首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Objective – To analyze thromboelastograms (TEGs) of naturally occurring cases of immune-mediated hemolytic anemia (IMHA) in order to identify whether a hypercoagulable state was present and whether its presence was associated with differences in survival.
Design – Retrospective study spanning January 2000 to June 2008. Medical records of dogs were evaluated. Endpoints were considered death or discharge from the hospital.
Setting – Academic teaching hospital.
Animals – Thirty-nine dogs with a diagnosis of IMHA and at least one TEG performed during hospitalization were included.
Interventions – None.
Measurements and Main Results – Four values were evaluated from the TEG: the R time (R), K time (K), alpha angle (α), and maximum amplitude. From these values, a coagulation index (CI) was calculated to classify patients as normocoagulable, hypercoagulable, or hypocoagulable. Thirty-three of 39 patients were hypercoagulable based on the CI. The 6 remaining dogs were normocoagulable. The patients with a normocoagulable CI had an increased mortality rate (100%) when compared with the hypercoagulable patients using Fisher's exact test ( P =0.02). Additionally, prolongation of partial thromboplastin time did not preclude hypercoagulable TEG values.
Conclusions – The majority of dogs with IMHA were hypercoagulable as measured by TEG. A normal CI was associated with a worse outcome in this patient population. TEG may provide additional and complementary information to prothrombin time and partial thromboplastin time relating to coagulation status in dogs with IMHA and may help predict prognosis and potentially guide clinical decisions to utilize anticoagulant drugs.  相似文献   

2.
Background: Underlying conditions in dogs admitted to an intensive care unit (ICU) can cause hemostatic dysfunction. Thrombelastography (TEG) may be useful in detecting hemostatic alterations as compared with standard coagulation tests. Objectives: The purpose of this study was to compare TEG results and those of standard coagulation tests in identifying hemostatic dysfunction in dogs admitted to an ICU and to investigate associations among the variables measured. Methods: Tissue factor‐activated TEG analysis, d ‐dimer and fibrinogen concentrations, antithrombin (AT) activity, prothrombin time (PT), activated partial thromboplastin time (aPTT), and platelet count were measured using standard techniques on 27 dogs admitted to ICU with a disease known to be associated with hemostatic dysfunction and in 31 clinically healthy control dogs. Results were compared between groups using nonparametric tests and κ analysis; principal component analysis (PCA) and Spearman rank correlation were used to measure associations among variables. Results: Fourteen of 27 ICU dogs had abnormal TEG tracings, which were used to classify the dogs as hypercoagulable (n=11), hypocoagulable (n=3), or normocoagulable (n=13). Hypercoagulable dogs had significantly increased d ‐dimer (P=.03) and fibrinogen (P=.01) concentrations compared with normocoagulable dogs. In ICU dogs, positive associations were identified between maximum amplitude (MA), α‐angle, fibrinogen concentration, and platelet count, and between PT, aPTT, and reaction time (R). Significant correlations were found between MA and fibrinogen (rs=.76, P<.001) and between reaction time (R) and PT (rs=.51, P=.003). Conclusions: TEG was useful in detecting hemostatic dysfunction in dogs in an ICU. Positive associations among variables may provide insight as to how overall coagulation status reflects alterations in clot strength and coagulation time. Dogs with TEG tracings indicative of hypercoagulability are likely in procoagulant states. Future studies of the incidence of thrombotic complications in dogs with hypercoagulable TEG tracings are warranted.  相似文献   

3.
BACKGROUND: Abnormal routine coagulation assay results have been reported to be common in veterinary patients with neoplasia, but the overall hemostatic functional state, including hypercoagulability, has not been described. HYPOTHESIS: The overall hemostatic functional state, including hypercoagulability, can be assessed in dogs with neoplasia by tissue factor (TF)-activated thromboelastography (TEG). ANIMALS: Thirty-six dogs with malignant neoplasia and 13 dogs with benign neoplasia presented to the Small Animal Veterinary Teaching Hospital, The University of Copenhagen, Frederiksberg, Denmark. METHODS: Prospective study evaluating the overall hemostatic functional state in dogs with neoplasia by a newly validated TF-activated TEG assay and routine coagulation parameters activated partial thromboplastin time (aPTT), prothrombin time (PT), platelet count, and D-dimer concentration. RESULTS: Hemostatic dysfunction was observed in 28/49 (57%) dogs with neoplasia. Twenty-four were dogs with malignant neoplasia, the majority of which 18/36 (50%) were hypercoagulable, whereas 6/36 (17%) were hypocoagulable. All hypocoagulable dogs had metastatic disease. The proportion of dogs with altered hemostasis was significantly different between dogs with malignant and benign neoplasia. CONCLUSIONS AND CLINICAL IMPORTANCE: TF-activated TEG detected hypercoagulable and hypocoagulable states in this population of dogs with neoplasia. The most common hemostatic abnormality in dogs with malignant neoplasia was hypercoagulability. These findings suggest that this novel hemostatic function test may be of value as a cage side method for the assessment of overall hemostatic function in dogs with cancer, including the detection of both hyper- and hypocoagulable states as well as mixed disorders.  相似文献   

4.
BACKGROUND: There is considerable variation in the coagulation profile of dogs with disseminated intravascular coagulation (DIC), making it difficult to assess overall hemostatic function. OBJECTIVES: To characterize the overall hemostatic state in dogs with DIC, by use of tissue factor-activated thromboelastography (TF-TEG), and to determine whether there is an association between hemostasis and outcome. ANIMALS: 50 dogs with DIC. METHODS: Dogs admitted to the intensive care units, with an underlying disease known to predispose to DIC, were prospectively assessed with TF-TEG. Citrated blood samples were collected daily during hospitalization and an extended coagulation panel and TF-TEG were performed. Diagnosis of DIC was based on expert opinion. RESULTS: Hemostatic dysfunction was observed on the TF-TEG profile in 33/50 of the dogs, of which 22/50 were hypercoagulable and 11/50 were hypocoagulable based on the TF-TEG G value alone. There were significant differences in k, alpha, and MA values (P < .0001) among hypo-, normo-, and hypercoagulable dogs. There was a significant difference in case fatality rate between hypo- (64%) and hypercoagulable (32%) dogs (relative risk = 2.38; P= .04). Dogs that died had significantly lower antithrombin activity (P= .03) and higher d-dimer concentration (P= .03) than survivors. CONCLUSIONS: The most common overall hemostatic abnormality in dogs diagnosed with DIC was hypercoagulability, and there was significant difference in survival between hyper- and hypocoagulable dogs. The results suggest TF-TEG is valuable in the assessment of hemostatic function in dogs diagnosed with DIC.  相似文献   

5.
This study investigated the coagulation status of dogs with immune-mediated haemolytic anaemia (IMHA) over time. Thirty animals with primary IMHA were blood sampled on three occasions over a 5 day period and assays performed included prothrombin time, activated partial thromboplastin time, D-dimer and fibrinogen concentration, antithrombin activity and recalcified unactivated thromboelastography (TEG). Based on TEG, dogs with IMHA were significantly hypercoagulable vs. controls (P<0.001) and over the 5 day period, 3/4 of the TEG parameters reflected increased clotting kinetics (P ≤ 0.02). The 30 day survival of these patients was 80% and, at hospital admission, the TEG maximum amplitude (MA) was significantly higher in survivors than non-survivors (P=0.015). Each unit increase in MA was associated with an increased odds of 30 day survival of 1.13 (95%; CI 1.02-1.25). Based on TEG, most dogs with IMHA were hypercoagulable on admission and their clotting kinetics increased with time. Relative hypocoagulability identified by TEG at initial assessment was found to be a negative prognostic indicator.  相似文献   

6.
Objective: To describe the technique of thromboelastography (TEG) and review the applications of this coagulation test in humans and small animals. Data sources: Data sources included scientific reviews and original research publications. Human data synthesis: TEG in humans has been used for documentation of hypercoagulable and hypocoagulable states and has been shown to be beneficial in patient management. Veterinary data synthesis: Clinical evaluation of TEG in veterinary medicine is limited; however, recent reports have documented evidence of hypercoagulability in dogs with parvovirus and protein‐losing nephropathy. Additionally, many of the research models may be relevant to veterinary patients. Conclusions: TEG provides information about coagulation that is not available through routine coagulation tests. The application of TEG monitoring to veterinary patients shows promise; however, prospective clinical studies are needed.  相似文献   

7.
Background: Thrombelastography (TEG) is used to evaluate the viscoelastic properties of blood during clotting and provides a global assessment of hemostasis and clot lysis. TEG analysis initiated with recombinant human tissue factor (TF) has not been evaluated in clinically healthy horses. Objectives: The purpose of this study was to determine whether TEG results are affected by the time elapsed between sampling and analysis (storage time) of equine blood samples and to establish a preliminary equine reference interval for a modified TEG assay, using recombinant human TF to initiate coagulation. Methods: Citrated blood samples were obtained from 20 clinically healthy adult horses. Thirteen samples were stored for 30, 60, and 120 minutes at room temperature before TEG analysis. Coagulation was initiated by adding 20 μL of CaCl2 to 330 μL of blood and 10 μL of diluted recombinant TF for a final dilution of 1:3600. Reaction (R) and clotting (K) times, angle (α), and maximum amplitude (MA) were compared between time points. A preliminary reference interval (minimum–maximum values) was determined using data from all 20 horses after 30 minutes of sample storage. Results: There was a significant effect of storage time on R, K, and α but not MA. Reference intervals were: R, 3.65–6.4 minutes; K, 1.8–5.45 minutes; α, 33.4–66.2°; MA, 41.2–64.1 mm; lysis at 30 minutes post‐MA (LY30), <2.75%; and lysis at 60 minutes post‐MA (LY60), 1.55–9.5%. Conclusions: TEG can be performed on equine citrated blood samples using recombinant human TF to activate clot formation. TEG parameters were significantly affected by storage time, suggesting an incomplete inhibition of coagulation in citrated blood.  相似文献   

8.
BACKGROUND: Thromboelastography (TEG) is an analytical method that enables global assessment of hemostatic function in whole blood (WB) with evaluation of both plasma and cellular components of hemostasis. TEG has a largely unused potential in the diagnostic workup and monitoring of dogs with hemostatic disorders and it may be a valuable supplement to traditional coagulation parameters. OBJECTIVES: The objective of this study was to establish a clinically applicable reference interval for a TEG assay using recombinant human tissue factor (TF) as the activator on citrated WB from clinically healthy dogs and to evaluate the stability of citrated WB stored for 30 minutes (T30) and 120 minutes (T120) at room temperature (RT). Additionally, we evaluated the analytical variation in reaction time (R), clotting time (K), angle (alpha), and maximum amplitude (MA). METHODS: Blood was collected from 18 clinically healthy dogs. Duplicate TEG analyses with TF as the activator at a concentration of 1:50,000 were performed on canine citrated WB at T30 and T120. R, K, a, and MAwere analyzed. RESULTS: Mean TEG values at T30/T120 were R = 5.61/4.91 minutes, K = 4.20/3.34 minutes, alpha = 45.33/50.90 degrees , and MA = 47.96/50.19 mm. Significant differences in these values were observed after storage for T30 and T120 at RT, with a tendency towards hypercoagulability at T120. The mean coefficients of variation were low. CONCLUSIONS: Canine citrated WB can be used for TEG analysis with human recombinant TF as the activator when stored at RT for T30 or T120. At both time points, the analytical variation was low, suggesting that TEG analysis may be of value in evaluating dogs with hemostatic disorders. A fixed time point should be chosen for serial measurements.  相似文献   

9.

Background

Hyperadrenocorticism (HAC) has been associated with thrombotic disease in dogs.

Hypothesis

The purpose of this study was to use thromboelastography (TEG) and measurement of thrombin generation (TG) to characterize the hypercoagulable state in dogs with HAC. We hypothesized that dogs with HAC would have a hypercoagulable profile on TEG tracings and an increase in thrombin generation as measured by endogenous thrombin potential (ETP).

Animals

Sixteen dogs with HAC. Dogs were compared with a population of normal dogs used to obtain reference intervals.

Methods

TEG tracings on citrated whole blood were obtained from 15 dogs, and TG measurements on frozen‐thawed platelet‐poor plasma (PPP) were obtained from 15 dogs.

Results

For the TEG analysis, when results of individual dogs were compared with the reference interval, 12/15 dogs had at least 1 parameter associated with hypercoagulability. When the population of HAC dogs was compared with a population of healthy dogs, HAC dogs had decreases in R and K and increases in α and MA values. The ETP was increased when the HAC group was compared with a population of normal dogs. However, only 3/15 dogs had an ETP above reference interval, and 1/15 had a decreased lag time.

Conclusion and Clinical Importance

Of 16 dogs with HAC, 12/15 had evidence of hypercoagulability when evaluated by TEG, 4/15 when evaluated by TG, and 2 dogs had increases in ETP and MA.  相似文献   

10.
Objective  To establish reference values for activated coagulation time (ACT) in normal cats and dogs, by visual assessment of clot formation using the MAX-ACTTM tube.
Subjects  We recruited 43 cats and 50 dogs for the study; 11 cats and 4 dogs were excluded from the statistical analysis because of abnormalities on clinical examination or laboratory testing including anaemia, prolonged prothrombin time (PT) or activated partial thromboplastin time (APTT), or insufficient plasma volume for comprehensive laboratory coagulation testing.
Procedure  Blood samples were collected via direct venipuncture for MAX-ACT, packed cell volume/total solids, manual platelet estimation and PT/APTT measurement. Blood (0.5 mL) was mixed gently in the MAX-ACT tube at 37°C for 30 s, then assessed for clot formation every 5 to 10 s by tipping the tube gently on its side and monitoring for magnet movement. The endpoint was defined as the magnet lodging in the clot. The technique was tested with 10 dogs by collecting two blood samples from the same needle insertion and running a MAX-ACT on each simultaneously.
Results  In normal cats the mean MAX-ACT was 66 s (range 55–85 s). In normal dogs the mean was 71 s (range 55–80 s). There was no statistical difference between the first and second samples collected from the same needle insertion.
Conclusions and Clinical Relevance  In both cats and dogs, a MAX-ACT result >85 s should be considered abnormal and further coagulation testing should be performed. Additionally, failure to discard the first few drops of the sample does not appear to significantly affect results.  相似文献   

11.
Twenty-one healthy greyhounds with no history or clinical signs of bleeding disorders, and no abnormalities on physical examination, complete blood count, serum biochemistry profiles (in dogs more than five years of age), and SNAP-4DX test for vector borne diseases underwent routine gonadectomies at the Ohio State University Veterinary Teaching Hospital. Blood samples were collected 24 hours before and after surgery by jugular venepuncture for thromboelastography and haemostasis assays (prothrombin time [PT], activated partial thromboplastin time [aPTT], fibrinogen concentration). The magnitude of the bleeding in each patient was estimated using a bleeding scoring system recently validated in greyhounds. Eight dogs were classified as bleeders and 13 as non-bleeders. Thromboelastograph (TEG) tracings in bleeders were different to that of non-bleeders. Neither sex (odds ratio [OR]: 0.148, P=0.05), haematocrit (OR: 0.907, P=0.39), platelet count (OR: 0.996, P=0.65) or age (OR: 0.949, P=0.83) were predictors of the outcome. None of the variables that evaluated clot kinetics, and fibrinolysis (that is, aPTT OR: 0.781, P=0.51; PT OR: 1.337, P=0.63; TEG(R) OR: 1.269, P=0.06; TEG(K) OR: 1.696, P=0.05; TEG(LY60) OR: 1.028, P=0.81) were able to predict the bleeding episodes. Only the TEG variables that represent the fibrin cross-linking of the clot (TEG(angle) OR: 0.903, P=0.03); and the strength of the clot (TEG(MA) OR: 0.833, P=0.03) were considered predictors of the outcome.  相似文献   

12.

Objective

To investigate parameters causing canine thromboelastographic hypercoagulability and to investigate whether thromboelastography (TEG) with Cytochalasin D (Cyt D) added is related to parameters of platelet activity.

Design

Prospective observational study on hemostatic and inflammatory parameters. Data were collected between November 2012 and July 2013.

Setting

University teaching hospital.

Animals

Twenty‐eight dogs suffering from diseases predisposing to thrombosis and 19 clinically healthy dogs. Diseased dogs were enrolled if they fulfilled inclusion criteria regarding age, size, informed client consent, and obtained a diagnosis of a disease that has been associated with thrombosis or hypercoagulability.

Interventions

None.

Measurements and Main Results

Parameters of coagulation and anticoagulation, fibrinolysis, and antifibrinolysis, platelet activity, inflammation, platelet count, and hematocrit were measured using CBC, TEG, platelet aggregation on multiplate, platelet activity on flow cytometry, and hemostatic and inflammatory markers on plasma and serum analyses. ANOVA and multilinear regression analyses indicated that especially hematocrit and the inflammatory parameters C‐reactive protein and interleukin‐8 showed best association with overall clot strength in diseased dogs with hypercoagulable TEG tracings. Ratios presumed to reflect platelet contribution to the TEG tracing obtained in TEG analyses with Cyt D were related especially with hematocrit and P‐selectin expression of platelets measured after γ‐Thrombin activation on flow cytometry.

Conclusion

Overall clot strength in TEG analyses of the hypercoagulable dogs included in the present study appears to be primarily associated with inflammation as well as hematocrit. Furthermore, the ratio between standard TEG analyses and TEG analyses with Cyt D may reflect some degree of platelet activity.  相似文献   

13.

Background

During the last decade, thromboelastography (TEG) has gained increasing acceptance as a diagnostic test in veterinary medicine for evaluation of haemostasis in dogs, however the use of TEG in cats has to date only been described in one previous study and a few abstracts. The objective of the present study was to evaluate and compare three different TEG assays in healthy cats, in order to establish which assay may be best suited for TEG analyses in cats.

Methods

90 TEG analyses were performed on citrated whole blood samples from 15 clinically healthy cats using assays without activator (native) or with human recombinant tissue factor (TF) or kaolin as activators. Results for reaction time (R), clotting time (K), angle (α), maximum amplitude (MA) and clot lysis (LY30; LY60) were recorded.

Results

Coefficients of variation (CVs) were highest in the native assay and comparable in TF and kaolin activated assays. Significant differences were observed between native and kaolin assays for all measured parameters, between kaolin and TF for all measured parameters except LY60 and between native and TF assays for R and K.

Conclusion

The results indicate that TEG is a reproducible method for evaluation of haemostasis in clinically healthy cats. However, the three assays cannot be used interchangeably and the kaolin- and TF activated assays have the lowest analytical variation indicating that using an activator may be superior for performing TEG in cats.  相似文献   

14.
Background: Dogs with protein‐losing enteropathy (PLE) have previously been reported to present with thromboembolism; however, the prevalence and pathogenesis of hypercoagulability in dogs with PLE have not been investigated so far. Hypothesis: Dogs with PLE are hypercoagulable compared with healthy control dogs. Animals: Fifteen dogs with PLE. Thirty healthy dogs served as controls (HC). Methods: A prospective study was performed including 15 dogs with PLE. All dogs were scored using the canine chronic enteropathy activity index (CCECAI). Thromboelastography (TEG) and other measures of coagulation were evaluated. Recalcified, unactivated TEG was performed and reaction time (R), kinetic time (K), alpha angle (α), and maximum amplitude (MA) values were recorded. Nine dogs were reassessed after initiation of immunosuppressive treatment. Results: All dogs with PLE in the study were hypercoagulable with decreased R (PLE: median 7.8, range [2.4–11.2]; HC: 14.1 [9.1–20.3]), decreased K (PLE: 2.5 [0.8–5.2]; HC: 8.25 [4.3–13.1]), increased α (PLE: 56.7 [38.5–78.3]; HC: 25.6 [17–42.4]), and increased MA (PLE: 68.2 [54.1–76.7]; HC: 44.1, [33.5–49]) (all P < .001). Median antithrombin (AT) concentration was borderline low in PLE dogs; however, mean serum albumin concentration was severely decreased (mean 1.67 g/dL ± 5.1, reference range 2.8–3.5 g/dL). Despite a significant improvement in serum albumin and CCECAI, all 9 dogs with PLE were hypercoagulable at re‐examination. Conclusions and Clinical Importance: The hypercoagulable state in dogs with PLE cannot be solely attributed to loss of AT. Despite good clinical response to treatment, dogs remained hypercoagulable and could therefore be predisposed to thromboembolic complications.  相似文献   

15.
Objectives To evaluate citrated recalcified thromboelastography (TEG) in healthy newborn foals, and to determine intra‐assay, inter‐individual and intra‐individual (at 12 h, 24 h and 7 days after birth) variations. Additionally, to compare TEG variables, haematological values and conventional coagulation profiles from healthy, sick non‐septic, and septic foals. Design Prospective study. Methods The study group comprised 18 healthy, 15 sick non‐septic and 17 septic foals. Two citrated (3.2%; 1 : 9 anticoagulant : blood ratio) blood samples were submitted for haemostatic evaluation using a TEG analyser and conventional coagulation profile. TEG values (R time (R), K time (K), angle (α), maximum amplitude (MA) and G value (G)), complete blood count (CBC) and conventional coagulation profile (prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen concentration (Fib) and antithrombin (AT)) were evaluated. Signalment, presenting complaint, sepsis scores, blood culture results and outcome were taken from the medical records of the sick foals. Results Mean values ± SD for TEG variables in healthy neonatal foals were: R = 11.82 ± 5.35 min, K = 3.06 ± 1.34 min, α= 51.19 ± 12.66 degrees, MA = 55.06 ± 6.67 mm and G = 6361 ± 1700 dyn/cm2. Mean coefficients of variation for intra‐assay/inter‐individual/intra‐individual in healthy foals were: R = 3.5/45.2/43.1%; K = 5.3/58.7/28.7%; α= 1.5/24.7/11.9%; MA = 0.3/12.1/6.1%; G = 1.6/26.7/14.7%. Septic foals had significantly greater α, MA and G values than sick non‐septic foals, and significantly greater MA and G than healthy foals, changes that are consistent with hypercoagulability. Weak correlations were detected between TEG variables and haematological or haemostatic values. Conclusions TEG could be used to provide additional information about the haemostatic system in equine neonates.  相似文献   

16.
Objective – To identify hemostatic abnormalities in dogs with protein‐losing nephropathies (PLN) that represent risk factors for pathologic thrombosis. Design – Cross‐sectional observational study of client‐owned dogs with PLN, nonprotein losing renal failure (RF), and systemic illness (SI) exclusive of primary renal disease. Setting – Urban University Referral Center. Animals – A total of 29 dogs (n=11 PLN, n=7 RF, n=11 SI) were enrolled between January 2001 and July 2002. Samples were also collected from 20 clinically normal dogs to serve as hemostasis assay controls. Interventions – None. Hemostasis Testing – Citrate anticoagulated blood was collected for point‐of‐care testing with a viscoelastic monitor (thromboelastograph [TEG]) and citrate plasma was prepared for coagulation screening tests and specific assay of the following hemostatic proteins: antiplasmin, antithrombin, D‐dimer, Factor VIII, fibrinogen, plasminogen, protein C, and von Willebrand factor. Results – Dogs with PLN and RF demonstrated TEG abnormalities consistent with hypercoagulability (eg, short clotting time, high clot amplitude) and both groups had significantly lower antithrombin than the SI group. The PLN dogs had significantly higher protein C than either the RF or SI group. Hyperfibrinogenemia was a consistent finding among all 3 disease groups, and the coagulation index a measure of hypercoagulability derived from TEG parameters, directly correlated with fibrinogen values of all study dogs. Conclusions – Hemostatic abnormalities consistent with systemic hypercoagulability are common in dogs with RF and PLN, however, no prothrombotic factors unique to PLN were identified in our study. The thrombotic tendency of PLN may therefore involve parameters we did not directly assess such as platelet reactivity, fibrinolysis, perturbations in blood flow, and/or endothelial dysfunction. High protein C is a novel finding in PLN dogs of unknown clinical relevance.  相似文献   

17.
Hemostatic abnormalities were investigated in 32 dogs with carcinoma and 19 age-matched healthy dogs. Thromboelastography, hemostasis profile (i.e. prothrombin time [PT], activated partial thromboplastin time [aPTT], fibrinogen concentration), platelet count (PLT), thrombin-antithrombin complexes (TAT), and plasminogen activator inhibitor-1 (PAI-1) activity were evaluated. Dogs with carcinomas had faster thrombus generation (TEG(TG), a mathematic value obtained from the first derivate of the thromboelastographic tracing; 834.8±91.1 vs. 707.8±75.8mm/min; mean±SD), increased fibrinogen concentration (276 vs. 151mg/dL), and PLT (425 vs. 324U×10(9)/L), but had decreased PAI-1 activity (15.7 vs. 26.2IU/mL).The most common hemostatic abnormalities found in carcinoma dogs were hypercoagulability (TEG(TG)>mean+2 SD of healthy dogs) and thrombocytosis (PLT>424×10(9)U/L) in 46% of cases, and hyperfibrinogenemia (fibrinogen >384mg/dL) in 32% of cases. Disseminated intravascular coagulation was uncommon and the extent of disease was not correlated with hypercoagulability. TEG(TG) showed good correlation with fibrinogen (r=0.80) and hyperfibrinogenemia seems to be a main factor of the hypercoagulable state in carcinoma dogs. In conclusion, TEG(TG) is a valid parameter to diagnose hypercoagulability.  相似文献   

18.
Use of viscoelastic point-of-care (POC) coagulation instrumentation is relatively new to veterinary medicine. In human medicine, this technology has recently undergone resurgence owing to its capacity to detect hypercoagulability. The lack of sensitive tests for detecting hypercoagulable states, along with our current understanding of in vivo coagulation, highlights the deficiencies of standard coagulation tests, such as prothrombin and partial thromboplastin times, which are performed on platelet-poor plasma. Viscoelastic coagulation analyzers can provide an assessment of global coagulation, from the beginning of clot formation to fibrinolysis, utilizing whole blood. In people, use of this technology has been reported to improve management of hemostasis during surgery and decrease usage of blood products and is being used as a rapid screen for hypercoagulability. In veterinary medicine, clinical use of viscoelastic technology has been reported in dogs, cats, foals, and adult horses. This article will provide an overview of the technology, reagents and assays, applications in human and veterinary medicine, and limitations of the 3 viscoelastic POC analyzers in clinical use.  相似文献   

19.
Obesity predisposes to a prothrombotic state in humans, but whether a similar state occurs in obese animals is unknown. The objective of the current study was to examine the effect of body fat percentage (BF) on haemostatic parameters including thromboelastography with tissue factor as activator (TF-TEG) in client owned indoor-confined physically inactive cats. Seventy-two cats were included following an initial thorough health examination, and a complete blood count, biochemistry panel, conventional coagulation panel and a TF-TEG analysis were performed with tissue factor (1:50,000) as activator. The cats were anaesthetized, and BF was measured using Dual-energy X-ray absorptiometry. Significant difference between lean (BF < 35%, n = 26), overweight (35% < BF < 45%, n = 28) and obese (BF > 45%, n = 18) cats was identified using ANOVA. The correlation between BF, serum leptin and total adiponectin, respectively, with individual TEG and conventional coagulation parameters was evaluated. Obese cats showed a faster rate of fibrin formation (TF-TEG(R), p < 0.05), and TF-TEG(R) was positively correlated with plasma leptin levels. Increasing BF did not affect other conventional coagulation or TF-TEG parameters. In conclusion, this study indicates a connection between body fat content and altered haemostasis, also in cats. Whether feline obesity causes a hypercoagulable state of clinical relevance should be further investigated.  相似文献   

20.
Background: Coagulopathies in horses with gastrointestinal disease are frequently identified and associated with morbidity and fatality. Objective: Determine if thrombelastography (TEG) identifies abnormalities associated with lesion type, presence of systemic inflammatory response syndrome (SIRS), morbidity, and fatality more consistently than traditional coagulation testing. Animals: One‐hundred and one horses examined for gastrointestinal disease and 20 healthy horses. Methods: TEG, tissue factor (TF)‐TEG, and traditional coagulation panels parameters and percentages of horses with coagulopathies were compared for lesion type, presence of SIRS, complications, and survival. Results: Changes in individual parameters and increased incidence of coagulopathies were associated with fatality (R, P= .007; k‐value [K], P= .004; clot lysis [CL]30, P= .037; CL60, P= .050; angle [Ang], P= .0003; maximum amplitude [MA], P= .006; lysis [Ly]30, P= .042; Ly60, P= .027; CI, P= .0004; ≥ 2 TEG coagulopathies, P= .013; ≥ 3 TEG coagulopathies, P= .038; TF‐R, P= .037; TF‐K, P= .004; TF‐CL30, P < .0001; TF‐CL60, P < .0001; TF‐Ang, P= .005; TF‐Ly30, P= .0002; TF‐Ly60, P < .0001; TF‐CI, P= .043; ≥ 1 TF‐TEG coagulopathies, P= .003; ≥ 2 TF‐TEG coagulopathies, P= .0004; prothrombin tme [PT], P < .0001; activated partial throboplastin time [aPTT], P= .021), inflammatory lesions (MA, P= .013; TF‐CL30, P= .033; TF‐CL60, P= .010; TF‐Ly60, P= .011; ≥ 1 TF‐TEG coagulopathy, P= .036; ≥ 2 TF‐TEG coagulopathy, P= .0007; PT, P= .0005; fibrinogen, P= .019), SIRS (MA, P= .004; TF‐CL30, P= .019; TF‐CL60, P= .013; TF‐Ly30, P= .020; TF‐Ly60, P= .010; PT, P < .0001; aPTT, P= .032; disseminated intravascular coagulation, P= .005), and complications (ileus: aPTT, P= .020; diarrhea: TF‐CL30, P= .040; TF‐Ly30, P= .041; thrombophlebitis: ≥ 1 TF‐TEG coagulopathy, P= .018; laminitis: MA, P= .004; CL60, P= .045; CI, P= .036; TF‐MA, P= .019; TF‐TEG CI, P= .019). Abnormalities in TEG and TF‐TEG parameters were indicative of hypocoagulation and hypofibrinolysis. Conclusions and Clinical Importance: TEG identifies changes in coagulation and fibrinolysis associated with lesion type, SIRS, morbidity, and fatality in horses with gastrointestinal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号