首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When disjoining a log, several factors affect the value of the sawn timber. There are log features, such as outer shape, knots, rot, and so on. There are also sawing parameters, such as sawing pattern, log position, and so on. If full information about log features is available, sawing parameters can be adapted in order to maximize product value in sawmills. This is soon possible, since computed tomography (CT) scanners for the sawmill industry are being realized. This study aimed at investigating how CT data can be used to choose rotational position, parallel displacement, and skew of sawlogs, to maximize the value of the sawn products. The study was made by sawing simulation of 269 CT scanned logs of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] H. Karst.). The results showed that value recovery could be improved by 13% in average, compared to a sawing position based on log outer shape, and 21% compared to sawing logs centered and horns down. It can be concluded that a CT scanner, used in a sawline to optimize sawing parameters, has a large potential for increasing value recovery and thus profit.  相似文献   

2.
Abstract

The production of knot-free wood is important since the market demands wood without knots for reasons of both appearance and material properties. This work describes a simulation of the removal of knots from star-sawn and square-sawn timber. The efficiency of the two methods is compared in terms of the length of the knot-free components obtained and the volume yield. The simulation was based on data for trees and logs taken from the Swedish Stem Bank. These data were then used to simulate the sawmill process in a computer program called the Virtual Sawmill. Data related to the boards obtained were used in a MATLAB model simulating the cross-cutting of knots. Simulated star-sawing of logs with a top diameter exceeding 230 mm gave a mean knot-free component length of 417±321 mm, while the mean length of knot-free components for simulated square-sawing of the same logs was 298±122 mm. The volume yield of knot-free components from the two sawing patterns was 91% for star-sawing and 87% for square-sawing. For timber with cross-section dimensions of 38×75 mm2, the mean length and yield of knot-free components from simulated star-sawing were 451±349 mm and 90%, respectively. In simulated square-sawing, the corresponding values were 263±197 mm and 82%, respectively. This shows that star-sawing has potential for the production of knot-free timber.  相似文献   

3.
Abstract

Growing markets for chopped firewood have created alternative uses for the by-products of sawmills. Based on empirical data and simulated results, the potential of birch (Betula pendula Roth, Betula pubescens Ehrh.) from commercial thinnings for combined industrial production of sawn timber and firewood billets was investigated. In the simulations, different sawing patterns were used for logs intended to combine production of sawn timber and billets for chopped firewood (‘sawlogs’), and for logs intended only to firewood production (‘firewood logs’). Finally, economical feasibility analysis was done concerning the differences between the sawmills’ traditional business concept and the novel concept combining sawn wood and firewood production. The bucking results for the volume yield of different timber assortments varied only slightly between the different bucking options, i.e. the combinations of timber assortments. The main differences in the volumes of timber assortments were due to the stand type where the birch trees were sampled (planted, naturally regenerated, mixed birch–spruce). In the sawing procedure, the output of sawn timber varied between 24% and 42% of the log volume in the sawlogs, depending on the log diameter class. As the volume yield of sawn timber and firewood billets was counted together in the case of sawlogs, the log consumption was c. 1.75 m3 of roundwood per 1 m3 of sawn timber and firewood billets. In the case of the firewood logs, the log consumption rate was considerably lower, only c. 1.35. The economic calculations showed that using the firewood approach in sawing may increase the net added value of products by €1.9–5.4 m?3 of logs, depending on their diameter class. As a conclusion, parallel production of sawn timber and firewood from logs from the first and second commercial thinning of birch-dominated stands is a concept that could work as an alliance between a sawmiller and a firewood entrepreneur. The concept could be competitive compared with both traditional sawmilling and production of chopped firewood.  相似文献   

4.

Key message

Industrial computed tomography scanning of logs provides detailed information on timber quality prior to sawing. A sawing simulation—considering log rotation angle and knot size accuracy—revealed an average value increase of up to 20% for the best angle compared to the conventional horns-up position.

Context

Computed tomography (CT) scanning has the potential to improve the value of products sawn from logs and meets the increasing demands of the wood industry for detailed information on log quality prior to processing.

Aims

In a validation step, automated measurements of knot cluster variable DAB (DIN 4074-1:2012-06) using CT were compared with manual measurements. In a second optimization step, the hypothesis that the value of the sawn products is increased by sawing at the best rotation angle as opposed to the horns-up position was tested.

Methods

A sample of 36 Douglas-fir logs were scanned in an industrial CT scanner, and sawn into boards. Knots on the boards were manually measured, and compared with the corresponding knots on virtual boards created from the CT data. The error of the DAB was measured by comparing CT data to manual measurements. An optimized sawing simulation was performed, using the measured DAB error to account for CT measurement errors, as well as a rotational error to account for errors in the log turning equipment. Using the results of the sawing simulation, Monte Carlo simulations were performed to show the potential and benefit of an industrial CT scanner.

Results

The three largest DABs measured by the CT showed good correlation to the measurements on the manual boards. The simulation revealed an average increase of value from 4 to 20% compared to the conventional horns-up position depending on the relative price differences between the strength grades.

Conclusion

By using a CT scanner to optimize sawing, sawmill owners can process logs in a better way to produce final products with increased added value.
  相似文献   

5.
6.
Abstract

A survey was conducted at nine sawmills in Japan to evaluate and compare the sawing of sugi (Cryptomeria japonica D. Don) logs of 30 cm and more in diameter. The purpose was fourfold: (1) to document sawing patterns appropriate to the large-diameter logs; (2) to examine the composition of wood components (structural, nonstructural, and fixtures) produced from those patterns; (3) to investigate log and product prices; and (4) to ascertain distances to the log supplier and product markets. Impetus for the study arose from a forecasted shift in the diameter distribution of plantation trees in Japan; from small and medium-sized logs to large-diameter logs. With an overabundance of large-diameter domestic logs forecasted within the next decade, the need to understand how to best utilize and effectively process the large-diameter resource is of utmost importance.  相似文献   

7.
The production of knot-free wood is important since the market demands wood without knots for reasons of both appearance and material properties. This work describes a simulation of the removal of knots from star-sawn and square-sawn timber. The efficiency of the two methods is compared in terms of the length of the knot-free components obtained and the volume yield. The simulation was based on data for trees and logs taken from the Swedish Stem Bank. These data were then used to simulate the sawmill process in a computer program called the Virtual Sawmill. Data related to the boards obtained were used in a MATLAB model simulating the cross-cutting of knots. Simulated star-sawing of logs with a top diameter exceeding 230 mm gave a mean knot-free component length of 417±321 mm, while the mean length of knot-free components for simulated square-sawing of the same logs was 298±122 mm. The volume yield of knot-free components from the two sawing patterns was 91% for star-sawing and 87% for square-sawing. For timber with cross-section dimensions of 38×75 mm2, the mean length and yield of knot-free components from simulated star-sawing were 451±349 mm and 90%, respectively. In simulated square-sawing, the corresponding values were 263±197 mm and 82%, respectively. This shows that star-sawing has potential for the production of knot-free timber.  相似文献   

8.
The sawmill industry is a very important link in the Mozambique forest products value chain, but the industry is characterized by undeveloped processing technology and high-volume export of almost unrefined logs. The low volume yield of sawn timber has been identified as a critical gap in the technological development of the industry. To improve the profitability of the industry, there is thus a need to develop methods and techniques that improve the yield. In this paper, different positioning of logs prior to sawing and the possibility of increasing the volume yield of crooked logs by bucking the logs before sawing have been studied. A computer simulation was used to study the cant-sawing and through-and-through sawing of the logs to determine the volume yield of sawn timber from the jambirre (Millettia stuhlmannii Taub.) and umbila (Pterocarpus angolensis DC.) species. The optimal position, i.e. the position of the log before sawing that gives the highest volume yield of sawn timber for a given sawing pattern when the positioning parameters, offset, skew and rotation, are considered gave a considerable higher volume yield than the horns-down position. By bucking very crooked logs and using the horns-down positioning before sawing, the volume yield can be of the same magnitude as that obtained by optimal positioning on full-length (un-bucked) logs. The bucking reduces the crook of the logs and hence increases the volume yield of sawn timber.  相似文献   

9.
The high accuracy of log positioning and the stability of saw blades in breakdown machinery in modern sawmills have reduced the need to add margins for sawing variations. Oversize green sawing dimensions are still needed, but mainly to allow for drying shrinkage. This has put a new focus on better adapting green sawing dimensions to the shrinkage behavior of wood. In this study, a method for optimization of green sawing dimensions using stochastic simulation is presented. Normal distributions were generated for planed dry dimensions, kerf width, and target moisture content. The minimum share of boards exceeding the specified dry dimensions was decided, and deformations in boards from all positions in the cross section in a number of logs were simulated. The simulated shrinkage allowance from stochastic simulations was compared to experimental results from an industry test and to finite element results based on material data for Norway spruce. The results showed that the green width of the sawn boards should increase when the number of boards in the center yield increases. The green thickness of boards should be thinner for center boards and outer boards than for inner boards.  相似文献   

10.
The purposes of this study were to accumulate fundamental data on wood properties within large Sugi logs and to take applicable variations in wood properties into consideration for sorting logs and sawing patterns. The characteristics of basic density, moisture content, growth ring width, and microfibril angle (MFA) were measured and the relationship with log and lumber quality was examined. It was considered reasonable to estimate the lumber moisture content based on the moisture content of heartwood rather than that of whole logs, especially when producing large-sized lumber. The MFA reached a constant value before the 15th ring, and within a distance of 10 cm or less from the pith. Since the E fr of lumber correlated with that of the log affected by MFA, it would be possible to produce lumber with a higher E fr from the outer position of the log, based on selecting a log above the E fr . Since the MFA would also affect the lumber warp, a sawing pattern avoiding the area around the pith or enlarging the rough sawn size when a large warp was expected could be effective in improving the lumber quality. To improve the lumber quality, not only one but also multiple wood properties must be applied to the sawing pattern.  相似文献   

11.
As the sawmill industry strives towards customer orientation, the need for sorting of logs according to quality has been recognized, and automatic sorting based on measurements by three-dimensional (3D) optical log scanners has been implemented at sawmills. There is even a small number of sawmills using the X-ray log scanner for automatic log-sorting. At the log-sorting stage, the potential of the raw material to fulfil the needs has already been reduced by the decisions taken when the trees were bucked (cross-cut) into logs. Thus, the application of predictions of the boards’ properties at the bucking stage is desirable. This study investigates the possibility of predicting board values from logs based on 3D scanning alone and 3D scanning in combination with X-ray scanning of stems. This study is based on 628 logs scanned by computed tomography that make up the Swedish Pine Stem Bank. Simulated sawing of the logs gave product values for each log. Prediction models on product value were adapted using partial least squares regression and x-variables derived from the properties of the logs and their original stems, measurable with a 3D log scanner and the X-ray LogScanner. The results were promising. Using a 3D scanner alone, R 2 was 0.68, and using a 3D scanner in combination with an X-ray LogScanner, R 2 was 0.72.  相似文献   

12.
In an attempt to develop a better understanding of the effect of knottiness on the yield of logs for sawn timber products, the present study examines the position and geometrical characteristics of 429 knots found in seven Norway spruce (Picea abies (L.) Karst) middle logs from southern Finland. The raw data used in this study were in the form of coordinates of points located on the knot surface recorded in a cylindrical (R, L, T) reference frame. The data were smoothed using a non linear three‐dimensional model. A curvature analysis of the knot pith was used to differentiate the curved and straight portions of the knots. This analysis made possible calculation of knot angles, symmetry, ovality and volume. The major finding of this study is the uneven distribution of knots around the log circumference. Nearly 50% of the total knot volume was concentrated in one‐third of the log facing the south‐east. Knots were also more prominent in higher portions of the logs studied. These observations support the argument that the uneven distribution of knots offers potential for improving the grade yield of timber sawn from trees harvested in high‐latitude countries.  相似文献   

13.
  • ? The board distortion that occurs during the sawing and the drying process causes major problems in the utilisation of sawn timber. The distortion is highly influenced by parameters such as spiral grain angle, modulus of elasticity, shrinkage, growth stresses and sawing pattern.
  • ? In this study a finite element simulation of log sawing and timber drying was performed to study how these parameters interact to affect board distortion. A total of 81 logs with different material combinations were simulated. From each simulated log four boards with different annual ring orientation were studied.
  • ? The results showed that the elastic modulus, shrinkage coefficient and growth stresses had a large influence on the final bow and spring deformation. After sawing of the log into boards, the release of growth stresses was the main contributor to the bow and spring deformation. For boards with low modulus of elasticity, the bending distortion became larger than for the boards with high modulus of elasticity. The twist deformation was very small after sawing but increased significantly during drying of the boards. The results showed that spiral grain angle and the board location within the log were the main contributors to the twist deformation.
  •   相似文献   

    14.
    Predicting spiral grain by computed tomography of Norway spruce   总被引:1,自引:0,他引:1  
    Spiral grain is a feature of wood that affects the shape of the sawn timber. Boards sawn from logs with a large spiral grain have a tendency to twist when the moisture content changes. The aim of this study was to investigate the possibility of predicting spiral grain based on variables that should be measurable with an X-ray LogScanner. The study was based on 49 Norway spruce (Picea abies) logs from three stands in Sweden. The logs were scanned with a computed tomography (CT) scanner every 10mm along the log. Concentric surfaces at various distances from the pith were then reconstructed from the stack of CT images. The spiral grain angle was measured in these concentric surface images, and a statistical model for predicting spiral grain was calibrated using partial least squares (PLS) regression. The PLS model predicts the spiral grain of a log at a distance 50mm from the pith based on different variables that should be measurable with an industrial X-ray LogScanner. The result was a PLS model withR 2=0.52 for the training set andR 2=0.37 for the test set. We concluded that it should be possible to predict the spiral grain of a log based on variables measured by an industrial X-ray LogScanner. The most important variables for predicting spiral grain were measures of sapwood content, variation in the ratio between the heartwood and log areas, and the standard deviation for the mean log density in 10mm thick cross slices along the log. The accuracy when sorting the logs into two groups with spiral grain of 2.0° and of <2.0°, respectively, was 84% of the correctly sorted logs.  相似文献   

    15.
    马岩  栾兴合 《林业科学》1990,26(6):540-544
    本文采用柱坐标,以椭圆—阿基米德螺线包络组成解析曲线椭圆柱体的弯曲原木的数学模型。定义它为C型弯曲。并以材长和弯曲弓背长度定义,提出了一个实测参数的弯曲原木材积计算公式。定量地解决了弯曲造成原木材积统计时的损失。这种方法和理论,可以解决弯曲原木最佳出材率和弯曲原条最佳截断问题。为制材的数控软件编制提供了理论基础。  相似文献   

    16.
    建立了11种径切材下锯模型,并利用图像处理及曲面拟合方法将得到的任意形状原木进行模拟锯割,结果表明,用三开法生产径切板及旋切薄木具有较高的出材率。研制了专门用于生产三开材的剖料锯机及生产工艺。在现有的带锯机前安装该剖料锯机即能利用现有锯机和跑车生产径向材。  相似文献   

    17.
    Today sawmills have started to use automatic methods for log grading. The methods used are either optical or gamma‐ray scanners. However, the signals from these scanners are too coarse for accurate log grading and for good control of the sawing process at the single log level. The objective of the present study was to determine the grading accuracy of a log‐scanner with two industrial X‐ray sources. The grading accuracy was compared with the accuracy of manual grading. The results showed that the manual grading of logs and boards is difficult. The accuracy of manual grading was low and the automatic grading systems were more reliable than manual ones. Possibilities for improving the automatic grading systems are discussed.  相似文献   

    18.

    The aim of the study was to investigate the possibility of strength grading Norway spruce [Picea abies (L.) Karst.] saw logs on the basis of simulated X-ray LogScanner measurements and to evaluate the potential accuracy of X-ray LogScanner measurements of green heartwood density and percentage of heartwood. The study was based on 272 logs for strength grading and 29 logs for measurements of green heartwood density and percentage of heartwood. The logs were scanned using computed tomography (CT). After sawing, the modulus of elasticity (MOE) of the centre boards was measured using a strength-grading machine. The CT images were used for simulations of an X-ray LogScanner, resulting in simulated measurements of different variables such as diameter, taper, percentage of heartwood, density and density variations. Multivariate models for prediction of MOE were then calibrated using partial least squares (PLS) regression. The MOE of a log was defined as the mean value of the MOE of the two centre boards. The study showed that the simulated X-ray LogScanner measured the percentage of heartwood and green heartwood density with relatively high accuracy (R 2 = 0.94 and R 2 = 0.73, respectively, after removing two outliers) and that these and other variables measured by the simulated X-ray LogScanner could be used to predict the stiffness of the centre boards. These predictions were used to sort the logs according to the predicted MOE. When sorting out 50% of the logs (''high-strength'' logs), the percentage of C30 boards increased from 73% (all logs in the study) to 100% (only ''high-strength'' logs). The rest of the logs could then be divided into two groups, one of them with 100% C24 and C30 boards.  相似文献   

    19.
    20.
    While X-ray scanning is increasingly used to measure the interior quality of logs, terrestrial laser scanning (TLS) could be used to collect information on external tree characteristics. As branches are one key indicator of wood quality, we compared TLS and X-ray scanning data in deriving whorl locations and each whorl’s maximum branch and knot diameters for 162 Scots pine (Pinus sylvestris L.) log sections. The mean number of identified whorls per tree was 37.25 and 22.93 using X-ray and TLS data, respectively. The lowest TLS-derived whorl in each sample tree was an average 5.56?m higher than that of the X-ray data. Whorl-to-whorl mean distances and the means of the maximum branch and knot diameters in a whorl measured for each sample tree using TLS and X-ray data had mean differences of ?0.12?m and ?6.5?mm, respectively. One of the most utilized wood quality indicators, tree-specific maximum knot diameter measured by X-ray, had no statistically significant difference to the tree-specific maximum branch diameter measured from the TLS point cloud. It appears challenging to directly derive comparative branch structure information using TLS and X-ray. However, some features that are extractable from TLS point clouds are potential wood quality indicators.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号