首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
[目的]对ECH2O EC-5土壤水分传感器测定科尔沁沙地土壤含水率的可靠性进行验证。[方法]以烘干法测定数据为基准值,采用回归分析方法建立ECH2O EC-5水分传感器测定沙地土壤含水率的校正方程,并用独立的样本进行验证。[结果]ECH2O EC-5水分传感器测定值与烘干法测定值之间具有很好的线性回归关系(R2=0.96),呈显著正相关(p0.01);验证结果显示,ECH2O EC-5土壤水分传感器测定值经回归方程校正后与基准值之间的均方根误差(RMSE)、相对均方根误差(RRMSE)分别为0.38%和6.29%。[结论]ECH2O EC-5土壤水分传感器测定的沙地土壤水分值准确度较高,具有很高的可靠性。  相似文献   

2.
电介质型水分传感器测定栽培基质含水率的标定模型   总被引:2,自引:1,他引:1  
土壤与基质的理化特性相差较大,土壤水分传感器测定基质含水率时有较大误差,不能直接用于基质含水率测定。为实现栽培基质水分快速检测,在不同配比的基质中采用电介质型EC-5土壤水分传感器进行了适应性测试。试验研究了温度、体积质量和电导率对传感器输出值的影响,采用多项式和线性回归处理方法,建立了基于温度、体积质量影响下的基质含水率标定模型。试验表明,经标定后,EC-5电介质型土壤水分传感器的测定含水率与实际含水率之间有较好的线性关系(R2>0.9791),且最大误差小于13%,因此,EC-5电介质型土壤水分传感器经标定后可作为基质的快速检测设备。  相似文献   

3.
半干旱沙地3种土壤水分测定方法对比研究   总被引:2,自引:2,他引:0  
土壤水分是影响干旱、半干旱地区植物生长和发育的重要因素。分别采用烘干法、TDR法(时域反射计)和EC-5法这3种方法对毛乌素沙地土壤水分进行了观测。结果表明,3种方法测得的各层土壤含水率之间均无显著差异;3种方法测得结果彼此间相关性显著;EC-5在观测低含水率土壤水分中具有与烘干法和TDR法相当的效果。EC-5土壤水分传感器在组建自动化、网络化土壤监测系统中具有优势。  相似文献   

4.
EC-5和5TE土壤水分传感器的多因素性能测试与校正   总被引:2,自引:2,他引:0  
摘要:含水率、电导率及表层温度等土壤墒情信息是进行农牧业精确灌溉作业的基础。无线传感器网络是目前广泛采用的监测土壤墒情的有效方法,其对传感器有着低成本、低功耗和可靠性的要求。针对网络整体需求,本文在对比不同土壤水分传感器后选定并测试了土壤水分传感器EC-5和5TE的工作性能。结果表明:EC-5和5TE的电工作特性均受温度、电导率和pH影响。5TE受电导率的影响要比受温度或pH的影响大,应用校正模型,三者相关决定系数R2依次可达0.918、0.971和0.906;EC-5具有与5TE一样的温度稳定性,但其受电导率或pH的影响效果与5TE的相反,校正模型相关决定系数R2分别为0.977、0.944和0.978。此外,虽然5TE自带的电导率测定的可靠性很高,但其温度测定漂移较大,线性校正后相关决定系数R2为0.993。总的来说,5TE和EC-5已能满足无线传感器网络监测土壤墒情信息的需求,但有必要根据本试验结果提供的对温度、电导率和pH的校正模型对其进行补偿校正。  相似文献   

5.
番茄种植地土壤水分传感器最佳埋设深度试验   总被引:2,自引:0,他引:2  
土壤水分传感器测定土壤含水率从而指导灌溉,对于提高作物水分利用效率和产量都具有十分重要的意义。对番茄种植中产量与水分利用效率最佳的水分条件以及土壤水分传感器的最佳埋设位置进行了试验研究。结果表明,在开花坐果期土壤含水率下限控制在60%的田间持水率,结果盛期土壤含水率下限控制在75%的田间持水率是番茄生长的最优水分条件;同时,10-20cm土层土壤含水率能很好地代表计划湿润层内的平均土壤含水率(开花坐果期和盛果期R2分别达到0.95和0.85以上),把土壤水分传感器埋设于此土层深度比较合理。  相似文献   

6.
不同时间尺度反坡台阶红壤坡耕地土壤水分动态变化规律   总被引:4,自引:1,他引:3  
为研究反坡台阶对红壤坡耕地土壤水分不同时间尺度变化以及土壤干湿变化的影响,在2016—2017年对布设反坡台阶坡耕地和原状坡耕地0~100 cm深度土壤水分状况进行了持续监测,计算了土壤相对含水率和增墒率。结果表明,反坡台阶对土壤水分的增加作用在枯水年更为显著(P0.05)。坡耕地旱季各土层土壤含水率变化相对不明显,基本上呈现出随着土层深度逐渐增加的规律;7月、9月和11月则呈现出明显的S状的规律;坡耕地布设反坡台阶后,各个时段各个土层土壤含水率均有了明显的提高,尤其是在5月土壤补水期和11月土壤失水期对土壤水分的增加效果更加明显。坡耕地土壤逐日含水率变异程度随着土层深度增加而逐渐减小;反坡台阶处理坡耕地和原状坡耕地5、20和40cm处土壤逐日含水率与降雨量呈现极显著的相关关系(P0.01),60cm处土壤逐日含水率与降雨量达显著相关(P0.05),而80、100 cm深度土壤逐日含水率与降雨量之间相关关系不显著。反坡台阶对坡耕地5、20、40、60、80、100 cm处土壤平均增墒率分别达到15.22%、15.25%、16.91%、15.60%、16.50%和16.17%,而其对不同深度土壤增墒率在年内均呈现出不同的变化规律。坡耕地布设反坡台阶,显著增加了土壤含水率,增加了土壤湿润期的持续时间,并且能显著提高坡耕地降雨利用率,这对于解决坡耕地的生态水文型干旱问题,提高山区坡耕地农业生产力具有重要意义。  相似文献   

7.
利用高频率(5 min)的土壤水分探针和自动气象站监测三峡库区典型茶园坡面与林地坡面的土壤水分变化过程及其对降雨的响应,明确了林地和茶园土壤水分变化的规律,揭示了土地利用方式和微地形对土壤水分和降雨储蓄的影响机制。结果表明:(1)在时间上,茶园和林地土壤含水率随降雨量的变化而改变,土壤含水率随土层深度呈现“W”型和“S”型变化。土壤含水率年内变异系数随着土层深度的增加而降低,表层土壤(10 cm)含水率为中等变异水平(10%相似文献   

8.
通过两年的地下水位资料与8个防护林地土壤水分与盐分分布数据,分析了喀拉米吉镇砂土、壤土与粘土绿洲防护林地土壤水盐在0-150 cm深度的分布特征,结果表明:(1)土壤水分随土壤深度的变化趋势为:砂土林地表现为随土壤深度的增大土壤贮水量从60 cm深处开始呈"波峰"、"波谷"的交替;砂壤土林地土壤贮水量随土壤深度的增加而增加;粘土林地土壤含水率开始随着深度的增大而增大,至80-120 cm以后不再增大,甚至减小。(2)砂(壤)土林地土壤水分含量低且空间异质性大,粘土林地土壤贮水量高且空间异质性小。粘土林地土壤含盐量高、砂土林地土壤含盐量低,砂土林地的土壤电导率值在1.5 mS/cm以下,粘土林地的土壤电导率值在2.5 mS/cm以下。(3)喀拉米吉镇绿洲的8个防护林地中,土壤含水量高的林地含盐量也高,含水率低的林地含盐量也低。(4)林地土壤水分布随地下水位的变化趋势表现为:林地内150 cm土体贮水量随地下水位的上升大致呈增大的趋势,林地内的土壤贮水量与地下水位具有较强的负相关关系(R2=-0.81)。林地土壤含盐量随地下水位的变化趋势表现为:(砂)壤土林地的各层土壤盐度随地下水位的上升而下降,地下水位越浅,土壤盐度越小,地下水位越深,土壤盐度越大;粘土林地中,毛管力作用强,盐分运移速度快,从而表现出地下水位越浅,土壤盐度越大,特别是下层土壤(80-100 cm,100-120 cm,120-150 cm)较明显,即土壤盐度随地下水位上升而增大。  相似文献   

9.
秸秆还田是提升土壤肥力的重要措施之一,还田深度是影响还田效果的重要因素。本文以黑土为研究对象,分析了连续3年等量秸秆混入不同深度土层对土壤有机质及养分含量的影响。试验包括4个秸秆混合还田深度,0~15 cm(D15S),0~20 cm(D20S),0~35 cm(D35S)和0~50 cm(D50S),秸秆还田量均为10 000 kg·hm^(-2)。研究结果表明等量秸秆混入不同深度土层,导致不同处理秸秆在土壤中的含量(SC)在1.68~6.06 g·kg^(-1)之间,随着秸秆混入土层深度的增加SC值逐渐减小;秸秆混合还田增加了相应土层土壤有机质含量,与D15S处理相比,D20S、D35S和D50S处理土壤有机质增加量分别降低了27.3%,48.4%和67.8%,但是秸秆的有机质转化率在D35S处理达到了最大值,与D15S、D20S和D50S相比分别增加了28.6%,32.6%和17.5%,不同处理土壤有机质增加的总量表现为D35S>D50S>D15S>D20S,土壤轻组有机碳总量表现出相似的趋势;等量秸秆混入不同深度土层没有显著增加相应土层全量养分的含量,但是显著增加了速效养分含量(P<0.05),与初始值相比,D15S、D20S、D35S和D50S处理土壤碱解氮、速效磷和速效钾含量分别提高了7.17%~20.6%、9.16%~38.2%和12.6%~43.7%,其中土壤速效养分增加率在D35S处理达到了最大值,说明秸秆深混还田能够促进养分在土壤深层的积累,增加全层土壤养分的供给能力。因此,建议研究区域秸秆混合还田的深度为0~35 cm,提高秸秆混合还田对土壤肥力的贡献,实现黑土地保护。  相似文献   

10.
滴灌均匀性对土壤水分传感器埋设位置的影响   总被引:2,自引:2,他引:0  
合理选择土壤水分传感器埋设位置以减少监测点密度和成本,是基于无线传感器网络制定灌溉处方图亟待解决的一个关键问题。该研究基于土壤含水率时间稳定性原理,将直接代表平均土壤含水率的点位用于土壤水分传感器布设位置点的选取,在水平方向分布均匀,垂直剖面土壤颗粒组成变异程度随土层深度增加的粉壤土田块内分析了低、中、高灌水均匀系数(分别为0.6、0.8和0.97)对春玉米主要根系层土壤含水率空间分布均匀性和时间稳定性的影响。结果表明,春玉米生育期内,随灌水均匀系数降低,土壤含水率空间分布均匀度降低,但低、中、高灌水均匀系数处理的土壤含水率均匀系数均大于0.81;低、中、高灌水均匀系数处理的平均Spearman秩相关系数均达到了显著水平(P0.05),但土壤含水率空间分布结构相似性随灌水均匀度的增加而减小;对高灌水均匀系数处理,0~0.2、0.2~0.4、0.4~0.6、0.6~0.8 m土层直接代表平均土壤含水率的测点比例分别为83%、78%、53%和86%。随灌水均匀系数降低,各土层直接代表平均土壤含水率的测点数量减少,说明土壤水分传感器随机布设引起的测量误差将随滴灌灌水均匀度的减小而增大。  相似文献   

11.
三深度土壤水分传感器的研制及试验   总被引:5,自引:4,他引:1  
针对当前植物根区不同深度下土壤含水量测量存在的传感器安装困难、对原位土壤扰动大以及传感器间一致性差等问题,该文基于阻抗法设计了一种三深度土壤水分传感器。该传感器不仅可以同时测量3个不同深度的土壤含水量,并且在安装时对原位土壤扰动极小。试验标定结果显示,该传感器具有较高的精度,所测的土壤含水量与烘干法所得的实际含水量非常吻合,决定系数R2和均方根误差(RMSE,root mean square error)分别达到0.996和0.013 cm3/cm3;传感器可适用于多种不同质地的土壤,在3种不同质地土壤中的输出灵敏度均大于1V/(cm3/cm3)。传感器的输出与土壤体积含水量呈现良好的线性关系,对黏土、砂土及壤土的决定系数R2分别达到0.983、0.965和0.975;土壤水分入渗试验结果进一步表明,该传感器性能良好,3个不同深度的传感器电极具有较高的一致性,在壤土和砂土样本中3个深度传感器电极的输出,相对误差分别小于2%和5%。  相似文献   

12.
采用田间小区试验,以番茄为指示植物,研究不同施氮模式:农民习惯施肥(N—hmxer)、减施化肥氮26%(74%N-farmer)、减施化肥氮26%结合调节土壤C/N(74%N—farmer+S)、减施化肥氮26%结合调节土壤C/N和采用滴灌(74%N-farmer+S+D)、减施化肥氮45%结合调节土壤C/N和采用滴灌(55%N-farmer+S+D)的集成模式对设施番茄氮素吸收利用及土壤硝态氮累积的影响。结果表明。55%N-farmer+S+D模式下番茄产量最高为108349kg·hm^-2,产投比最高为26.1;与N—farmer模式相比,74%N-farmer、74%N—farmer+S、74%N-farmer+S+D和55%N—farmer+S+D模式的氮素利用率和氮素农学利用效率均有增加,其中55%N—farmer+S+D模式的氮素当季利用率为9.56%,氮素农学效率为43.67kg·kg^-1,均显著高于N—farmer模式(P〈0.05);氮肥生理利用效率在各施氮模式间没有显著差异,55%N-farmer+S+D模式的效率最高为598.06kg·kg^-1;55%N-farmer+S+D模式的氮素果实生产效率和收获指数分别为493.81kg·kg^-1和53.84%,均高于N—farmer模式。氮平衡结果表明,N—farmer模式的表观损失最高,55%N-farmer+S+D模式显著低于N—farmer模式;相同土壤剖面中不同模式硝态氮含量随番茄生育进程均呈先增高后降低的趋势;番茄盛果期和拉秧期,74%N—farmer+S、74%N—farmer+S+D和55%N-farmer+S+D模式在0~100cm剖面累积的硝态氮含量均低于N—farmer模式,拉秧期N—farmer模式累积的硝态氮含量最高达705.24kg·hm^-2,74%N-farmer+S+D模式累积的硝态氮含量最低为453.75kg·hm^-2;番茄在3个不同生育期,土壤硝态氮多累积在0—40cm土层,硝态氮的相对累积量约为50%。综合以上分析结果,集成模式55%N—farmer+S+D具有明显优势,能够提高氮肥的吸收和利用效率,减少土壤硝态氮的残留。  相似文献   

13.
基于Hydrus-1D模型的玉米根系吸水影响因素分析   总被引:1,自引:1,他引:1  
为探索土壤质地、植物生长状况和气象条件对不同土壤水分条件下根系吸水速率的影响机理,该文以相对根吸水速率与土壤含水率的关系衡量土壤水分有效性,利用Hydrus-1D模型模拟了3种土壤(壤黏土、黏壤土和砂壤土)中不同玉米生长状况(包括叶面积指数、根系深度和根系剖面分布)或蒸发力条件下根系吸水速率随含水率的动态变化,确定了不同条件下根系吸水速率开始降低的临界含水率。结果表明:土壤质地、植物的叶面积指数和根系分布及大气蒸发力都对根系吸水动态曲线的临界含水率有一定影响,其中根系深度和根系分布形状还影响根系吸水速率与含水率关系曲线的形状,但在3种土壤中,根系吸水速率的动态变化对植物生长和大气蒸发力的响应不同。总体而言,3种土壤临界含水率的大小是壤黏土>黏壤土>砂壤土;临界含水率随大气蒸发力的升高而升高,随根系深度和深层根系分布的增加而降低;各因子对玉米根系吸水影响程度的大小是土壤质地>根系分布形状>根系深度>大气蒸发力>叶面积指数。  相似文献   

14.
番茄叶片叶绿素含量光谱估算模型   总被引:2,自引:0,他引:2  
以番茄品种“金粉2号”为试验材料,在玻璃温室内设置3种土壤水分胁迫水平,以正常灌溉为对照,于2013年3—7月和8—12月两个生长季对番茄进行全生育期持续处理。采用便携式地物光谱仪测定各生育期番茄冠层的光谱反射率,同步测定叶片总叶绿素和叶绿素a含量,并基于3—7月数据计算常见高光谱植被指数,分别建立番茄叶片叶绿素总量和叶绿素a估算模型,用8一12月生长季的试验数据对模拟精度进行检验。结果表明:(1)水分胁迫对番茄叶片总叶绿素、叶绿素a含量和番茄冠层光谱反射率产生明显影响,水分胁迫越严重,叶绿素总量和叶绿素a含量均越低,番茄冠层光谱反射率也越低;(2)随着生育期的推进,番茄总叶绿素和叶绿素a含量均持续增加,而冠层光谱反射率在红光和蓝光波段的反射率逐渐减少;(3)4种估算模型中R670模型的决定系数(R。)最高,效果最佳(P〈0.01),番茄叶片总叶绿素和叶绿素a最佳估算模型分别为:C_chl(a+b)=44.83R670+_670+7.36,C_chl=39.92R_670+5.12,均根方误差分别为0.45、0.42mg·g^-1,表明利用高光谱数据估算番茄叶片的叶绿素含量可行。  相似文献   

15.
坡耕地反坡水平阶对土壤水N、P垂直再分配的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
 采用野外监测和室内实验分析相结合的方法,对昆明市松华坝水库水源区坡耕地反坡水平阶土壤水N、P垂直再分配进行研究,结果表明:1)土壤水总氮TN、氨态氮NH+4+-N、硝态氮NO3--N和总磷TP在20~40cm土层自然坡面和反坡水平阶2种处理差异性均显著,40~60 cm土层TN和NH+4+-N浓度和土壤TN质量分数相关系数为0.94(P<0.05)和0.97(P<0.01),土壤水TP浓度分别和土壤TP、AP质量分数相关系数为0.90(P<0.05)和0.98(P<0.01);40~60cm土层土壤水TN浓度和土壤TN质量分数相关系数为0.92(P<0.05),土壤水TP浓度和土壤AP质量分数相关系数为0.96(P<0.01);60~80cm土层土壤水NO3--N浓度分别和土壤TN、AN质量分数相关系数为0.90(P<0.05)和0.92(P<0.05),土壤水TP浓度和土壤AP质量分数相关系数为0.93(P<0.05);80~100cm土层土壤水NO3--N浓度和土壤AN质量分数相关系数为0.94(P<0.05);在0~100cm土层,反坡水平阶处理能有效地将坡耕地地表径流转化为土内径流,造成土壤水N、P质量分数不同程度的增高趋势;土壤水N、P在土壤剖面的运动是引起土壤N、P累积的动力。  相似文献   

16.
利用田间试验研究了冬季3种土地管理方式下(种麦、休闲和淹水)秸秆施用(4800kg·hm^-2和0)对后续稻季CH。排放的影响。结果表明,休闲混施和休闲不施处理CH4平均排放通量显著高于种麦混施和种麦不施处理(P〈0.05),但显著低于淹水混施和淹水不施处理(P〈0.05);淹水混施处理CH4平均排放通量显著高于淹水不施处理(P〈0.05),而休闲混施和休闲不施处理、种麦混施和种麦不施处理间无显著差异(P〉0.05)。水稻生长期CH4排放通量与5、10cm处土温呈极显著正相关(P〈0.01),而与土壤肌无显著相关性(p〉0.05)。改冬季淹水和休闲稻田为种植小麦或在水稻移栽前对休闲稻田实施除草措施能显著减少稻田CH4排放量,是一种既增加农作物产量又能达到减少温室气体CH4排放的农业措施,具有很大的应用推广价值。  相似文献   

17.
崩岗不同土层土壤水力学特性差异性分析   总被引:1,自引:0,他引:1  
为研究崩岗不同土层土壤水力学特性的差异性,采用离心法测定不同土层土壤水分特征曲线,筛选出适合的土壤水分特征曲线拟合模型,结合统计模型,推求土壤的当量孔径分布、比水容量、非饱和导水率和扩散率,分析崩岗不同土层土壤水力学参数的变化规律。结果表明,崩岗土层从红土层到砂土层的变化过程中,土壤质地由黏土向砂土变化;Fredlund&Xing模型对崩岗土壤土水特征曲线拟合效果最好;参数θs、α、n随着质地变黏重逐渐减小;随着土层深度的增加,土壤的持水性能降低;土壤比水容量、非饱和导水率和扩散率受土壤质地和基质吸力的共同影响。在低吸力阶段,3个指标随基质吸力变化比较平缓,砂土层土壤比水容量和非饱和导水率最大,扩散率最小;而在高吸力阶段,砂土层土壤的这些指标降低较快,且低于其他土层,各层土壤间导水率和扩散率差异随着基质吸力的增加而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号