首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The rapid development in aerial digital cameras in combination with the increased availability of high-resolution Digital Elevation Models (DEMs) provides a renaissance for photogrammetry in forest management planning. Tree height, stem volume, and basal area were estimated for forest stands using canopy height, density, and texture metrics derived from photogrammetric matching of digital aerial images and a high-resolution DEM. The study was conducted at a coniferous hemi-boreal site in southern Sweden. Three different data-sets of digital aerial images were used to test the effects of flight altitude and stereo overlap on an area-based estimation of forest variables. Metrics were calculated for 344 field plots (10 m radius) from point cloud data and used in regression analysis. Stand level accuracy was evaluated using leave-one-out cross validation of 24 stands. For these stands the tree height ranged from 4.8 to 26.9 m (17.8 m mean), stem volume 13.3 to 455 m3 ha?1 (250 m3 ha?1 mean), and basal area from 4.1 to 42.9 m2 ha?1 (27.1 m2 ha?1 mean) with mean stand size of 2.8 ha. The results showed small differences in estimation accuracy of forest variables between the data-sets. The data-set of digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet), showed Root Mean Square Errors (in percent of the surveyed stand mean) of 8.8% for tree height, 13.1% for stem volume and 14.9% for basal area. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.  相似文献   

2.
尾叶桉萌芽林留条数量对生长和产量的影响   总被引:3,自引:1,他引:3       下载免费PDF全文
对 5 5年生尾叶桉实生林砍伐后 ,保留不同萌条数量对其萌芽林生长和产量的影响开展了研究。结果表明 ,定株使桩的存活率明显下降 ,特别是保留单株 ,但保留一定的株数却有利于萌芽林的生长 ;萌芽林的高、径和单株材积生长随保留株数的减少而显著增加 ;3 5年生单位面积蓄积量和出材率 (顶木 )以保留 3株·桩- 1为最好 ,其次为 4株·桩- 1和 2株·桩 - 1,蓄积量分别为 4 5 4 9、4 4 2 1和4 2 5 1m3·hm- 2 ,分别是对照的 131 7%、12 8 0 %和 12 3.0 % ,出材率 (顶木 )分别是对照的 174 .3%、14 8.6 %和 15 5 .4 %。因此 ,在中等地力 ,种植密度为 3m× 2m的尾叶桉萌芽林 ,以纸浆材和顶木为主要经营目的的林分 ,建议其萌芽林的保留株数为 2  4株·桩 - 1。  相似文献   

3.
Abstract

Interpretation and tree height measurements in aerial photographs using photogrammetric workstations are frequently performed in standwise forest inventory. Images acquired by digital aerial cameras are now replacing the traditional film-based aerial photographs. In this study, digital images from the airborne Z/I DMC system for standwise estimation of stem volume, tree height and tree species composition were investigated at a 1200 ha forest area located in southern Sweden (58°30′N, 13°40′E). The 56 selected stands were dominated by Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) with stem volume in the range of 30–630 m3 ha?1 (average 300 m3 ha?1) and tree height in the range of 6–28 m (average 20 m). The large-format pansharpened colour infrared images were captured at a flight altitude of 4800 m above ground level corresponding to a pixel size of 0.48 m. The photo-interpretation was conducted by four professional interpreters, independently. In particular, two different base-to-height ratios (i.e. the ratio between the ground distance between image centres at the time of exposure and the flight altitude above ground level) of 0.26 and 0.39 were evaluated, but no significant difference in the estimation accuracy for stem volume and tree height was found. The accuracy for stem volume estimation in terms of relative root mean square error, corrected for systematic errors, was on average 24% (in the range of 17–39%). The corresponding accuracy for tree height estimation was on average 1.4 m (in the range of 0.9–1.6 m). The tree species composition accuracy assessment using a fuzzy set evaluation procedure showed that 95% of the stands were correctly classified. The estimation accuracies are in agreement with previous results using conventional film-based aerial panchromatic photographs.  相似文献   

4.
The aim of this study was to develop prediction models using laser scanning for estimation of forest variables at plot level, validate the estimations at stand level (area 0.64 ha) and test the effect of different laser measurement densities on the estimation errors. The predictions were validated using 29 forest stands (80×80 m2), each containing 16 field plots with a 10 m radius. For the best tested case, mean tree height, basal area and stem volume were predicted with a root mean square error of 0.59 m (3% of average value), 2.7 m2 ha?1 (10% of average value) and 31 m3 ha?1 (11% of average value), respectively, at stand level. There were small differences in terms of prediction errors for different measuring densities. The results indicate that mean tree height, basal area and stem volume can be estimated in small stands with low laser measurement densities producing accuracies similar to traditional field inventories.  相似文献   

5.
The structure of forest stands changes through developmental phases. This study is carried out in the unmanaged, oriental beech (Fagus orientalis Lipsky) stands in the north of Iran. The aim of this research was to quantify structural characteristics of stands in the stem exclusion phase using common structural indices, which include mingling, tree–tree distance, stem diameter, and tree height differentiation. According to our measurements from three stands, naturally regenerated stands tend to be mixed in species composition have slightly heterogeneous diameter distributions and uniform tree height. The average distance between trees was 3.3 m. Stocking volume of the stands had an average of 540 m3 ha?1 and 412 stem ha?1. Dead wood volume was 24 m3 ha?1, and as a standing volume, the most frequent species in dead wood pool was oriental beech (F. orientalis) (48 %). The common form of dead trees was snag (41 %). The mean value of mingling and tree-to-tree interval indices revealed that beech was mixed intensively with hornbeam and appears to be a more successful competitor for space and light compared with hornbeam; moreover, we found relatively high evidence of inter-species competition in this phase. A better understanding of stand characteristics in the stem exclusion phase as a critical part of the natural dynamics of forest ecosystems could facilitate predictions about the future changes within the stand.  相似文献   

6.
Quantification of forest parameters in different successional stages is required because of its importance as a source of global emissions and ecosystem changes. This study focuses on a successional tropical forest under logging practices in East Kalimantan province, Indonesia. We modeled the forest attributes using both a parametric multiple linear regression analysis and neural networks approach, with Landsat ETM data acquired in 2000 (ETM00). We compiled sample plot data using forest inventory data collected from 1997 to 1998. A total of 226 plots were used to train the models and 112 plots were used for the validation. The remote sensing data (spectral values, vegetation indices, texture, etc.) coupled with digital elevation model (DEM) were experimented with and selectively used to model basal area, stem volume and above ground biomass (AGB). We investigated the possibility to estimate the forest attributes from bitemporal ETM data by calibrating radiometric properties of the ETM image from 2003 (ETM03) using the multivariate alteration detection method. The Pearson correlations showed that the mean texture index is strongly correlated with the forest attributes. We show that neural networks resulted in a higher coefficient of determination (r2) and lower RMSE than multiple regressions for predicting the forest attributes. The estimated forest properties increased with the forest succession advancement (i.e. from the open forest to advanced secondary forest classes). The modeled basal area, stem volume and AGB varied from 10.7–15.1 m2 ha−1, 123.2–181.9 m3 ha−1, and 132.7–185.3 Mg ha−1, respectively. The RMSEr values of model fitting ranged from 11.2% to 13.3%, and the test dataset estimated slightly higher RMSEr which varied from 12% to 14.1%. The ETM03 forest attributes revealed favorable estimates, showing considerably higher estimates than the ETM00. The estimation of forest properties using neural networks makes Landsat data a valuable source of information for forest management, mainly with the recent free access to its historical dataset.  相似文献   

7.
Abstract

Tree mortality, its causes, and the input of dead charred wood were studied in 11 managed 30–45-year-old Scots pine (Pinus sylvestris L.) stands 1 year after experimental low-intensity prescribed burnings in southern Finland. First, the relationship between fire-induced tree damage and several external variables, e.g. stand density, within-stand wind speed, open-air wind speed, the Finnish Forest Fire Index (FFI) and flame height, was studied. Secondly, the study examined which damage and morphological characteristics best predicted tree mortality. Tree mortality was very variable in the experimental plots, ranging from 0% to 48% on the basis of stem number and from 0% to 41% in terms of wood volume. The input of dead and charred wood decreased with stand age, being 19.4 m3 ha?1 in 30–35-year-old stands, but only 1.7 m3 ha?1 in 45-year-old stands. The input of dead wood was on average 10 m3 ha?1, representing less than 5% of the mean volume before the prescribed fire. The external variables that best explained fire-induced damage were within-stand wind speed, flame height and FFI. Tree mortality was best predicted by charred stem ratio with bark thickness, and by charred stem ratio with tree diameter. The results indicate that prescribed burning that is conducted downwind increases tree mortality and changes subsequent stand structure with increasing within-stand wind speed.  相似文献   

8.
Mean tree height, dominant height, mean diameter, stem number, basal area and timber volume of 116 georeferenced field sample plots were estimated from various canopy height and canopy density metrics derived by means of a small-footprint laser scanner over young and mature forest stands using regression analysis. The sample plots were distributed systematically throughout a 6500 ha study area, and the size of each plot was 232.9 m2. Regressions for coniferous forest explained 60–97% of the variability in ground reference values of the six studied characteristics. A proposed practical two-phase procedure for prediction of corresponding characteristics of entire forest stands was tested. Fifty-seven test plots within the study area with a size of approximately 3740 m2 each were divided into 232.9 m2 regular grid cells. The six examined characteristics were predicted for each grid cell from the corresponding laser data using the estimated regression equations. Average values for each test plot were computed and compared with ground-based estimates measured over the entire plot. The bias and standard deviations of the differences between predicted and ground reference values (in parentheses) of mean height, dominant height, mean diameter, stem number, basal area and volume were ?0.58 to ?0.85 m (0.64–1.01 m), ?0.60 to ?0.99 m (0.67–0.84 m), 0.15–0.74 cm (1.33–2.42 cm), 34–108 ha?1 (97–466 ha?1), 0.43–2.51 m2 ha?1 (1.83–3.94 m2 ha?1) and 5.9–16.1 m3 ha?1 (15.1–35.1 m3 ha?1), respectively.  相似文献   

9.
【目的】研究基于遥感影像的森林扰动信息定量提取及其对树高估算的影响,为遥感反演森林参数(树高、生物量)提供参考和借鉴。【方法】选取黑龙江省凉水国家级自然保护区为研究区,以1984—2006年33期Landsat TM/ETM+多光谱遥感影像为数据源,对其进行缨帽变换提取缨帽角(TCA)和缨帽距离(TCD)2个扰动监测指数,采用时间轨迹分析方法(LandTrendr)对TCA与TCD指数进行时间序列重构,分别提取扰动发生的前一年(DBYEA)、扰动发生前的光谱值(DBVAL)、扰动持续时间(DDUR)、扰动量级(DMAG)、扰动后开始修复的时间(RBYEAR)、扰动后开始修复的光谱值(RBVAL)、修复量级(RMAG)和修复持续时间(RDUR)8个时间序列扰动参数。基于单时相Landsat影像光谱信息与单时相Landsat影像光谱信息+森林扰动参数2组变量分别采用随机森林(RF)算法估算树高。【结果】采用单时相Landsat影像光谱信息结合基于TCA和TCD提取的16个时间序列扰动参数建立的树高反演模型预估精度比采用单时相Landsat影像光谱信息建立的树高反演模型预估精度提高6.34%,均方根误差(RMSE)降低0.50 m。树高反演模型中基于TCA提取的时间序列扰动参数变量重要性高于基于TCD提取的时间序列扰动参数变量重要性。【结论】基于LandTrendr提取的森林时间序列扰动参数能够增强反射率与树高之间的相关性,提高遥感树高模型的反演精度,基于TCA提取的森林时间序列扰动参数对树高的解释能力高于基于TCD提取的森林时间序列扰动参数。  相似文献   

10.
[目的]由于激光雷达技术已经能准确测定立木树高及相关树冠因子,应用该技术建立基于树高和树冠因子的立木材积模型,为激光技术在森林蓄积估计中提供技术支撑.[方法]利用云杉、冷杉、栎树、桦树4个树种组的3 010株实测样木数据,分析了立木材积与胸径、树高、树冠因子之间的相关关系;并通过对数回归方法构建了基于树高和树冠因子的立木材积模型,用确定系数R2和平均预估误差MPE等6项指标对模型进行评价.[结果]表明,立木材积与单一因子之间的相关,以胸径最为紧密,其次是树高,再次是冠长和冠幅.基于树高和树冠因子的立木材积模型中,以树高和冠幅作为解释变量的二元模型效果较好,再增加冠长因子的三元模型改进不大.云杉、冷杉、栎树、桦树4个树种组基于树高冠幅的立木材积模型,其R2分别为0.81、0.80、0.76和0.77,MPE分别为4.7%、5.3%、5.4%和5.3%,模型预估精度均能达到95%左右.[结论]本文对材积与林木因子之间相关关系的定量分析,建立了云杉、冷杉、栎树、桦树4个树种的立木材积模型,模型预估精度高.为激光雷达技术定量估测森林参数提供了依据.  相似文献   

11.
We derived a formula for estimating the relationship between stem carbon weight and stem volume, which was calculated from DBH and tree height using a combination of stem analysis and soft X-ray densitometry. The results indicate carbon weight in a 33-year-old coastal Japanese black pine (Pinus thunbergii) forest is approximately 68,186 kg ha?1 in Yamagata Prefecture and 38,253 kg ha?1in a 42-year-old black pine forest in Hokkaido Prefecture, Japan. Also, age-related changes in the stem density following oven-drying of samples of black pine trees are small: the oven-dried density (hereafter “density”) of black pine trees in the two locations mentioned above were 425.6 (kg m?3) and 523.2 (kg m?3) respectively, which is comparable to the density (converted from basic density) of black pine of Land Use, Land-Use Change and Forestry (LULUCF) (533 kg m?3). When compared with the carbon weight by the oven-dried density of LULUCF, the carbon weights calculated from each density were 27 % lower in Yamagata and 6 % lower in Hokkaido. This difference directly affects carbon weight for large-scale estimation and thus can create an error at a regional scale. This methodology can contribute to the management of forests acting as carbon sinks.  相似文献   

12.
This article compares three methods for forest resource estimation based on remote sensing features extracted from Airborne laser scanning and CIR orthophotos. The estimation was made exemplarily for the total stem volume of trees for a given area, measured in cubic metres per hectare [m3 ha−1] (as one of the most important quantitative parameters to characterise a forest stand). The following methods were compared: Regression Analysis (RA), k-NN (nearest neighbour) method and a method that utilises regional yield tables, referred to as the yield table method (YT-method). The estimation of stem volume was examined in a mixed forest in Southern Germany using 300 circular inventory plots, each with a size of 452 m2. Remote sensing features relating to vegetation height and structures were extracted and used as input variables in the different approaches. The accuracy of the estimation was analysed using scatter plots and quantified using absolute and relative root mean square errors (RMSE). The comparison was made for all plots, as well as for averaged plot values located within forest stands that have the same age class. On “plot level” the RMSE yielded 79.79 m3 ha−1 (RA), 81.93 m3 ha−1 (k-NN) and 81.78 m3 ha−1 (YT-method) and for the averaged values 35.75 m3 ha−1 (RA), 35.06 m3 ha−1 (k-NN) and 42.98 m3 ha−1 (YT-method). Advantages and disadvantages, as well as requirements, of the methods are discussed.  相似文献   

13.
Mangroves play important roles in providing a range of ecosystem services, mitigation of strong waves, protection of coastlines against erosion, maintenance of water quality, and carbon sink in the context of global warming. For trees in mangrove forests in southern Ranong Province, Thailand, we investigated the allometric relationship between crown area derived from high-resolution satellite data and stem diameter and used the resulting model to estimate aboveground biomass. We used QuickBird panchromatic and multispectral data acquired for the study area on 15 October 2006 as the high-resolution satellite data. Individual tree crowns were extracted from the satellite image of panchromatic data by using the watershed method, and the species were identified by using the maximum-likelihood method for the multispectral data. Overall classification accuracy for species identification was 88.5 %. The biomass derived from our field survey was plotted against aboveground biomass in the sample plots, estimated from the QuickBird data. The regression line through the origin between the satellite-estimated biomass and biomass based on the field data had a slope of 1.26 (R 2 = 0.65). Stand aboveground biomass estimated from the high-resolution satellite data was underestimated because of a lack of data on the biomass of suppressed trees and inappropriate segmentation of crowns of large trees into two or more trees.  相似文献   

14.
Properties of individual trees can be estimated from airborne laser scanning (ALS) data provided that the scanning is dense enough and the positions of field-measured trees are available as training data. However, such detailed manual field measurements are laborious. This paper presents new methods to use terrestrial laser scanning (TLS) for automatic measurements of tree stems and to further link these ground measurements to ALS data analyzed at the single tree level. The methods have been validated in six 80 × 80 m field plots in spruce-dominated forest (lat. 58°N, long. 13°E). In a first step, individual tree stems were automatically detected from TLS data. The root mean square error (RMSE) for DBH was 38.0 mm (13.1 %), and the bias was 1.6 mm (0.5 %). In a second step, trees detected from the TLS data were automatically co-registered and linked with the corresponding trees detected from the ALS data. In a third step, tree level regression models were created for stem attributes derived from the TLS data using independent variables derived from trees detected from the ALS data. Leave-one-out cross-validation for one field plot at a time provided an RMSE for tree level ALS estimates trained with TLS data of 46.0 mm (15.4 %) for DBH, 9.4 dm (3.7 %) for tree height, and 197.4 dm3 (34.0 %) for stem volume, which was nearly as accurate as when data from manual field inventory were used for training.  相似文献   

15.
Abstract

The growth of three young (5-6 years since planting) Douglas-fir plantations fertilized with a single low-rate application of municipal biosolids, ranging from 17-19 dry Mg ha-1, was studied. Stand measurements showed increases in DBH, height, average and total basal area, average and total volume and average and total dry-weight differences in the biosolids-fertilized vs. control. For instance, average per tree DBH was 14.7% greater than the controls, height by 2.7%, per stem basal area by 27%, per stem average volume by 33%, per stem average dry weight by 38%, basal area per hectare by 28%, volume per hectare by 32% and dry weight per hectare by 36% compared to untreated controls. Comparing differences in volume increases from initial growth periods with the latest growth period indicates that volume increases due to the biosolids treatment are continuing and apparently increasing over time. However, none of these observed differences were statistically significant (0.05 level) due to high variation within and between stands.  相似文献   

16.

The weighted k - nearest neighbour (kNN) method was used for estimating stem volume (m3 ha?1) and basal area (m2 ha?1) on a compartment level (average 19 ha) by combining satellite image data with measurements from Swedish National Forest (NFI) inventory plots. In the kNN method each estimation location (target plot) is assigned a value that is an average, which is weighted, of the attribute data from the k closest reference plots (NFI plots). The distance between target and reference plot was measured on different scales, which were transforms of spectral values and/or ancillary data. The standard error (assuming bias with no trend) of stem volume estimates in the compartments was 36% using only spectral data. This estimation accuracy improved to 17% if site index, age of the forest and mean tree height (ancillary data) were known for the compartments. Low volumes were overestimated and high volumes underestimated. This bias was reduced if ancillary data were added but was also dependent on the transform of the original scales.  相似文献   

17.
Forest ecosystems can modify the atmospheric CO2 through biomass accumulation mostly in tree stems with diameter at breast height (DBH) ≥ 10 cm. Aboveground biomass increment (ΔAGB), and changes in stand AGB, no. stems and basal area (BA) were calculated from mortality, recruitment, and growth data of tree stems in tropical evergreen broadleaved forest, Central Highland Vietnam. Data were derived from ten 1-ha permanent plots established in 2004, where all stems with DBH ≥ 10 cm were tagged, identified to species, and measured for DBH in 2004 and 2012. In an 8-year duration, the increment was 53 ± 10 stems ha–1, 7.8 ± 0.3 m2 ha–1 for BA and 86.0 ± 4.6 Mg ha–1 for AGB. The stem mortality rate was 0.9% year–1 and the stem recruitment rate was 2.2% year–1. Annual ΔAGB was 10.8 Mg ha–1 year–1, equaling to 5.4 Mg C ha–1 year–1. Of which, tree stems of 35–80 cm DBH classes accounted for 65%. The results indicated that the forest is in stage of carbon sequestration. Any disturbances causing death of 35–80 cm DBH tree stems will much reduce carbon sequestration capacity and it will take a long time for AGB to return to pre-disturbance stage.  相似文献   

18.
We evaluated the effects of planting densities (500, 1,000,1,500 and 2,000 trees·ha-1) on tree growth performance (diameter atbase, diameter at breast height, and clear bole height) of two clones(RRIM 2020 and RRIM 2025) of nine years old plantations of rubber tree(Hevea brasiliensis Muell. Arg) in Malaysia. For the four planting densities of the two clones, basal area and diameter at breast height declined with increasing planting density. Clear bole heights were greatest at 1,500 trees·ha-1 and lowest at 500 trees·ha-1 for the clone RRIM 2020, andat 2,000 trees·ha-1 and 500 trees·ha-1 for clone RRIM 2025. We conclude that the ideal planting density is 2,000 trees·ha-1 for obtaining high volume of wood production and 500 trees·ha-1 for high wood quality.  相似文献   

19.
The objective of this study was to develop general (multispecies) models for prediction of total tree, merchantable stem and branch volume including options with diameter at breast height (dbh) only, and with both dbh and total tree height (ht), as independent variables. The modelling data set was based on destructively sampled trees and comprised 74 trees from 33 tree species, collected from four forest reserves located in different ecological zones of Malawi. The dbh and ht ranges for the data set were 5.3–111.2?cm and 3.0–25.0?m, respectively. A number of alternative model forms were tested and the final model selection was based on root mean square error (RMSE) values calculated using a leave-one-out cross-validation procedure. The model performances and the evaluations of the finally selected models (R? 2 range 0.72 to 0.92; RMSE range 38% to 71%; mean prediction errors range ?1.4% to 1.3%) suggest that all models can be used over a wide range of geographical and ecological conditions in Malawi with an appropriate accuracy in predictions. The appropriateness of the developed models was also supported by the fact that the mean prediction errors of these models were much lower than the mean prediction errors (range ?23.6% to 48.9%) of some previously developed models tested on our data.  相似文献   

20.
Sustainable forest management requires knowledge of forest structure and dynamics as well as an estimation of growing stock. The forest inventory provides the data for estimating stand variables. The measurement device MU2005-01738, patented by the Center for Forest Research (INIA-CIFOR), provides stereoscopic hemispherical images which can allow the 3D restoration of the stand around the sampling point. The aim of this study is to develop a methodology for forest stand mapping as well as tree diameter and height measurement along with volume estimation from the stereoscopic hemispherical images provided by the MU2005-01738. Using the MU2005-01738, Eucalyptus globulus Labill. plantations were sampled. Distance, diameter, height and volume were derived from the stereoscopic hemispherical images of 30 trees located at distances ranging from 0 to 15 m from the device. These variables were then compared with field measurements and the estimation errors analyzed. The (root-mean-squared error) RMSE was 0.23 m (8.95 %) for tree position and 1.51 cm (10.43 %) for diameter at breast height measurement at distances of less than 8 m. In the case of stem height and individual tree volume estimation, the RMSE was 2.59 m (23.05 %) and 0.025 m3 (17.94 %), respectively. The analysis of measurement errors indicated that the measurement precision decreases beyond 8 m from the device as well as for directions close to the baseline (the line between the optical centers of the two images), whereas the precision was highest for directions near to the line which is perpendicular to the base line. Future research should focus on improving measurement accuracy and possible applications in the field of forestry of the techniques presented in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号