首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Normal reproductive function is dependent upon availability of glucose and insulin‐induced hypoglycaemia is a metabolic stressor known to disrupt the ovine oestrous cycle. We have recently shown that IIH has the ability to delay the LH surge of intact ewes. In the present study, we examined brain tissue to determine: (i) which hypothalamic regions are activated with respect to IIH and (ii) the effect of IIH on kisspeptin cell activation and CRFR type 2 immunoreactivity, all of which may be involved in disruptive mechanisms. Follicular phases were synchronized with progesterone vaginal pessaries and at 28 h after progesterone withdrawal (PW), animals received saline (n = 6) or insulin (4 IU/kg; n = 5) and were subsequently killed at 31 h after PW (i.e., 3 h after insulin administration). Peripheral hormone concentrations were evaluated, and hypothalamic sections were immunostained for either kisspeptin and c‐Fos (a marker of neuronal activation) or CRFR type 2. Within 3 h of treatment, cortisol concentrations had increased whereas plasma oestradiol concentrations decreased in peripheral plasma (p < 0.05 for both). In the arcuate nucleus (ARC), insulin‐treated ewes had an increased expression of c‐Fos. Furthermore, the percentage of kisspeptin cells co‐expressing c‐Fos increased in the ARC (from 11 to 51%; p < 0.05), but there was no change in the medial pre‐optic area (mPOA; 14 vs 19%). CRFR type 2 expression in the lower part of the ARC and the median eminence was not altered by insulin treatment. Thus, disruption of the LH surge after IIH in the follicular phase is not associated with decreased kisspeptin cell activation or an increase in CRFR type 2 in the ARC but may involve other cell types located in the ARC nucleus which are activated in response to IIH.  相似文献   

2.
Administration of hormones to synchronize oestrus is a useful tool in animal breeding. However, exogenous ovarian stimulation may be detrimental to reproductive function. This study was aimed to examine whether an oestrus synchronization with PGF2α/eCG/hCG could affect luteal P4 synthesis in early pregnant gilts. Corpora lutea (CLs) were collected on days 9, 12 and 16 of pregnancy from gilts with natural (n = 16) and synchronized (n = 18) oestrus and analysed for (i) the expre‐ssion of steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A polypeptide (CYP11A1), and 3β‐hydroxysteroid dehydrogenase (3βHSD); (ii) the concentration of P4 in the luteal tissue and blood; and (iii) the expression of luteinizing hormone receptors (LHR) and oestrogen receptors (ERα and ERβ). Additionally, the effect of LH on P4 secretion from CL slices collected from synchronized and naturally ovulated animals has been studied in vitro. PGF2α/eCG/hCG administration increased mRNA expression of StAR, CYP11A1, 3βHSD, and LHR on day 9 and CYP11A1 and LHR on day 12 of pregnancy compared with the control group (p < 0.05). CYP11A1, 3βHSD, LHR, ERα and ERβ proteins were not affected by synchronization; only StAR protein increased in hormonally treated animals (p = 0.017). The concentration of P4 in luteal tissue was greater on day 9 (p < 0.01), but lower on day 16 (p < 0.05) in gilts with hormonally induced oestrus compared with control animals. Blood serum levels of P4 were lower in synchronized than control gilts (p < 0.001). Synchronization did not affect LH‐stimulated P4 secretion from luteal slices; however, greater basal concentration of P4 in incubation medium was detected for CLs collected from synchronized than control gilts (p < 0.05). In conclusion, synchronization of oestrus with PGF2α/eCG/hCG protocol in gilts did not impair the expression of luteal P4 synthesis system, although decreased P4 concentration in the blood.  相似文献   

3.
Endometrial expression of oestrogen receptor‐α (ERα), progesterone receptor (PR) and cyclooxigenase‐2 (COX‐2) was evaluated in non‐pregnant and pregnant llamas during the period when luteolysis/maternal recognition of pregnancy is expected to occur. Females (n = 28) were divided into two groups: non‐pregnant llamas were induced to ovulate with a Buserelin injection, and endometrial biopsies were obtained on day 8 (n = 5) or 12 (n = 5) post‐induction of ovulation. Animals of the pregnant group (n = 18) were mated with a fertile male. Pregnancy was confirmed by the visualization of the embryo collected by transcervical flushing in 5 of 9 animals on day 8 post‐mating and by progesterone profile on day 12 post‐mating in 4 of 9 animals, when endometrial biopsies were obtained. An immunohistochemical technique was used to evaluate receptors population and COX‐2 expression. Pregnant llamas showed a higher percentage of positive cells and stronger intensity for ERα than for non‐pregnant llamas in stroma on day 8 and in the luminal epithelium on day 12 post‐induction of ovulation, while a deep decrease in endometrial PR population was reported in pregnant llamas on that day in luminal and glandular epithelia and stroma. In the luminal epithelium, COX‐2 expression was lower in pregnant than in non‐pregnant animals. Briefly, the increase of ERα in pregnant llamas gives further support to the hypothesis that oestrogens are involved in the mechanism of maternal recognition of pregnancy. Endometrial PR decrease in pregnant llamas might be a necessary event to allow the expression of proteins involved in conceptus attachment, a mechanism widely accepted in other species. Moreover, embryo seems to attenuate maternal PGF2α secretion during early pregnancy by decreasing the endometrial expression of COX‐2 in the luminal epithelium of pregnant llamas.  相似文献   

4.
The present study aimed to determine estrogen feedback action sites to mediate prepubertal restraint of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release in female rats. Wistar-Imamichi strain rats were ovariectomized (OVX) and received a local estradiol-17β (estradiol) or cholesterol microimplant in several brain areas, such as the medial preoptic area (mPOA), paraventricular nucleus, ventromedial nucleus and arcuate nucleus (ARC), at 20 or 35 days of age. Six days after receiving the estradiol microimplant, animals were bled to detect LH pulses at 26 or 41 days of age, representing the pre- or postpubertal period, respectively. Estradiol microimplants in the mPOA or ARC, but not in other brain regions, suppressed LH pulses in prepubertal OVX rats. Apparent LH pulses were found in the postpubertal period in all animals bearing estradiol or cholesterol implants. It is unlikely that pubertal changes in responsiveness to estrogen are due to a change in estrogen receptor (ER) expression, because the number of ERα-immunoreactive cells and mRNA levels of Esr1, Esr2 and Gpr30 in the mPOA and ARC were comparable between the pre- and postpubertal periods. In addition, kisspeptin or GnRH injection overrode estradiol-dependent prepubertal LH suppression, suggesting that estrogen inhibits the kisspeptin-GnRH cascade during the prepubertal period. Thus, estrogen-responsive neurons located in the mPOA and ARC may play key roles in estrogen-dependent prepubertal restraint of GnRH/LH secretion in female rats.  相似文献   

5.
The efficacy of eight combinations of fluorogestone acetate (FGA, 20 or 40 mg as intravaginal device during 11 days), equine chorionic gonadotropin (eCG, 300 or 500 UI injected 48 hr before FGA removal) and prostaglandin F (cloprostenol, 0 or 50 μg injected 48 hr before FGA removal) aiming at induction and synchronization of oestrus and ovulation was evaluated during the anoestrus season in spring and during the breeding season in autumn in adult Beni Arouss goats. Oestrous behaviour was recorded between 12 and 60 hr after FGA removal. Blood samplings allowing to assess onset of the pre‐ovulatory LH surge and increase of progesterone as sign of an active corpus luteum were performed, respectively, between 20 and 60 hr and 3, 5, 8 and 15 days after FGA removal. No season‐related differences (spring vs. autumn) were observed for oestrous response (95% vs. 93%), pre‐ovulatory LH surge (94% vs. 84%) and luteal response after 3–8 and 11–15 days post‐treatment (respectively 92% vs. 66% and 92% vs. 98%). The onset of oestrus (21 [13–53] vs. 32 [12–54] hr) and LH surge (26 [20–60] vs. 38 [22–60] hr) occurred significantly later in autumn. FGA (40 vs. 20 mg) in autumn significantly delayed the onset of oestrus (36 [16–54] vs. 23 [12–47] hr) and LH surge (44 [26–58] vs. 33 [22–60] hr). Significant treatment‐related differences were recorded for onset of LH surge (earliest for 20 mg FGA, 300 IU eCG, 50 μg PGF) and onset of luteal phase (latest for 40 mg FGA, 300 IU eCG, 50 μg PGF). In conclusion, the hormone combinations tested appeared equally effective in terms of oestrous and ovulation rates. Season has influenced significantly the onset of oestrus and LH surge, and the high dose regimen of FGA delayed the ovarian response in autumn.  相似文献   

6.
The objective of this study was to assess the effects of genistein (GEN) on expression of insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor binding protein 1 (IGFBP‐1) in young and aged rat ovary. Forty young female Sprague Dawley (SD) rats (200 ± 20 g) and forty aged female SD rats (490 ± 20 g) were selected and according to weight, they were divided into the following five groups with eight animals in each: negative control group (NC), low‐dose group (L), middle‐dose group (M), high‐dose group (H) and positive control group (PC). GEN group received GEN of 15, 30, 60 mg/kg respectively. It lasted 30 days. Concentrations of serum hormones, IGF‐1 and IGFBP‐1 were determined by enzyme‐linked immunosorbent assay (ELISA). Gene and protein expressions of IGF‐1 and IGFBP‐1 were determined by real‐time PCR and Western blot respectively. Compared with NC, GEN significantly increased oestradiol‐17β(E2) level in aged rat, reduced luteinizing hormone (LH) level in young and aged rat. Serum levels of IGFBP‐1 in young rats were significantly higher in GEN groups (p < 0.05). mRNA and protein expression levels of IGF‐1 and IGFBP‐1 were positively correlated with GEN dose. GEN could significantly reduce the ratio of IGF‐1/IGFBP‐1 of aged rats. Multivariate Cox regression analysis result showed IGF‐1 and IGFBP‐1 levels significantly correlated with GEN dose. We speculate that there is an association between the addition of GEN and expression of IGF‐1 and IGFBP‐1, and the relationship between them is different in young and aged rat.  相似文献   

7.
Canine inflammatory mammary cancer (IMC) has been proposed as a model for the study of human inflammatory breast cancer (IBC). The aims of this study were to compare the immunohistochemical expression of aromatase (Arom) and several hormone receptors [estrogen receptor α (ERα), estrogen receptor β (ERβ), progesterone receptor (PR) and androgen receptor (AR)], in 21 IMC cases vs 19 non‐IMC; and to study the possible effect of letrozole on canine IMC and human inflammatory breast cancer (IBC) in vitro using IPC‐366 and SUM‐149 cell lines. Significant elevations of the means of Arom Total Score (TS), ERβ TS and PR TS were found in the IMC group (p = 0.025, p = 0.038 and p = 0.037, respectively). Secondary IMC tumours expressed higher levels of Arom than primary IMC (p = 0.029). Non‐IMC PR‐ tumours contained higher levels of Arom than non‐IMC PR+ tumours (p = 0.007). After the addition of letrozole, the number of IMC and IBC cells dropped drastically. The overexpression of Arom found and the results obtained in vitro further support canine IMC as a model for the study of IBC and future approaches to the treatment of dogs with mammary cancer, and especially IMC, using Arom inhibitors.  相似文献   

8.
Estrous cycles of heifers (n = 137) were synchronized with prostaglandin (PGF) and follicular development stimulated with follicle stimulating hormone. Twenty-eight animals were administered Norgestomet implants 12 hr prior to the initial PGF2α injection to suppress the LH surge that initiates ovulation. Animals were ovariectomized every 12 hr after the initial PGF2α (7–9/time, 12–108 hr and at 192 and 240 hr post PGF2α) and divided into three treatment groups to consist of: 1) animals exhibiting a normal luteinizing hormone (LH) surge (n = 86), 2) animals in which no LH surge was detected (n = 23), and 3) suppression of the LH surge via Norgestomet implants (72–108 hr, n = 28). Follicular diameter was measured and follicular fluid was collected for analysis of prolactin, estradiol, progesterone and glycosaminoglycan concentrations. Progesterone concentrations were increased in animals exhibiting an LH surge as compared to animals in which no LH surge was detected; primarily in large follicles (> 8 mm diameter) after the LH surge. Animals not exhibiting an LH surge also had increased follicular progesterone concentrations compared to Norgestomet-implanted animals (242.3 ± 36.3 vs 86.7 ± 6.4 ng/ml, respectively, P < .01), indicating some LH stimulation. Follicular estradiol in animals exhibiting an LH surge increased up to the time of LH surge detection and then declined whereas animals with no LH surge detected had follicular estradiol concentrations that declined after the PGF injection. No differences were noted between those that did not exhibit an LH surge or in which the LH surge was suppressed with Norgestomet in relation to follicular estradiol concentrations. Follicular estradiol concentrations increased with follicular size in all treatment groups (P < .01). Follicular concentrations of prolactin were increased in small follicles (P < .05; ≤ 4 mm diameter) and follicular prolactin increased from 12 to 36 hr post PGF2α injection, then declined after the LH surge. Follicular glycosaminoglycan concentrations decreased with increases in follicular size (P < .01) and were higher in animals that did not exhibit an LH surge (P < .01). No differences in follicular glycosaminoglycans were noted between Norgestomet-implanted animals and those not exhibiting an LH surge. In the animals representing days 4 and 6 of the subsequent estrous cycle (192 and 240 hr post PGF2α), numbers of small-sized follicles were increased. Follicular progesterone and estradiol concentrations were related to atretic large follicles unovulated from the prior estrus and a wave of growth in small and medium follicles. Follicular prolactin and glycosaminoglycans increased with time of the new estrous cycle and were increased in smaller follicles (P < .01). Suppression of LH with progestin implants (Norgestomet) may relate to early effects of progesterone, which may not be totally eliminated at target tissues and subsequently alters the LH surge, steroidogenesis of the follicle, and ovulation. Oocytes were predominantly found in the follicular fluid from animals in which an LH surge was detected and in the buffer wash of follicles in which no LH surge was detected. Oocyte viability was higher in animals exhibiting an LH surge (75% viable) whereas the oocytes of Norgestomet-implanted animals were 75% degenerate.  相似文献   

9.
The objectives were to determine: (i) whether intrafollicular administration of PGE2 and PGF2α to mares would hasten follicle collapse and (ii) the differences in reproductive hormone characteristics in mares with spontaneous and prostaglandin‐induced follicle collapses. Six mares were followed for two oestrous cycles each: when the mares reached a follicle diameter of 30–35 mm and showed mild‐to‐moderate endometrial oedema, mares were administered a single 0.5 ml dose containing 500 μg PGE2 and 125 μg PGF2α (treatment cycle) or a placebo (0.5 ml of water for injection; control cycle) into the preovulatory follicle (Hour 0). Blood samples were collected, and serial ultrasound examinations were performed until follicle collapse. Treated mares showed follicle collapse significantly earlier (20.0 ± 5.9 h) than the control mares (72.0 ± 10.7 h). The LH, progesterone, total oestrogens and oestradiol concentrations did not differ between groups; however, the progesterone concentration increased more between 48 and 72 h after follicle injection in the treatment compared to the control cycles (P < 0.05). In conclusion, intrafollicular treatment with PGE2 and PGF2α hastened follicle collapse in mares without the simultaneous use of an inductor of ovulation; despite the early induction of follicle collapse, the profiles of LH and oestradiol were not altered. This study provides information on the role of prostaglandins (PGs) in the process of follicle wall rupture and collapse and suggests that this may happen even before the beginning of the sharp rise in circulating LH at the final stage of the ovulatory surge.  相似文献   

10.
The aim of this study was to evaluate the peak in luteinizing hormone (LH) and the pregnancy rate of sheep (Texel × Santa Inês) in the tropics using short‐ (6 days) and long‐term (12 days) progesterone protocols followed by artificial insemination (AI) both in and out of the breeding season. Experiment 1 was conducted within (IN) the breeding season (autumn, n = 36), and experiment 2 was conducted outside (OUT) of the breeding season (spring, n = 43). In each experiment, the sheep were divided into two groups (6 or 12 days) according to the duration of treatment with a single‐use progesterone release vaginal device (CIDR®, Pfizer, São Paulo, SP, Brazil), and blood samples were collected from 10 animals per group every 4 hr to measure the LH and progesterone concentrations. In the spring, the characteristics of the LH peak did not differ between groups; but in the autumn, there were differences between groups at the beginning (G‐6 IN: 36.44 ± 5.46 hr; G‐12 IN: 26.57 ± 4.99 hr) and end of the LH peak (G‐6 IN: 46.22 ± 7.51 hr; G‐12 IN: 34.86 ± 8.86 hr). The results showed alterations in the LH peak during the breeding season only in the sheep undergoing the short‐term protocol.  相似文献   

11.
In order to better understand physiological changes during the different stages of the oestrous cycle, immunohistochemistry was used in the present study to investigate the distribution of oestrogen receptor alpha (ERα) as well as the proliferative marker Ki‐67, in the sow uterus during the oestrous cycle. Uterine samples were collected from multiparous sows with normal reproductive performance at selected stages of the oestrous cycle: at late dioestrus (d 17), prooestrus (d 19), oestrous (d 1), early dioestrus (d 4) and dioestrus (d 11–12), respectively. The tissue samples were fixed in 10% formaldehyde, embedded in paraffin and subjected to immunohistochemistry using monoclonal antibodies against ERα (C‐311) and Ki‐67 (MM‐1). In general, the immunostaining of both ERα and Ki‐67 was confined to nuclei of the target cells. Variations were seen, not only at the different stages of the oestrous cycle, but also in the different tissue compartments of the uterus. In the epithelia, the strongest ERα staining and highest amount of positive Ki‐67 cells were found at early dioestrus. In the myometrium, the highest levels of staining of both ERα and Ki‐67 positive cells were found at pro‐oestrus and oestrus. For the proliferative marker, Ki‐67, no positive cells were found at dioestrus and late dioestrus in the epithelium and myometrium. In the connective tissue stroma (subepithelial layer), the highest number of ERα positive cells were found at oestrus, which was significantly different compared with other stages (p≤0.05), whereas the levels of Ki‐67 positive cells were relatively low and did not differ between the stages examined. Significant correlations between the number of ERα positive cells in the stroma and Ki‐67 positive cells in the epithelia were observed. This suggests indirect regulatory mechanisms on epithelial proliferation via ERα in the stroma. In conclusion, these findings in the sow uterus show that the presence of ERα as well as Ki‐67 protein varies not only between different stages of the oestrous cycle but also between different tissue compartments of the uterus. These findings indicate various regulatory mechanisms and stress the importance of localising ERα and proliferating cells in different uterine tissues.  相似文献   

12.
This study was designed to study the effect of short‐term supplementation with rumen‐protected fat during the late luteal phase on reproduction and metabolism of sheep during breeding season. Seventy‐six ewes (Rahmani, Barki and Awassi × Barki) were allocated to two groups considering genotype: the control ewes (C‐group) received a maintenance diet, and the fat‐supplemented ewes (F‐group) received the maintenance diet plus 50 g/head/day of rumen‐ protected fat (Megalac) for 9 days during which oestrus was synchronized. The latter had been accomplished using double intramuscular injection of prostaglandin F (PGF) 11 days apart. Ovarian activity, serum concentration of cholesterol, glucose, insulin and reproductive performance variables were recorded. Data were analysed considering treatment (group) and genotype. Supplementation had positive effects on the overall mean serum concentrations of cholesterol (p < 0.05), glucose (p < 0.05) on day 6 of nutritional treatment and insulin (p = 0.07) on day 8. Fat supplementation did not affect the total number of follicles, follicle populations and ovulation rate. However, fat‐supplemented Rahmani ewes tended to have higher ovulation rate compared with other breeds (treatment × breed interaction, p = 0.06). Treatment also did not affect the mean concentration of serum estradiol or progesterone. Supplemented ewes had higher conception (p = 0.06) and lambing rates (p < 0.05) compared with control. In conclusion, short‐term supplementation with rumen‐protected fat as a source of energy around breeding time improved metabolism, conception and lambing rates of ewes without effects on steroidogenic capacity and ovarian activity being apparent.  相似文献   

13.
Despite the severity and common occurrence of equine endotoxaemia, the available anti‐endotoxic treatments do not effectively target key inflammatory mechanisms such as leucocyte activation and cytokine production. In this study, four compounds with potential anti‐endotoxic effects, namely rolipram, azithromycin, ethyl pyruvate and metformin, were investigated in vitro using equine whole blood stimulated with bacterial lipopolysaccharide. TNF‐α and IL‐1β production were measured in plasma. Rolipram was the most potent inhibitor of cytokine production (IC50 0.84 and 4.68 μm for TNF‐α and IL‐1β, respectively) with almost complete inhibition of TNF‐α, but inhibited IL‐1β by only 39.46%. Azithromycin produced almost complete inhibition of both cytokines, but tended to be less potent than rolipram (IC50 10.66 and 17.4 μm for TNF‐α and IL‐1β, respectively). Metformin inhibited TNF‐α production with similar potency to rolipram and azithromycin (IC50 3.35 μm ) but showed significantly lower efficacy (45.93%; P < 0.05), and had no inhibitory effect on IL‐1β. Ethyl pyruvate was the least potent (IC50 68.35 μm and >10 mm for TNF‐α and IL‐1β production, respectively). Further work is required to investigate whether these or related compounds may have potential use in the treatment of equine endotoxaemia in vivo.  相似文献   

14.
Luteinizing hormone LH plays important roles in follicular maturation and ovulation. The effects of LH are mediated by LH receptor (LHR) in the ovary. However, the factors that regulate the expression of LHR in bovine granulosa cells (GCs) are not well known. Insulin‐like growth factor‐1 (IGF‐1) is known to play a key role in the acquisition and maintenance of functional dominance. To better understand the roles of LHR expression and IGF‐1, we conducted three experiments to determine (i) mRNA expression of LHR in the GCs of developing follicles, (ii) the effects of IGF‐1 on LHR mRNA expression in cultured GCs and (iii) the effects of IGF‐1 on estradiol (E2), progesterone (P4) and androstenedione (A4) production by non‐luteinized GCs. In experiment 1, small follicles (<6 mm Ø) expressed lower levels of LHR than mid‐sized follicles (6–8 mm Ø) and large follicles (≥9 mm Ø) expressed the highest levels of LHR mRNA (p < 0.05). In experiment 2, IGF‐1 (1 and 100 ng/ml) increased (p < 0.05) the expression of LHR mRNA in GCs from small and large follicles. In experiment 3, IGF‐1 (0.1–100 ng/ml) increased A4 and E2 in GCs from both small and large follicles but increased P4 only in large follicles. IGF‐1 in combination with LH (0.1 and 1 ng/ml) increased P4 and A4 in large follicles, and increased E2 and A4 in GCs of small follicles. These findings strongly support the concept that IGF‐1 upregulates LHR mRNA expression as well as A4 and E2 production in GCs and that IGF‐1 is required for determining which follicle becomes dominant and acquires ovulatory capacity.  相似文献   

15.
Crossbred heifers (n = 103) were synchronized to estrus with prostaglandin (PGF) and superovulated with follicle stimulating hormone (FSH-P). Animals were ovariectomized every 12 hr after the PGF injection (n = 7 to 9/time) up to 108 hr to monitor the follicular, hormonal, and oocyte changes associated with follicular development and ovulation. Twenty-eight animals were implanted with Norgestomet implants 12 hr before PGF and ovariectomized at 72, 84, 96, and 108 hr post PGF injection to monitor effects of progesterone and suppression of the luteinizing hormone (LH) surge on oocyte maturation and quality. Follicular fluid was collected and analyzed for progesterone, estradiol, prolactin, and glycosaminoglycan content in conjunction with cumulus maturation and nuclear stage of oocyte maturation. Analysis of in vivo matured oocytes by in vitro fertilization was carried out at 60, 72, 84, and 96 hr post PGF and in vitro matured oocytes at 12 to 108 hr post PGF. No developmental changes in cumulus cells surrounding the oocyte of small follicles was noted (≤ 4 mm dia) indicating a static population. Medium (> 4 ≤ 8 mm) and large size (> 8 mm) follicles developed to the corona radiata and loose cumulus stages in animals in which an LH surge was detected but cumulus status remained primarily in the tight cumulus stage for animals without an LH surge. The estradiol-to-progesterone ratio for tight cumulus (TC), corona radiata (CR), and loose cumulus (LC) stages was 1.8 ± .1, 1.0 ± .1, and .4 ± .2, respectively (P < .01). Nuclear maturation of oocytes in small follicles from animals without a detectable LH surge seem to indicate early maturation (48 to 72 hr post PGF) in conjunction with a high percent of degenerate oocytes not seen in animals exhibiting an LH surge. Oocytes from medium size follicles matured to germinal vesicle breakdown (GVBD) and early meiosis (metaphase I; MI) stages of development in all treatments. Most oocytes were degenerate in Norgestomet-implanted animals. Oocytes from large follicles (> 8 mm dia) from animals exhibiting an LH surge were in MI and metaphase II (MII) stages (48 to 84 hr post PGF) in preparation of ovulation whereas oocytes from animals not exhibiting an LH surge had oocytes that early matured to MII (48 to 72 hr post PGF), later regressing to degenerate oocytes (84 to 108 hr). Follicular progesterone, estradiol, and prolactin increased with oocyte maturation, particularly in medium and large follicles. In vivo matured oocytes for fertilization (60, 72, 84, and 96 hr post PGF) were nude (from the oviduct) and primarily CR from follicles. Tubal oocytes (37%) were fertilized more frequently by a single sperm than follicular oocytes (14.3%; P < .01) and single sperm penetration peaked at 72 hr post PGF. Follicular hormone concentrations were not related to sperm penetration. Oocytes (n = 101) matured in vivo had lower fertilization potential from ovaries producing < 14 or > 50 follicles (39.3%) as compared to 21 to 45 aspirated follicles (68.2%; P < .05), with a peak penetration at 32 follicles (86.7% penetration). No treatment differences (LH surge or no detectable LH surge) were noted in relation to in vivo matured oocytes. Oocytes with single sperm penetration had the lowest estradiol/progesterone ratio of 2.2 vs polyspermic penetration of 13.7.  相似文献   

16.
We previously reported that skim milk (SM) is an effective cryoprotectant for cryopreservation of canine spermatozoa instead of egg yolk (EY), which is the conventional cryoprotectant. In this study, the fertilizing ability and practical use of frozen canine spermatozoa prepared with SM were evaluated by transcervical insemination. Frozen‐thawed spermatozoa were inseminated one to four times on days 2–9 after the LH surge. In SM group, a single transcervical insemination (TCI) on Day 5 led to higher delivery rate (83%) than any other days (33%–50%) post‐LH surge. In EY group, delivery rate in double TCI on days 5 and 6 (71%) was higher compared to any other experimental groups (0%–44%). Regardless of single or double, TCI on Day 5 or Day 6 led to higher litter sizes in SM or EY groups, respectively. The breeding efficiency and litter size of single TCI on Day 5 (4.2) and double TCI on Day 5 and Day 6 (3.7) were significantly higher than in the other experimental groups in SM and EY groups, respectively (p < .05). These findings suggest that skim milk is a suitable alternative to egg yolk for cryopreservation of canine spermatozoa, and the suitable timing for insemination might be on Day 5 post‐LH surge.  相似文献   

17.
This study compares the factors associated with variable interval to oestrus and ovulation between early versus late ovulating goats following PGF administration. The time of ovulation in Beetal goats (n = 38) was monitored through transrectal ultrasound at every 6 hr following a single dose of PGF (experiment 1). Variations in oestrus and ovulation times were further explored through the changes in follicular dynamics, endocrine profiles and behaviour in another set of goats (n = 13) following single PGF given randomly during the luteal phase (experiment 2). The ovulation time varied between 60 and 96 hr, and 57% of ovulations occurred by 72 hr following PGF (experiment 1). Accordingly, the goats (n = 13) in the second experiment were retrospectively divided either into early and/or late ovulating, that is, ≤72 and/or ≥84 hr following PGF. The onset of oestrus, peak estradiol‐17β concentration and LH surge after PGFwas first observed in early than late ovulating goats (p < 0.05). The goats ovulating early had larger follicle and smaller CL in diameter at the time of PGF administration than those ovulating late (5.4 ± 0.2 vs. 4.3 ± 0.2 mm and 10 ± 0.6 vs. 11.8 ± 0.3 mm, respectively; p < 0.05). Likewise, plasma progesterone concentration tended to be lower (p = 0.087) in early than late ovulating goats. In conclusion, the size of dominant follicle and CL at the time of PGF2a determines the interval to ovulation following a single dose of PGF2a during the luteal phase.  相似文献   

18.
Stress disrupts the preovulatory luteinizing hormone (LH) surge in females, but the mechanisms are unknown. We tested the hypothesis that cortisol compromises the ability of estrogen to induce a preovulatory-like LH surge in ovariectomized ewes in both the breeding and nonbreeding season. Luteinizing hormone surges were induced in ovariectomized ewes by treatment with progesterone followed by a surge-inducing estradiol-17β (E2) stimulus using a crossover design. The experiment was replicated in the breeding and nonbreeding seasons. Cortisol reduced the incidence of LH surges irrespective of season. Cortisol increased the latency from E2 stimulus to the onset of the surge in the breeding season only and suppressed the LH surge amplitude during both seasons (P < 0.01). We conclude that cortisol can interfere with the LH surge in several ways: delay, blunt, and in extreme cases prevent the E2-induced LH surge. Furthermore, the effect of cortisol to delay the E2-induced LH surge is more pronounced in the breeding season. These results show that cortisol disrupts the positive feedback effect of E2 to trigger an LH surge and suggest the involvement of multiple mechanisms.  相似文献   

19.
The aim of this study was to investigate the relationship of progesterone (P) and luteinizing hormone (LH) during recognition and establishment of pregnancy in the gilt. Therefore, the effects of eliminating episodic LH pulses on P patterns were determined during early pregnancy. To this end, a slow‐release GnRH implant deslorelin was used for GnRH down‐regulation. A group of gilts (GnRHa, n = 8) was implanted with the GnRH‐agonist on Day 11 of pregnancy, while a control group (C, n = 5) was treated with a non‐impregnated placebo implant. Blood was collected via a vena cava caudalis catheter at 10‐min intervals for 8 hr on Day 16 and 21 of pregnancy. As expected, the GnRH implant reduced LH secretion (p < 0.01) and abolished LH pulses completely at Day 16 and Day 21 of pregnancy. On Day 16, there was no difference in P levels between the treatments. However, on Day 21, the GnRH‐agonist treatment led to significantly increased P concentrations (p < 0.01) compared with the control gilts. Progesterone was secreted in a pulsatile manner in both treatment groups and no relationship between LH pulsatility and P pulsatility was observed. In conclusion, abolishment of LH pulsatility did not affect the pulsatile pattern of P secretion but led to an unexpected overall increase in P on Day 21 of pregnancy; this effect was delayed and occurred 10 days after commencing treatment with the GnRH depot agonist. The elevation of P on Day 21 of pregnancy in the GnRHa group suggests either a reduced negative feedback effect or an increased autocrine response by the corpora lutea.  相似文献   

20.
This study examined effects of stage of gestation and nutrient restriction with subsequent realimentation on maternal and foetal bovine pancreatic function. Dietary treatments were assigned on day 30 of pregnancy and included: control (CON; 100% requirements; = 18) and restricted (R; 60% requirements; = 30). On day 85, cows were slaughtered (CON,= 6; R, = 6), remained on control (CC;= 12) and restricted (RR;= 12), or realimented to control (RC;= 11). On day 140, cows were slaughtered (CC,= 6; RR,= 6; RC,= 5), remained on control (CCC,= 6; RCC,= 5) or realimented to control (RRC,= 6). On day 254, the remaining cows were slaughtered and serum samples were collected from the maternal jugular vein and umbilical cord to determine insulin and glucose concentrations. Pancreases from cows and foetuses were removed, weighed, and subsampled for enzyme and histological analysis. As gestation progressed, maternal pancreatic α‐amylase activity decreased and serum insulin concentrations increased (p ≤ 0.03). Foetal pancreatic trypsin activity increased (p < 0.001) with advancing gestation. Foetal pancreases subjected to realimentation (CCC vs. RCC and RRC) had increased protein and α‐amylase activity at day 254 (p ≤ 0.02), while trypsin (U/g protein; p = 0.02) demonstrated the opposite effect. No treatment effects were observed for maternal or foetal pancreatic insulin‐containing cell clusters. Foetal serum insulin and glucose levels were reduced with advancing gestation (p ≤ 0.03). The largest maternal insulin‐containing cell cluster was not influenced by advancing gestation, while foetal clusters grew throughout (p = 0.01). These effects indicate that maternal digestive enzymes are influenced by nutrient restriction and there is a potential for programming of increased foetal digestive enzyme production resulting from previous maternal nutrient restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号