首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
野生二粒小麦(Triticum dicoccoides)是小麦抗病育种的重要资源库之一。来自以色列Mount Hermon的野生二粒小麦材料IW3 和IW10对我国小麦白粉病菌生理小种E09表现高抗。对硬粒小麦Langdon与IW3和IW10两个杂交组合F2分离群体和F3家系的遗传分析表明,IW3和IW10对小麦白粉菌E09的抗性均受显性单基因控制,暂被命名为MlIW3和MlIW10。采用BSA法和SSR标记分析,筛选到与抗白粉病基因MlIW3和MlIW10连锁的5个SSR标记,这两个基因均位于Xbarc84和Xwmc326之间,顺序为Xbarc84–4.6 cM–MlIW3–1.6 cM–Xwmc326和Xbarc84–6.6 cM–MlIW10–0.6 cM–Xwmc326。根据SSR分子标记的遗传图谱和在中国春的缺体—四体、双端体和缺失系的定位结果,这两个抗白粉病基因被定位在3BL染色体的末端。根据MlIW3和MlIW10的来源和分子标记定位结果,推断这两个基因可能是小麦抗白粉病基因Pm41或其等位基因或位于同一个基因簇中。  相似文献   

2.
野生二粒小麦(Triticum turgidumvar. dicoccoides)是小麦抗白粉病遗传改良的重要基因资源。利用野生二粒小麦WE18与普通小麦品种(系)连续多次杂交和自交,育成对白粉病菌生理小种E09高度抵抗的小麦新品系3D249(京双27//燕大1817/WE18/3/温麦4,F7)。利用高感白粉病品系薛早和3D249组配杂交组合,获得杂种F1代、F2分离群体和F3代家系,进行苗期白粉病抗性鉴定和遗传分析。结果表明,小麦品系3D249对E09小种的抗性受显性单基因控制,暂命名该基因为MlWE18。利用集群分离分析法(BSA)和分子标记分析,发现4个简单重复序列(SSR)标记(Xwmc525、Xwmc273、Xcfa2040和Xcfa2240)、1个EST-STS标记(Xmag1759)和1个EST-STS序列标记(XE13-2)与抗白粉病基因MlWE18连锁,在遗传连锁图谱上的顺序为Xwmc525–Xcfa2040–Xwmc273–XE13-2–Xmag1759–MlWE18–Xcfa2240。SSR标记的染色体缺失系物理定位结果表明,抗白粉病基因MlWE18位于小麦7A染色体长臂末端的Bin 7AL 16–0.85–1.00。与已知定位于该染色体区域的Pm基因遗传连锁图谱比较表明,MlWE18与抗白粉病基因Pm1、MlIW72、PmU、Mlm2033和Mlm80均位于7AL相同染色体区段。  相似文献   

3.
小麦白粉病是严重影响小麦生产的重要病害之一,培育和应用抗病品种是有效控制和减少病害的最经济有效的方法。野生二粒小麦是硬粒小麦和普通小麦的四倍体野生祖先种,是小麦抗病性遗传改良的重要基因资源。本研究利用来自以色列的野生二粒小麦WE29与普通小麦杂交,再用普通小麦连续回交和自交,育成高抗白粉病(Blumeria graminis f. sp. tritici)小麦新品系3D258(系谱为燕大1817/WE29//5*87-1, BC4F6)。将3D258和高感小麦白粉病的普通小麦品种薛早配制杂交组合,对其F1、F2代分离群体和F3代家系进行白粉病抗性鉴定和遗传分析。结果表明3D258携带抗白粉病显性单基因,暂命名为MlWE29。利用集群分离分析法(BSA)和分子标记分析,发现6个SSR标记(Xgwm335、Xgwm213、Xgwm639、Xwmc415、Xwmc289和Xwmc75)和5个EST-STS标记(BE494426、BE442763、CD452476、BE445282和BE407068)与抗白粉病基因MlWE29连锁。利用中国春缺体-四体系、双端体系和缺失系将抗白粉病基因MlWE29标记物理定位于5BL染色体的0.59–0.79区域。这一普通小麦抗白粉病种质资源的创制及其连锁分子标记的建立为小麦抗病基因分子标记辅助选择、基因积聚和分子育种提供了新的物质基础。  相似文献   

4.
小麦白粉病是严重影响小麦生产的重要病害之一,培育和应用抗病品种是有效控制和减少病害的最经济有效的方法。野生二粒小麦是硬粒小麦和普通小麦的四倍体野生祖先种,是小麦抗病性遗传改良的重要基因资源。本研究利用来自以色列的野生二粒小麦WE29与普通小麦杂交,再用普通小麦连续回交和自交,育成高抗白粉病(Blumeria graminis f. sp. tritici)小麦新品系3D258(系谱为燕大1817/WE29//5*87-1, BC4F6)。将3D258和高感小麦白粉病的普通小麦品种薛早配制杂交组合,对其F1、F2代分离群体和F3代家系进行白粉病抗性鉴定和遗传分析。结果表明3D258携带抗白粉病显性单基因,暂命名为MlWE29。利用集群分离分析法(BSA)和分子标记分析,发现6个SSR标记(Xgwm335、Xgwm213、Xgwm639、Xwmc415、Xwmc289和Xwmc75)和5个EST-STS标记(BE494426、BE442763、CD452476、BE445282和BE407068)与抗白粉病基因MlWE29连锁。利用中国春缺体-四体系、双端体系和缺失系将抗白粉病基因MlWE29标记物理定位于5BL染色体的0.59–0.79区域。这一普通小麦抗白粉病种质资源的创制及其连锁分子标记的建立为小麦抗病基因分子标记辅助选择、基因积聚和分子育种提供了新的物质基础。  相似文献   

5.
小麦白粉病是由小麦白粉菌(Erysiphe gramini f.sp.fritici)引起的真菌性病害。冬小麦品种复壮30中含有一个单隐性抗白粉病基因,即Pm5e。该基因对我国流行的白粉病小种表现为高抗或免疫。本研究以含抗白粉病基因的复壮30、感病品种Chancellor为材料构建F2分离群体,利用分离群体分组分析法(bulked segregant analysis,BSA)对该抗白粉病基因进行了SSR标记分析。在已定位在7B染色体上的56对SSR引物中,8对引物能在亲本间稳定的揭示多态性差异,3个引物Xwmc364、Xbarc065和Xwmc517在抗、感亲本,抗、感池间均表现多态性差异,F2分离群体的验证结果表明标记Xwmc364175、Xbarc06590和Xwmc517200与抗病基因连锁,遗传距离分别为4.9cM、5.1cM和18.5cM。其中标记Xwmc364175和Xbarc06590与抗病基因连锁紧密,在对Pm5e的标记辅助选择(marker-assisted selection,MAS)中具有重要利用价值。  相似文献   

6.
用7个我国当前流行的条锈菌生理小种评价中梁21的苗期条锈抗性,结果表明该品种对我国优势流行小种具有良好的抗性。采用CYR30小种对中梁21与铭贤169杂交的F1、BC1、F2及F3代群体进行遗传分析,并利用SSR分子标记进行遗传作图,发现中梁21对CYR30的抗性由1个显性基因控制,暂命名为Yrzhong21。该基因与位于小麦5AL染色体上的10个SSR位点Xgwm186、Xbarc165、Xwmc795、Xbarc40、Xgwm156、Xgwm617、Xwmc415、Xbarc151、Xwmc338和Xgwm666连锁,其中最近的侧翼位点为Xgwm186和Xbarc165,其遗传距离分别是7.5 cM和2.7 cM。系谱分析及结合分子标记结果表明,该基因可能来自Ciemenp。与已定位于5A染色体上的抗条锈病基因的比较表明,Yrzhong21可能是一个抗条锈病的新基因。用标记Xgwm186和Xbarc165检测中梁系列品种,其中仅17%扩增到与中梁21相同的位点,表明该基因在抗条锈病育种中可能有很大的应用潜力。  相似文献   

7.
普通小麦品种Brock抗白粉病基因分子标记定位   总被引:4,自引:2,他引:2  
为明确利用Brock转育成的小麦抗白粉病品系3B529(京411*7//农大015/Brock, F6)抗性的遗传基础,将高感白粉病小麦品系薛早和3B529杂交,获得F1代、F2分离群体和F2:3家系。抗病性鉴定和遗传分析结果表明,3B529对E09小种的抗性受1对显性基因控制,暂被定名为MlBrock。利用BSA和分子标记分析,获得了与MlBrock连锁的3个SSR标记Xcfd81、Xcfd78、Xgwm159和2个SCAR标记SCAR203和SCAR112,根据SSR和SCAR标记在中国春缺体四体、双端体和缺失系的定位结果,将MlBrock定位在小麦染色体臂5DS Bin 0~0.63区间上。MlBrock与Xcfd81和SCAR203共分离,与SCAR112的遗传距离为0.5 cM。这些分子标记的建立有利于今后Brock抗白粉病基因分子标记辅助选择和基因聚合。综合抗白粉病基因MlBrock的染色体定位和抗谱分析结果,推测MlBrock很可能是Pm2基因。  相似文献   

8.
小麦新品种济麦22抗白粉病基因的分子标记定位   总被引:4,自引:2,他引:2  
为明确济麦22携带抗白粉病基因的染色体位置,利用济麦22与感病亲本中国春杂交,用小麦白粉菌(Blumeria graminis f. sp. tritici)强毒性小种E20对F2抗、感分离群体和F2:3家系进行抗病鉴定和遗传分析。结果表明,济麦22携带1个显性抗白粉病基因, 暂被命名为PmJM22。运用SSR和EST标记及分离群体分组分析法(bulked segregant analysis, BSA),将其定位在2BL染色体上,与4个SSR和5个EST标记间的连锁距离为7.7 cM (Xwmc149)到31.3 cM (Xbarc101)。通过分析2BL上其他抗白粉病基因的来源、染色体位置和抗性反应,认为PmJM22不同于Pm6、Pm26、Pm33和MlZec1。  相似文献   

9.
唐麦4号是对小麦白粉病(Blumeria graminis f. sp. tritici)具有良好抗性的T1BL·1RS育成品种, 遗传分析结果表明, 唐麦4号携带1个抗白粉病半显性单基因, 暂命名为PmTm4。采用唐麦4号为抗病亲本的杂交组合(唐麦4号/Clement)F2代抗、感病分离群体和F3代家系, 利用集群分离分析法(BSA)建立了与PmTm4连锁的分子标记连锁图Xcau12—Xgwm611—PmTm4—XEST92—Xbarc1073—Xbarc82—Xwmc276。根据小麦7BL连锁图的标记顺序和抗白粉病基因连锁标记在中国春缺体-四体、双端体和缺失系上的定位结果, 将PmTm4基因定位于小麦7BL染色体臂末端。以上研究结果为唐麦4号抗白粉病基因在育种中的利用、分子标记辅助选择和基因累加提供了便利。  相似文献   

10.
N9738是经抗性定向选择和农艺性状筛选所培育的抗白粉病普通小麦新种质,携带来自野生二粒小麦As846的抗白粉病基因PmAS846,在苗期和成株期高抗白粉菌生理小种E09和陕西关中地区流行菌系,本研究对该种质携带的抗白粉病基因进行了染色体定位和分子标记分析。对N9738和高感小麦白粉病的普通小麦品种辉县红杂交的F1、F2代分离群体和F2:3代家系进行白粉病抗性鉴定和遗传分析证实,N9738苗期抗性由1个显性抗白粉病基因控制,单(缺)体分析将该基因定位在小麦5B染色体上。采用位于5B染色体的分子标记结合集群分离分析法(BSA法)分析,筛选出与PmAS846连锁的11个SSR标记和2个EST-STS标记,PmAS846两翼的SSR标记Xgwp3191和Xfcp1与该基因的遗传距离分别为7.3 cM和1.8 cM,EST-STS标记BF202652和BF482522与该基因的遗传距离均为5.1 cM。根据该基因两翼SSR标记对中国春5B染色体缺失系(Bin系)的分析将其定位在5B染色体长臂0.75~0.76区域。研究结果为PmAS846的分子标记辅助选择和精细定位奠定了基础。  相似文献   

11.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease of wheat (Triticum aestivum) in China and worldwide, causing severe yield losses annually. Wild emmer (T. dicoccoides) accession IW72 collected from Israel is resistant to powdery mildew at the seedling and adult stages. Genetic analysis indicated that the resistance was controlled by a single dominant gene, temporarily designated MlIW72. The F2 population and F3 families derived from a hybrid between IW72 and susceptible durum wheat line Mo75 were used for molecular mapping of the resistance gene. MlIW72 was linked with SSR loci Xgwm344, Xcfa2040, Xcfa2240, Xcfa2257 and Xwmc525 on the long arm of chromosome 7A. In addition, two STS markers, MAG2185 (derived from RFLP marker PSR680) and MAG1759 (developed from EST CD452874), were mapped close to MlIW72. All these markers were physically located in the terminal bin 0.86–1.00 of 7AL. The chromosome location and genetic mapping results suggested that the powdery mildew resistance gene identified in wild emmer accession IW72 might be a new allele at the Pm1 locus or a new locus closely linked to Pm1.  相似文献   

12.
小麦新种质CH7124由八倍体小偃麦TAI8335与高感白粉病小麦品种晋麦33杂交后代衍生而来,在苗期对白粉病菌株E09、E20、E21、E23、E26、Bg1和Bg2表现免疫或高抗,抗病表现与TAI8335及其野生亲本中间偃麦草相似。基因组原位杂交未检测到CH7124含有外源染色体信号。利用CH7124与感病亲本SY95-71和绵阳11的杂交群体接种鉴定和遗传分析证实,CH7124成株期对E09的抗性由1对显性核基因控制,暂命名为Pm CH7124。采用分离群体分组分析法(bulked segregant analysis,BSA)对SY95-71/CH7124的F6群体进行SSR标记扫描,发现抗性基因Pm CH7124与5对SSR标记连锁,与两翼邻近标记Xgwm501和Xbarc101的遗传距离分别为1.7 c M和4.5 c M。利用中国春缺体–四体和双端体材料,将Pm CH7124及其连锁标记定位在小麦2B染色体长臂上。通过分析2BL上其他抗白粉病基因的抗谱、抗性来源、物理图谱位置以及连锁标记在Pm CH7124作图群体中的多态性,认为Pm CH7124不同于2BL上已知的抗白粉病基因Pm6、Pm33、Pm JM22、Ml Zec1、Ml AB10和Ml LX99。  相似文献   

13.
小麦新种质CH09W83为八倍体小偃麦TAI7047与高感小麦品种晋太170杂交、回交后代衍生而来的高代选系,在苗期免疫或高抗我国白粉病菌株E09、E20、E21、E23、E26、Bg1和Bg2。为定位CH09W83中的抗病基因,将CH09W83与感病亲本杂交和回交,通过对F1、F2、F2:3和BC1代的接种鉴定和遗传分析,证实CH09W83成株期对E09的抗性由1对隐性核基因控制,暂命名为pmCH83。采用分离群体分组分析法(bulked segregant analysis, BSA),以658对SSR标记对台长29(感病)× CH09W83的F2群体分析发现,抗性基因pmCH83与SSR标记Xgpw7272、Xwmc652、Xgwm251、Xgwm193连锁,与两翼邻近标记Xwmc652和Xgwm251的遗传距离分别为3.8 cM和4.3 cM。利用中国春缺体–四体、双端体将pmCH83及其连锁标记定位在4BL染色体上。原位杂交、染色体配对及连锁标记分析结果表明,CH09W83可能是一个小麦与中间偃麦草的隐形异源渗入系。系谱和图谱位置分析表明,pmCH83很可能是来自中间偃麦草一个新的抗白粉病基因。  相似文献   

14.
普通小麦品系DH155对白粉病菌表现高抗。为明确DH155所携带抗白粉病基因的遗传方式及与抗病基因连锁SSR标记,利用DH155与高感小麦品系SN2890杂交获得的F2和F2:3群体进行接种鉴定和遗传分析,发现DH155对白粉菌菌株E09的抗性受1对显性基因控制,暂命名为Ml DH155。BSA和分子标记分析结果显示,Ml DH155与SSR标记Xcfd81和Xcfd18连锁。利用已发表的中国春和粗山羊草D基因组序列开发新标记,进一步将Ml DH155定位于标记Xsdau K525和Xsdau K527之间,其遗传距离分别为0.2 c M和0.8 c M。将DH155与感白粉病优良品系HB133-4和旱10杂交,在F2~F4代,结合优良农艺性状选择、分子标记辅助选择和抗白粉病鉴定,获得3个高抗白粉病且农艺性状优异的株系(SDAU2100、SDAU2101和SDAU2102)。利用14个白粉菌菌株对DH155进行苗期接种鉴定表明,DH155对13个菌株表现抗病反应型。这些菌株对DH155的毒力谱与已知抗白粉病基因Pm2相似,但DH155对Bg78-3和Bg44-5菌株的反应型与携带Pm2的Ulka/8*Cc不同。结合本试验结果和Pm2基因的相关报道,推测Ml DH155可能是Pm2或其等位基因。  相似文献   

15.
Leaf rust, caused by Puccinia triticina, is an important disease for wheat production, both in China and worldwide. In laboratory studies spelt wheat (Triticum aestivum ssp. spelta) landrace Altgold was resistant to P. triticina races THT and PHT and genetic analysis indicated that it possessed a dominant leaf rust resistance gene, temporarily designated LrAlt. F6 recombinant inbred lines (RILs) derived from a cross with the susceptible common wheat cultivar Nongda 3338 were used to map LrAlt with SSR markers. The resistance gene was distal to SSR loci Xbarc212, Xwmc382, Xgwm636, and Xwmc407 on the short arm of chromosome 2A. The closest markers Xbarc212 and Xwmc382 which co-segregated were 1.8 cM away from LrAlt. The relationships of LrAlt and other wheat leaf rust resistance genes located on the short arm of chromosome 2A were discussed, suggesting that LrAlt might be a new leaf rust resistance gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号