首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 173 毫秒
1.
面向机器人采摘的荔枝果梗力学特性   总被引:3,自引:3,他引:0  
为了给荔枝采摘机器人夹持与切割器的设计和控制提供依据,对荔枝果梗分别进行了切割性能和夹持性能的影响因素试验以及弯曲试验。试验结果表明:峰值切割力和切割强度随着切割速度增加而减小,随着切割角度的减少而减少,凹刃和凸刃的峰值切割力和切割强度都比平刃小;除果梗直径因素外对峰值切割力和切割强度影响显著的因素均依次为切割角度、刃口形式和切割速度;切割角度每减少1,峰值切割力和切割强度分别减少4.45N和0.16MPa;相比平刃的峰值切割力和切割强度,凸刃分别减少166.90N和2.11MPa,而凹刃分别减少167.39N和4.21MPa。随着夹持力增加,荔枝果梗与夹持物间摩擦力增加,夹持物为橡胶时,摩擦力最大,夹持力对摩擦力的影响大于夹持材料;试验范围内,最大摩擦力为44.54N。荔枝果梗具有较强的抵抗变形的能力,平均弹性模量为867.15MPa;试验范围内,最大弯曲力的平均值为118.95N,抗弯强度的平均值为56.03MPa。该研究为荔枝采摘机器人的夹持与切割机构的优化设计和控制提供了理论依据。  相似文献   

2.
西瓜采摘末端执行器夹持力精确控制   总被引:2,自引:2,他引:0  
为实现西瓜的机械化采摘,该文提出了采用液压驱动型末端执行器采摘大型果实的思路。在抓取西瓜时,为避免末端执行器夹持力不稳定引起的果实损伤,需对夹持力进行精确控制,该文建立了末端执行器负载模拟平台和AMESimSimulink联合仿真模型,模拟西瓜采摘夹持力的加载情况。针对执行器夹持力加载过程中位置控制系统对力控制系统产生干扰,影响夹持力精确加载的问题,该文基于速度同步控制原理,设计了简化的加载误差补偿环节,开展了加载误差补偿理论、仿真及试验研究。结果表明,速度同步控制方法能够有效地减小加载误差,提高末端执行器负载模拟精度。该研究可为末端执行器输出力的精确控制和抓取控制策略提供参考。  相似文献   

3.
机器人柔性抓取试验平台的设计与抓持力跟踪阻抗控制   总被引:1,自引:5,他引:1  
为减小机器人在采摘过程中对果蔬的损伤,设计了机器人柔性抓取试验平台,提出了一种适合末端执行器双指抓取果蔬的抓持力跟踪阻抗控制算法,该算法将末端执行器抓持果蔬系统等效为阻抗-导纳模型,使手指力/位控制等效为期望的惯量-阻尼-刚度模型,可按需调节其参数实现抓持力与位置的动态关系。期望抓持力与采集果蔬实际接触力的偏差作为外环力阻抗控制器的输入,控制器生成对内部位置环参考轨迹的校正量。该算法仅考虑沿末端执行器双指夹持果蔬方向,避免了使用多自由度机械臂阻抗控制算法的复杂性,提高了控制的实时性,同时对抓取系统模型的不确定和力扰动具有较强的鲁棒性。机器人抓取试验证明了双指抓持力反馈阻抗柔顺控制算法的有效性,可实现机器人柔性抓取,减小抓取果蔬损伤和保证品质。该研究可为农业机器人无损抓取和采摘提供关键技术。  相似文献   

4.
为了解决油茶果机械化采摘漏采率高、损伤率大和耗能过大的问题,针对摇枝式油茶果采摘装置,该文通过对油茶果振动脱落过程的分析,建立油茶果振动脱落模型并求解,得出影响油茶果脱落的主要因素为作用在枝条上的外力的振幅、频率、作用时间以和夹持位置,并通过预试验和正交试验得到摇枝式油茶果采摘装置的作业参数范围及漏采率最低情况下的作业参数组合。利用高速摄像对油茶果振动脱落过程进行记录,然后回放录像并分析,以油茶果脱落时间作为评价指标,得出采摘效率较高的振动频率、振幅范围为6~10 Hz和20~40 mm,根据平均落果时间范围确定采摘装置的振动作用时间约为4~12 s。根据油茶果在树上的主要分布范围(距离树冠表层260 mm左右),设计四因素三水平正交油茶果采摘试验,得出漏采率最低的作业参数组合为振动夹持位置在距离树梢末端260 mm以内、振动频率10 Hz、振幅20 mm、振动时间8 s,此时油茶果的漏采率为10.87%,花苞损伤率为31.80%。机械夹持方式和铁质的夹持材料对花苞损伤较大,需进一步优化采摘装置作业参数,优化夹持方式和采用柔软的夹持材料,实现油茶果的机械采摘。  相似文献   

5.
为了实现苹果机器采摘过程中的柔顺抓取以减小果实损伤,该文在对苹果抓取过程的力学特性变化规律分析的基础上,提出了苹果采摘机器人柔顺抓取的参数自整定阻抗控制方法。首先,利用Burgers黏弹性模型表征苹果的流变特性,将抓取过程分为匀速加载、夹持减速、应力松弛3个阶段,在此基础上求解获得苹果形变量随时间的变化规律和果实接触力与变形量的变化关系。然后,求解出所设计的基于力的阻抗控制系统的期望输入以及抓取环境接触力模型。最后,针对阻抗控制器参数对接触力的影响,构造阻抗参数自整定变化函数,完成改进阻抗控制系统设计。仿真及试验结果表明:依据果实抓取模型及变形规律求解期望位置的方式来模拟末端执行器对苹果的抓取过程是可行的,所建立的抓取环境接触力模型在一定程度上能够避免将环境模型简化为一阶模型而产生的误差。改进阻抗控制得到的期望抓取力更加平顺,其超调量约为2.3%,接触力调节时间减小到0.48 s,接触力的超调量约为2%,较未改进阻抗控制的接触力超调量减小了37.5%。研究结果可为苹果采摘机器人的柔顺控制方法提供参考。  相似文献   

6.
杨梅果的机械损伤试验和生物力学特性   总被引:5,自引:1,他引:4  
为探讨在机械采摘条件下杨梅果的损伤机理与规律,该文依据机械手采摘果实的压缩、夹持、坠落等机械损伤形式,设计了杨梅果的力学特性试验方案,分析了杨梅果实的表型和成熟度等生物特性,应用圆球与平面接触的弹性力学模型理论以及试验数据,推导杨梅果的生物力学参数。分析得出了杨梅果的压缩弹性系数C、最大接触应力q和几种机械损伤杨梅果的力学特性方程和关系曲线。研究结果可为杨梅采摘机械手末端执行器的设计与采摘控制提供参考。  相似文献   

7.
葡萄与番茄宏观力学特性参数的确定   总被引:15,自引:15,他引:15       下载免费PDF全文
通过对葡萄与番茄的压缩试验,测得其力—位移曲线,得出在相同加载速率下,不同硬度的葡萄与番茄在横、纵向压缩时的力学特性及刚度与变形之间的关系。并对果皮进行了横、纵向的拉伸试验,得到了皮的弹性模量与应变之间的关系,确定了以果品表皮破裂作为机械损伤的形式,用果皮的破坏强度衡量葡萄与番茄的损伤,为建立葡萄与番茄的力学模型及设计有关的机械设备提供力学参数。  相似文献   

8.
苹果采摘机器人末端执行器恒力柔顺机构研制   总被引:4,自引:3,他引:1  
为了减少采摘机器人末端执行器在夹持过程中对果实造成的损伤,该文通过在末端执行器上设置柔顺机构,并对柔顺机构力学性能进行计算,求解果实无损采摘所需的柔顺恒力特性。首先,基于形状函数建立边界条件约束下的柔顺梁非线性常微分控制方程;然后,利用打靶法将上述边值问题重新描述为初值问题,并结合遗传算法进行初值优化求解,采用序列二次规划法优化梁的形状函数,使其在一定变形范围内实现恒力输出;最后,在给出求解所需参数和柔顺机构初始形状参数基础上,以苹果采摘为例,通过优化计算,使柔顺梁对果实的夹持力维持在7.9 N左右,非线性有限元计算和力-位移特性试验验证了计算结果的准确性,多次苹果夹持试验的抓取完好率为95%,验证了该柔顺机构无损夹持苹果的可行性。研究结果可为不同类型果实的恒力夹持提供参考。  相似文献   

9.
脐橙采摘机器人末端执行器设计与试验   总被引:5,自引:4,他引:1  
针对脐橙无损采摘的需求,基于欠驱动原理设计了一种双V型手指脐橙采摘机器人末端执行器,主要由吸附机构、夹持机构和旋切机构3部分组成,吸附机构可以实现果实与果簇快速分离,夹持机构能够对果实进行无损稳定夹持,旋切机构可以将果实与果梗快速分离。建立脐橙数学模型并分析了手指工作空间。依据夹持机构的受力分析,并对关键部件进行了选型。结合电阻式薄膜压力传感器设计了手指的力反馈系统,使夹持机构达到稳定无损采摘要求。搭建末端执行器实体样机,以步进电机转速为因素,以单果采摘时间、采摘成功率和损伤率为指标,进行了105次采摘试验,根据试验结果,选取250 r/min作为最佳步进电机转速,此时单果采摘时间为1.76 s,采摘成功率为94.28%,损伤率为0。该文研究的脐橙采摘末端执行器采摘速度高、控制难度低、与机械臂集成度高,可为脐橙采摘机器人的整体研发提供参考。  相似文献   

10.
面向机器人采摘的番茄力学特性试验   总被引:7,自引:6,他引:1  
番茄果实及果梗的力学特性,是采摘机器人设计与控制的重要依据。对不同成熟期的番茄果实进行了纵向和横向挤压试验,对其果梗进行了折断和拉断试验。试验表明番茄果实的抗挤压能力具有明显的各向异性,且从青果期至绿熟期达到最大,而后随着成熟度增加而迅速减小。利用简化结构对这一规律的力学原理进行了分析。果梗拉断和折断试验发现,果梗均从离层处断裂,与拉断相比,折断方式更省力和易于实现机器人采摘。  相似文献   

11.
局部按压对不同成熟度番茄机械损伤的影响   总被引:1,自引:1,他引:0  
为了探究局部按压对白熟期、转色期、粉红期番茄机械损伤的影响规律,该研究采用水果硬度计对番茄进行按压,并用扫描电镜观察按压处番茄组织微观结构变化,以腐烂、褶皱、有压痕、无压痕4个损伤等级和损伤显象天数作为评价标准,通过按压试验,分析局部按压压强对各级损伤的影响规律,得到不同成熟度番茄各损伤等级的压强分布区间,建立番茄局部机械损伤评估分类模型。最后,通过三指电爪进行了抓取试验。结果表明:1)各成熟度番茄的损伤程度随按压压强和成熟度升高而增大;2)各成熟度番茄的显象天数随成熟度升高而减小,腐烂天数与按压压强相关性很小,褶皱天数随按压压强升高而减小;3)以中位数作为代表压强,一级损伤代表压强按成熟度由低到高依次为:366、355、337 kPa,比二级损伤代表压强265,245,225 kPa均提高了30%左右;出现三级损伤的代表压强按成熟度由低到高依次为:165,115,90 kPa;腐烂天数范围为3~7d,相较于褶皱天数范围7~17d提前了50%左右,抓取试验结果与评估分类模型吻合度均大于等于95%,验证了损伤评估分类模型的正确性。研究结果可为番茄多指采摘机械手的设计与开发提供参考。  相似文献   

12.
荔枝鲜果挤压力学特性   总被引:9,自引:4,他引:5  
为减小荔枝在收获、储运过程中的机械损伤,给荔枝作业装备设计提供依据,试验测定了荔枝鲜果的几何特征,对其果实进行了不同加载条件的挤压试验,并对其果壳进行了拉伸试验。试验得到妃子笑、桂味2种荔枝鲜果在5种加载速率和2种压缩方向下的破裂力分别为76.46~112.90?N和38.67~53.83?N、破裂相对变形分别为27.93%~32.57%和18.87%~21.27%、弹性模量分别为2.52~4.69×105?Pa和4.26~5.93×105?Pa。试验表明,荔枝果实的抗挤压能力具有各向异性,其纵向大于横向;妃子笑的各向异性比桂味显著,且抗挤压能力大于桂味;试验范围内加载速率对果实的抗挤压能力影响不显著。荔枝果实可简化为果核呈长椭球体、厚度均匀薄壳球体,利用其简化结构及果壳强度各向异性对其挤压力学特性和裂壳特征的力学原理进行了分析。研究结果可为荔枝收获、加工和运输等提供理论依据。  相似文献   

13.
樱桃番茄串生长姿态多样、果实成熟度不一,采摘机器人进行“粒收”作业时,常面临果梗干涉末端执行器、成熟度判断错误等问题,导致采摘效率低下、难以有效实现分级采收。针对上述问题,该研究提出一种级联视觉检测流程,包括采收目标检测、目标果实特性判别、果实与果梗位置关系判断3个关键环节。首先根据农艺要求按成熟度将番茄果实分为4个等级,引入YOLOv5目标检测模型对番茄串和番茄果实进行检测并输出成熟度等级,实现分期采收。然后对果实与果梗的相对位置进行判断,利用MobileNetv3网络模型对膨胀包围盒进行果实与果梗相对位置关系判断,实现末端执行器采摘位姿控制。日光温室实际测试结果表明,本文提出的级联检测系统平均推理用时22ms,在IOU(intersectionoverunion)阈值为0.5的情况下,樱桃番茄串与果实的平均检测精度达到89.9%,满足采摘机器人的视觉检测精度和实时性要求,相比末端执行器以固定角度靠近待采目标的方法,本文方法采收效率提升28.7个百分点。研究结果可为各类果蔬采摘机器人研究提供参考。  相似文献   

14.
番茄果实串采摘点位置信息获取与试验   总被引:6,自引:6,他引:0  
针对番茄收获机器人在采摘过程中果实串采摘点位置难以确定的问题,提出了基于果梗骨架角点计算方法,并利用该算法对番茄果实串果梗采摘点进行位置信息获取:首先采用最大类间方差分割法进行目标果实串分割,通过形态学方法和阈值法去除干扰,提取出目标果实串分割图像;根据果实串的质心和果串的轮廓边界确定果梗的感兴趣区域,采用快速并行细化算法提取果梗的骨架,利用Harris算法检测得到果实串第一个果实分叉点与植株主干之间果梗骨架角点,通过计算获得采摘点位置信息。然后进行验证试验,利用双目视觉图像采集系统采集了60组果实串图像并获取果梗采摘点位置信息,结果表明,采摘点位置成功率为90%,为采摘机器人提供准确的采摘位置信息。  相似文献   

15.
张勤  陈建敏  李彬  徐灿 《农业工程学报》2021,37(18):143-152
采摘点的识别与定位是智能采摘的关键技术,也是实现高效、适时、无损采摘的重要保证。针对复杂背景下番茄串采摘点识别定位问题,提出基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法。通过YOLOv4目标检测算法和番茄串与对应果梗的连通关系,快速识别番茄串和可采摘果梗的感兴趣区域(Region of Interest,ROI);融合RGB-D图像中的深度信息和颜色特征识别采摘点,通过深度分割算法、形态学操作、K-means聚类算法和细化算法提取果梗图像,得到采摘点的图像坐标;匹配果梗深度图和彩色图信息,得到采摘点在相机坐标系下的精确坐标;引导机器人完成采摘任务。研究和大量现场试验结果表明,该方法可在复杂近色背景下,实现番茄串采摘点识别定位,单帧图像平均识别时间为54 ms,采摘点识别成功率为93.83%,采摘点深度误差±3 mm,满足自动采摘实时性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号