首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Several photometric measurements of Venus made from the Pioneer Venus orbiter and probes indicate that solar near-ultraviolet radiation is being absorbed throughout much of the main cloud region, but little above the clouds or within the first one or two optical depths. Radiative transfer calculations were carried out to simulate both Pioneer Venus and ground-based data for a number of proposed cloud compositions. This comparison rules out models invoking nitrogen dioxide, meteoritic material, and volatile metals as the source of the ultraviolet absorption. Models involving either small ( approximately 1 micrometer) or large ( approximately 10 micrometers) sulfur particles have some serious difficulties, while ones invoking sulfur dioxide gas appear to be promising.  相似文献   

2.
Laboratory simulation and tests of the inlet sampling system and columns of the Pioneer Venus gas chromatograph show that the sensitivity to argon is not diminished after the column regeneration step, argon isotopes are not separated, oxygen and sulfur dioxide are not produced in the inlet sampling system from sulfur trioxide, and sulfur trioxide is not formed from sulfur dioxide and oxygen. Comparisons of the volatile inventory of Venus and Earth imply similar efficiencies of early outgassing but a lower efficiency for later outgassing in the case of Venus. The high oxidation state of the Venus atmosphere in the region of cloud formation may prohibit the generation of elemental sulfur particles.  相似文献   

3.
Results from the Pioneer Venus sounder probe neutral mass spectrometer indicate that there is no difference in the isotopic ratios of carbon and oxygen between Venus and Earth to within +/- 5 percent. The mixing ratio of nitrogen is 3.5(+3)(-2) percent with an isotopic ratio within 20 percent of that of Earth. The ratio of argon-36 to argon-40 is 85 percent, and the ratio of argon-38 to argon-36 is 20 percent. The mixing ratios of argon-36 and argon-40 are approximately 40 and 50 parts per million, respectively, with an error of about a factor of 2 (mainly toward a lesser amount) resulting from uncertainty in the response of the ion pump to rare gases. Hydrogen chloride cannot account for more than a few percent of the 36 mass peak, and therefore the large excess of primordial argon is a reasonable conclusion. The ratio of neon-20 to argon-36 of 0.5 +/- 0.3 is definitely terrestrial in character rather than solar. These results indicate that there is a large excess of all primordial noble gases on Venus relative to Earth. There appears to be a considerably higher abundance of sulfur compounds below 20 kilometers than in or above the main cloud layer. The 32 and 60 mass peaks show a sharp increase below 22 kilometers, indicating the possible production of sulfur and carbon oxysulfide (COS) at the expense of sulfur dioxide.  相似文献   

4.
Data from the Pioneer Venus radar mapper, combined with measurements of wind velocity and atmospheric composition, suggest that surface erosion on Venus varies with altitude. Calcium- and magnesium-rich weathering products are produced at high altitudes by gas-solid reactions with igneous minerals, then removed into the hotter lowlands by surface winds. These fine-grained weathering products may then rereact with the lower atmosphere and buffer the composition of the observed gases carbon dioxide, water vapor, sulfur dioxide, and hydrogen fluoride in some regions of the surface. This process is a plausible mechanism for the establishment in the lowlands of a calcium-rich mineral assemblage, which had previously been found necessary for the buffering of these species.  相似文献   

5.
Initial examination of data from the neutral mass spectrometer on the Pioneer Venus sounder probe indicates that the abundances of argon-36, argon-38, and neon-20 in the Venus atmosphere are much higher than those of the corresponding gases in Earth's atmosphere, although the abundance of radiogenic argon-40 is apparently similar for both planets. The lower atmosphere of Venus includes significant concentrations of various gaseous sulfur compounds. The inlet leak to the mass spectrometer was temporarily blocked by an apparently liquid component of the Venus clouds during passage through the dense cloud layer. Analysis of gases released during the evaporation of the droplets shows the presence of water vapor to some compound or compounds of sulfur.  相似文献   

6.
Prinn RG 《Science (New York, N.Y.)》1973,182(4117):1132-1135
It is proposed that the visible cloud deck on Venus is composed of droplets of sulfuric acid. These are formed by the very rapid photooxidation of carbonyl sulfide in the upper atmosphere. The clouds are best described as an extensive haze since the predicted particulate scale height probably exceeds the gas scale height within the layer. The predicted mixing ratio for water is 10(-6) (lower limit), and for both carbonyl sulfide and sulfur dioxide it is 10(-7) (upper limit); these are in good agreement with observations. Gaps in the layer are not possible unless the planetary scale dynamics produce cloud turnover times of less than a few days. Under these conditions the water mixing ratio could approach 10(-4) and the formation of a thin hydrochloric acid haze at high altitude above the main cloud is possible.  相似文献   

7.
Data from the Pioneer Venus cloud particle size spectrometer experiment has revealed the Venus cloud system to be a complicated mixture of particles of various chemical composition distinguishable by their multimodal size distributions. The appearance, disappearance, growth, and decay of certain size modes has aided the preliminary identification of both sulfuric acid and free sulfur cloud regions. The discovery of large particles > 30 micrometers, significant particle mass loading, and size spectral features suggest that precipitation is likely produced; a peculiar aerosol structure beneath the lowest cloud layer could be residue from a recent shower.  相似文献   

8.
A summary is presented of the scientific results obtained during the first 120 days of the Pioneer Venus orbiter mission and produced by analysis of multiprobe data as of about 1 April 1979. The summary is essentially a guide to the material presented in the reports devoted to Pioneer Venus results in this issue of Science.  相似文献   

9.
Measurements in situ of the neutral composition and temperature of the thermosphere of Venus are being made with a quadrupole mass spectrometer on the Pioneer Venus orbiter. The presence of many gases, incluiding the major constituents CO(2), CO, N(2), O, and He has been confirmed. Carbon dioxide is the most abundant constituent at altitudes below about 155 kilometers in the terminator region. Above this altitude atomic oxygen is the major constituent, with O/CO(2) ratios in the upper atmosphere being greater than was commonly expected. Isotope ratios of O and C are close to terrestrial values. The temperature inferred from scale heights above 180 kilometers is about 400 K on the dayside near the evening terminator at a solar zenith angle of about 69 degrees . It decreases to about 230 K when the solar zenith angle is about 90 degrees .  相似文献   

10.
The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen [69.3 parts per million (ppm)], argon (18.6 ppm), neon (4.31 ppm), and sulfuir dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the clould tops to their bottoms, as implied by Earth-based observations and these resuilts, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.  相似文献   

11.
The neutral mass spectrometer on board the Pioneer Venus multiprobe bus measured composition and structral parameters of the dayside Venus upper atmosphere on 9 December 1978. Carbon dioxide and helium number densities were 6 x 10(6) and 5 x 10(6) per cubic centimeter, respectively, at an altitude of 150 kilometers. The mixing ratios of both argon-36 and argon-40 were approximately 80 parts per million at an altitude of 135 kilometers. The exospheric temperature from 160 to 170 kilometers was 285 +/- 10 K. The helium homopause was found at an altitude of about 137 kilometers.  相似文献   

12.
Thermal structure measurements obtained by the two VEGA balloons show the Venus middle cloud layer to be generally adiabatic. Temperatures measured by the two balloons at locations roughly symmetric about the equator differed by about 6.5 kelvins at a given pressure. The VEGA-2 temperatures were about 2.5 kelvins cooler and those of VEGA-1 about 4 kelvins warmer than temperatures measured by the Pioneer Venus Large Probe at these levels. Data taken by the VEGA-2 lander as it passed through the middle cloud agreed with those of the VEGA-2 balloon. Study of individual frames of the balloon data suggests the presence of multiple discrete air masses that are internally adiabatic but lie on slightly different adiabats. These adiabats, for a given balloon, can differ in temperature by as much as 1 kelvin at a given pressure.  相似文献   

13.
Ultraviolet images of Venus over a 3-month period show marked evolution of the planetary scale features in the cloud patterns. The dark horizontal Y feature recurs quasi-periodically, at intervals of about 4 days, but it has also been absent for periods of several weeks. Bow-shaped features observed in Pioneer Venus images are farther upstream from the subsolar point than those in Mariner 10 images.  相似文献   

14.
Demore WB  Yung YL 《Science (New York, N.Y.)》1982,217(4566):1209-1213
Photochemical processes in planetary atmospheres are strongly influenced by catalytic effects of minor constituents. Catalytic cycles in the atmospheres of Earth and Venus are closely related. For example, chlorine oxides (CIOx) act as catalysts in the two atmospheres. On Earth, they serve to convert odd oxygen (atomic oxygen and ozone) to molecular oxygen. On Venus they have a similar effect, but in addition they accelerate the reactions of atomic and molecular oxygen with carbon monoxide. The latter process occurs by a unique combination of CIOx catalysis and sulfur dioxide photosensitization. The mechanism provides an explanation for the very low extent of carbon dioxide decomposition by sunlight in the Venus atmosphere.  相似文献   

15.
Krueger AJ 《Science (New York, N.Y.)》1983,220(4604):1377-1379
The eruptions of El Chichón volcano on 28 March and 3 and 4 April 1982 were observed by the Nimbus 7 total ozone mapping spectrometer due to strong absorption by volcanic gases at the shortest wavelengths of the spectrometer (312.5 and 317.5 nanometers). These ultraviolet pictures permit a measurement of the volume, dispersion, and drift of volcanic gas clouds. The tropospheric clouds were rapidly dispersed in westerly winds while persistent stratospheric clouds drifted in easterly winds at speeds up to 13 meters per second. The spectral reflectance is consistent with sulfur dioxide absorption and rules out carbon disulfide as a major constituent. A preliminary estimate of the mass of sulfur dioxide deposited in the stratosphere by the large eruptions on 3 and 4 April is 3.3 x 10(6) tons. Prior estimates of volcanic cloud volume were based on extrapolation of locally measured sulfur dioxide concentrations.  相似文献   

16.
Measurements of the composition, temperature, and diurnal variations of the major neutral constituents in the thermosphere of Venus are being made with a quadrupole mass spectrometer on the Pioneer Venus orbiter. Concentrations of carbon dioxide, carbon monoxide, molecular nitrogen, atomic oxygen, and helium are presented, in addition to an empirical model of the data. The concentrations of the heavy gases, carbon dioxide, carbon monoxide, and molecular nitrogen, rapidly decrease from the evening terminator toward the nightside; the concentration of atomic oxygen remains nearly constant and the helium concentration increases, an indication of a nightside bulge. The kinetic temperature inferred from scale heights drops rapidly from 230 K at the terminator to 130 K at a solar zenith angle of 120 degrees , and to 112 K at the antisolar point.  相似文献   

17.
Gas emissions and the eruptions of mount st. Helens through 1982   总被引:3,自引:0,他引:3  
The monitoring of gas emissions from Mount St. Helens includes daily airborne measurements of sulfur dioxide in the volcanic plume and monthly sampling of gases from crater fumaroles. The composition of the fumarolic gases has changed slightly since 1980: the water content increased from 90 to 98 percent, and the carbon dioxide concentrations decreased from about 10 to 1 percent. The emission rates of sulfur dioxide and carbon dioxide were at their peak during July and August 1980, decreased rapidly in late 1980, and have remained low and decreased slightly through 1981 and 1982. These patterns suggest steady outgassing of a single batch of magma (with a volume of not less than 0.3 cubic kilometer) to which no significant new magma has been added since mid-1980. The gas data were useful in predicting eruptions in August 1980 and June 1981.  相似文献   

18.
Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus 1 indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed denisities are generally lower than given by theoretical models.  相似文献   

19.
In this report the fluxes measured by the solar flux radiometer (LSFR) of the Pioneer Venus large probe are compared with calculations for model atmospheres. If the large particles of the middle and lower clouds are assumed to be sulfur, strong, short-wavelength absorption results in a net flux profile significantly different from the LSFR net flux measurements. Models in which the smallest particles are assumed to be sulfur gave flux profiles consistent with the measurements if an additional source of absorption is included in the upper cloud. The narrowband data from 0.590 to 0.665 micrometer indicate an absorption optical depth of about 0.05 below the cloud bottom. The broadband data imply that either this absorption extends over a considerable wavelength interval (as might be the case for dust) or that a very strong absorption band lies on one side of the narrowband filter (as suggested by early Venera 11 and Venera 12 reports). Thermal balance calculations based on the measured visible fluxes indicate high surface temperature for reasonable assumptions of cloud opacity and water vapor abundance. The lapse rate becomes convective within the middle cloud. For water mixing ratios of 2.0 x 10(-4) below the clouds we find a subadiabatic region extending from the cloud bottom to altitudes near 35 kilometers.  相似文献   

20.
The 2.3-gigahertz log-amplitude fluctuations observed in the radio links of the Pioneer Venus entry probes during Venus encounter have been used to study turbulence in the Venus atmosphere. The deduced estimates of the upper bound of structure constant c(n) of the refractive index fluctuations (c(n) less, similar 4 x 10(-8) cm(-(1/3))) are inconsistent with similar entry probe measurements by Veneras 4 to 8 but are consistent with the radio occultation measurements by flyby (Mariners 5 and 10) and orbiting (Venerat 9) spacecraft. The Pioneer Venus measurements therefore provide a resolution of the long-standing order of magnitude discrepancy between these earlier measurements of c(n).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号