>0.25 mm), which accounted for 64–81% of SOC and 54–82% of total N in bulk soil. The activities of invertase and acid phosphatase in the 1–2 mm fraction were the highest under NPK treatment. The highest activity of urease was observed in the <0.053 mm fraction under NP treatment. Soil organic carbon and available P were major contributors to variation of enzyme activities at the aggregate scale. In conclusion, application of NP or NPK fertilizers promoted the formation of soil aggregates, nutrient contents and activities of associated enzymes in P‐limited paddy soils, and thus enhanced soil quality.  相似文献   

10.
Understanding the fate of different forms of nitrogen (N) fertilizers applied to soils is an important step in enhancing N use efficiency and minimizing N losses. The growth and N uptake of two citrus rootstocks, Swingle citrumelo (SC), and Cleopatra mandarin (CM), seedlings were evaluated in a pot experiment using a Candler fine sand (hyperthermic, uncoated, Typic Quartzipsamments) without N application or with 400 mg N kg–1 applied as urea or controlled-release fertilizers (CRF; either as Meister, Osmocote, or Poly-S). Meister and Osmocote are polyolefin resin-coated urea with longevity of N release for 270 days (at 25°C). Poly-S is a polymer and sulfur-coated urea with release duration considerably shorter than that of either Meister or Osmocote. The concentrations of 2 M KCl extractable nitrate nitrogen (NO3 -N) and ammonium nitrogen (NH4 +-N) in the soil sampled 180 days and 300 days after planting were greater in the soil with SC than with CM rootstock seedlings. In most cases, the extractable NH4 + and NO3 concentrations were greater for the Osmocote treatment compared to the other N sources. For the SC rootstock seedlings, dry weight was greater with Meister or Poly-S compared with either Osmocote or urea. At the end of the experiment, ranking of the various N sources, with respect to total N uptake by the seedlings, was: Meister = Osmocote > Poly-S > Urea > no N for CM rootstock, and Meister = Poly-S = Osmocote > Urea > no N for SC rootstock. The study demonstrated that for a given rate of N application the total N uptake by seedlings was greater for the CRF compared to urea treatment. This suggests that various N losses were lower from the CRF source as compared to those from soluble fertilizers. Received: 11 April 1997  相似文献   

11.
We investigated C management index (CMI; an indicator of sustainability of a management system and is based on total and labile C) and soil aggregation in medium-textured soils (silt loam and silty clay loam) under different cropping systems as follows: maize-wheat (M-W), rice-wheat (R-W), soybean-wheat (S-W), Guinea grass, and Setaria grass. Field experiments were 6–32 years long and were located in the wet-temperate zone of northwest Himalayas. The plant nutrients were applied through chemical fertilizers (urea, superphosphate, and muriate of potash) with or without organic materials (FYM, wheat straw, and Lantana spp.). The content of total C (CT), labile C (CL), CMI, mean weight diameter (MWD), and aggregate porosity varied significantly under different cropping systems. The range was 1.59 (R-W)–4.29% (Setaria) for CT, 1.23 (R-W)–3.89 mg/kg (Guinea grass) for CL, 52.09 (R-W)–129.77 (Guinea grass) for CMI, 0.90 (R-W)–5.09 (Guinea grass) for MWD, and 41.5 (R-W)–56.8% (S-W) for aggregate porosity. Aggregate porosity was highest (56.8%) under S-W, followed by grasses (50.1–51.2%), and M/R-W (41.5–50.0%). As per these data, (a) continuous use of N alone as urea lowered soil sustainability over control (no fertilizers); (b) use of NPK at recommended rates improved soil productivity over control; (c) the NPK + organic amendments further improved soil sustainability; and (d) the sustainability under different cropping systems followed the order: perennial grasses > soybean-wheat > maize-wheat > rice-wheat.  相似文献   

12.
Consumer demand for cleaned squid generates a substantial amount of waste that must be properly disposed of, creating an economic burden on processors. A potential solution to this problem involves converting squid by-products into an organic fertilizer, for which there is growing demand. Because fertilizer application to lawns can increase the risk of nutrient contamination of groundwater, we quantified leaching of NO3–N and PO4–P from perennial ryegrass turf (Lolium perenne L.) amended with two types of fertilizer: squid-based (SQ) and synthetic (SY). Field plots were established on an Enfield silt loam, and liquid (L) and granular (G) fertilizer formulations of squid and synthetic fertilizers were applied at 0, 48, 146, and 292 kg N ha−1 year−1. Levels of NO3–N and PO4–P in soil pore water from a depth of 60 cm were determined periodically during the growing season in 2008 and 2009. Pore water NO3–N levels were not significantly different among fertilizer type or formulation within an application rate throughout the course of the study. The concentration of NO3–N remained below the maximum contaminant level (MCL) of 10 mg L−1 until midSeptember 2009, when values above the MCL were observed for SQG at all application rates, and for SYL at the high application rate. Annual mass losses of NO3–N were below the estimated inputs (10 kg N ha−1 year−1) from atmospheric deposition except for the SQG and SYL treatments applied at 292 kg N ha−1 year−1, which had losses of 13.2 and 14.9 kg N ha−1 year−1, respectively. Pore water PO4–P levels ranged from 0 to 1.5 mg P L−1 and were not significantly different among fertilizer type or formulation within an application rate. Our results indicate that N and P losses from turf amended with squid-based fertilizer do not differ from those amended with synthetic fertilizers or unfertilized turf. Although organic in nature, squid-based fertilizer does not appear to be more—or less—environmentally benign than synthetic fertilizers.  相似文献   

13.
Aggregates from non-cultivated soil and from cultivated soil enriched with mineral fertilizers or farmyard manure were separated into fractions of different diameter and stability. The humic substances extracted from each type of aggregate were subjected to gel-filtration on Sephadex. The more stable aggregates had a higher content of Na4P2O7-extractable humus and free iron hydroxides, and a predominance of humic substances of apparent molecular weight >100 000, whereas the less stable aggregates were richer in compounds of low molecular weight. Structure stability was lower in the cultivated soil than in the non-cultivated, and in the soil with mineral fertilizers in comparison to that with farmyard manure. Humus of m.w. >100 000 had a COOH content twice as great and a phenolic OH content five times greater per unit of molecular weight than humus with m.w. <100 000. The former is the more suitable stabilizer of soil aggregates.  相似文献   

14.
The objective of this study was to evaluate plant-available N pools and the role of N management index (NMI) in the surface (0–20 cm) of a fluvo-aquic soil after 18 years of fertilization treatments under a wheat–maize cropping system in the North China Plain. The experiment included seven treatments: (1) NPK, balanced application of chemical fertilizer NPK; (2) OM, application of organic manure; (3) 1/2OMN, application of half organic manure plus chemical fertilizer NPK; (4) NP, application of chemical fertilizer NP; (5) PK, application of chemical fertilizer PK; (6) NK, application of chemical fertilizer NK; and (7) CK, unfertilized control. Total organic N (TON), microbial biomass N (MBN), labile N (LN), inorganic N (ION, including ammonium (NH4+)–N and nitrate (NO3)–N) contents, net ammonification rate (NAR), net nitrification rate (NNR), net N mineralization rate (NNMR), and NMI in the fertilized treatments were higher than in the unfertilized treatment. Application of chemical fertilizer N (NPK, NP, and NK) increased ION in soils, compared with application of organic N or control. Nitrate N prevailed over exchangeable NH4+–N in all treatments. Nitrogen storage of the OM- and 1/2OMN-treated soils increased by 50.0% and 24.3%, respectively, over the NPK-treated soil, which had 5.4–22.5% more N than NP-, PK-, and NK-treated soils. The MBN, LN, and ION accounted for 1.7–2.4%, 25.7–34.2%, and 1.4–2.9% of TON, respectively, in different fertilization treatments. The surface soils (0–20-cm layer) in all treatments mineralized 43.6–152.9 kg N ha–1 year–1 for crop growth. Microbial biomass N was probably the better predictor of N mineralization, as it was correlated significantly (P < 0.01) with NNMR. The OM and 1/2OMN treatments were not an optimal option for farmers when the crop yield and labor cost were taken into consideration but an optimal option for increasing soil N supply capacity and N sequestration in soil. The NPK treatment showed the highest crop yields and increased soil N fractions through crop residues and exudates input, and thus, it may be considered as a sustainable system in the North China Plain.  相似文献   

15.
利用长期定位实验,在黄土高原旱地研究不同施肥下小麦连作22年后土壤养分及水分的变化状况,为合理利用水肥资源提供参考.在对照(CK)、单施氮肥(N)、单施磷肥(P)、单施有机肥(M)、氮磷化肥配施(NP)、氮磷化肥与有机肥配施( NPM)6个不同长期施肥处理中,测定耕层(0~20 cm)土壤的基础养分和土壤剖面(0~30...  相似文献   

16.
Little information is available about the effects of cover crops on soil labile organic carbon (C), especially in Australia. In this study, two cover crop species, i.e., wheat and Saia oat, were broadcast-seeded in May 2009 and then crop biomass was crimp-rolled onto the soil surface at anthesis in October 2009 in southeastern Australia. Soil and crop residue samples were taken in December 2009 to investigate the short-term effects of cover crops on soil pH, moisture, NH4+–N, NO3–N, soluble organic C and nitrogen (N), total organic C and N, and C mineralization in comparison with a nil-crop control (CK). The soil is a Chromic Luvisol according to the FAO classification with 48.4 ± 2.2% sand, 19.5 ± 2.1% silt, and 32.1 ± 2.1% clay. An exponential model fitting was employed to assess soil potentially labile organic C (C 0) and easily decomposable organic C for all treatments based on 46-day incubations. The results showed that crop residue biomass significantly decreased over the course of 2-month decomposition. The cover crop treatments had significantly higher soil pH, soluble organic C and N, cumulative CO2–C, C 0, and easily decomposable organic C, but significantly lower NO3–N than the CK. However, no significant differences were found in soil moisture, NH4+–N, and total organic C and N contents among the treatments. Our results indicated that the short-term cover crops increased soil labile organic C pools, which might have implications for local agricultural ecosystem managements in this region.  相似文献   

17.
 High molecular weight, anionic polyacrylamide (PAM) is currently being used as an irrigation water additive to significantly reduce soil erosion associated with furrow irrigation. PAM contains amide-N, and PAM application to soils has been correlated with increased activity of soil enzymes, such as urease and amidase, involved in N cycling. Therefore we investigated potential impacts of PAM treatment on the rate at which fertilizer N is transformed into NH4 + and NO3 in soil. PAM-treated and untreated soil microcosms were amended with a variety of fertilizers, ranging from common rapid-release forms, such as ammonium sulfate [(NH4)2SO4] and urea, to a variety of slow-release formulations, including polymerized urea and polymer-encapsulated urea. Ammonium sulfate was also tested together with the nitrification inhibitor dicyandiamide (DCD). The fertilizers were applied at a concentration of 1.0 mg g–1, which is comparable to 100 lb acre–l, or 112 kg ha–1. Potassium chloride-extractable NH4 +-N and NO3 -N were quantified periodically during 2–4 week incubations. PAM treatment had no significant effect on NH4 + release rates for any of the fertilizers tested and did not alter the efficacy of DCD as a nitrification inhibitor. However, the nitrification rate of urea and encapsulated urea-derived NH4 +-N was slightly accelerated in the PAM-treated soil. Received: 16 January 1998  相似文献   

18.
Literature reports on N2O and NO emissions from organic and mineral agricultural soil amended with N-containing fertilizers have reached contradictory conclusions. To understand the influence of organic manure (OM) and chemical fertilizer application on N2O and NO emissions, we conducted laboratory incubation experiments on an agricultural sandy loam soil exposed to different long-term fertilization practices. The fertilizer treatments were initiated in 1989 at the Fengqiu State Key Agro-ecological Experimental Station and included a control without fertilizer (CK), OM, mineral NPK fertilizer (NPK), mineral NP fertilizer (NP), and mineral NK fertilizer (NK). The proportion of N emitted as NO and N2O varied considerably among fertilizer treatments, ranging from 0.83% to 2.50% as NO and from 0.08% to 0.36% as N2O. Cumulative NO emission was highest in the CK treatment after NH 4 + -N was added at a rate of 200 mg N kg?1 soil during the 612-h incubation period, whereas the long-term application of fertilizers significantly reduced NO emission by 54–67%. In contrast, the long-term application of NPK fertilizer and OM significantly enhanced N2O emission by 95.6% and 253%, respectively, compared to CK conditions. The addition of NP fertilizer (no K) significantly reduced N2O emission by 25.5%, whereas applications of NK fertilizer (no P) had no effect. The difference among the N-fertilized treatments was due probably to discrepancies in the N2O production potential of the dominant ammonia-oxidizing bacteria (AOB) species rather than AOB abundance. The ratio of NO/N2O was approximately 24 in the CK treatment, significantly higher than those in the N-fertilized treatments (3–11), and it decreased with increasing N2O production potential in N-fertilized treatments. Our data suggests that the shift in the dominant AOB species might produce reciprocal change in cumulative NO and N2O emissions.  相似文献   

19.
 The effects of organic residues and inorganic fertilizers on P availability and maize yield were compared in a Nitisol of western Kenya. Leaf biomass of Calliandra calothyrsus, Senna spectabilis, Croton megalocarpus, Lantana camara, Sesbania sesban, and Tithonia diversifolia were incorporated into the soil at 5 Mg ha–1 for six consecutive seasons in 3 years and responses compared with those following the application of 120 kg N ha–1, 0 kg P ha–1 (0P); 120 kg N ha–1, 10 kg P ha–1; and 120 kg N ha–1 25 kg P ha–1 as urea and triple superphosphate (TSP); K was supplied in all treatments. Addition of Tithonia, Lantana and Croton increased soil resin-extractable P over that of fertilizer-amended soil throughout the first crop, but the amounts in the former treatments became similar to those for soils amended with inorganic fertilizers for subsequent crops. Addition of Sesbania, Calliandra and Senna had a similar effect on resin P as inorganic fertilizers. Total maize yields after six seasons were tripled by the application of Tithonia compared to 0P, and were higher than those of the Calliandra, Senna, Sesbania and Lantana treatments, and similar only to that of the Croton treatment. P recovered in the above-ground biomass and resin P, immediately after the implementation of the treatments, was higher in the Senna, Sesbania, Croton, Lantana and Tithonia (35–77%) treatments than in the inorganic fertilizer treatments (21–27%). The P content of organic residues, and the soluble C:total P ratio, were the main residue parameters predicting soil P availability and maize yield. All organic residues used in this study can replace inorganic fertilizers for the enhancement of P availability and maize production, while an additional benefit could be obtained from the use of Croton, Lantana and Tithonia. Received: 19 January 2000  相似文献   

20.
We studied the effect of five fertilizers (including two adjusted manure slurries) and an untreated control on soil biota and explored the effect on the ecosystem services they provided. Our results suggest that the available N (NO3 and NH4+) in the soil plays a central role in the effect of fertilizers on nematodes and microorganisms. Microorganisms are affected directly through nutrient availability and indirectly through grass root mass. Nematodes are affected indirectly through microbial biomass and grass root mass. A lower amount of available N in the treatment with inorganic fertilizer was linked to a higher root mass and a higher abundance and proportion of herbivorous nematodes. A higher amount of available N in the organic fertilizer treatments resulted in a twofold higher bacterial activity (measured as bacterial growth rate, viz. thymidine incorporation), a higher proportion of bacterivorous nematodes, a 30% higher potential N mineralization (aerobic incubation), and 25–50% more potentially mineralizable N (anaerobic incubation). Compared to inorganic fertilizer, organic fertilization increased the C total, the N total, the activity of decomposers, and the supply of nutrients via the soil food web. Within the group of organic fertilizers, there was no significant difference in C total, abundances of soil biota, and the potential N mineralization rate. There were no indications that farmyard manure or the adjusted manure slurries provided the ecosystem service “supply of nutrients” better than normal manure slurry. Normal manure slurry provided the highest bacterial activity and the highest amount of mineralizable N and it was the only fertilizer resulting in a positive trend in grass yield over the years 2000–2005. The number of earthworm burrows was higher in the treatments with organic fertilizers compared to the one with the inorganic fertilizer, which suggests that organic fertilizers stimulate the ecosystem service of water regulation more than inorganic fertilizer. The trend towards higher epigeic earthworm numbers with application of farmyard manure and one of the adjusted manure slurries, combined with the negative relation between epigeic earthworms and bulk density and a significantly lower penetration resistance in the same fertilizer types, is preliminary evidence that these two organic fertilizer types contribute more to the service of soil structure maintenance than inorganic fertilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号