首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In an earlier study (Franc et al., 2007), local species richness of saproxylic oak beetles (including red-listed beetles) in forests was predicted mainly by the landscape (area of woodland key habitat within 1 km of plots). Such results are important for conservation work, but need to be backed up well, for reliable advice. We tested a two-stage method that improved our earlier models and our advice for conservation planning. We studied temperate mixed forest, rich in oaks Quercus robur/Quercus petraea, in a large landscape in Sweden. Franc et al. (2007) analysed 21 forests. Here we selected the significant explanatory variables (predictors) and other biologically relevant predictors, used the earlier 21 forests and sampled 11 new forests such that we expanded the range on the axes of the predictors. We collected in total 320 species of saproxylic oak beetles (23,137 individuals) of which 65 and 38 were red-listed (IUCN criteria, Swedish list 2000 and 2005, respectively). We partly confirmed our original results, but the results also changed in important ways: local species richness is now predicted by a combination of local, landscape and regional factors. Moreover, a local variable (dead wood) was the main predictor of saproxylic oak beetles (all species included), while for red-listed saproxylic oak beetles the landscape (woodland key habitat within 1 km of plots) was the main predictor, of local species richness. Thus, species richness of red-listed saproxylic oak beetles seems to depend mainly on landscapes factors, while total species richness of saproxylic oak beetles seems to depend more on local stand factors. We conclude that a two-stage research design can be useful in landscape and conservation studies, especially for species-rich taxa that require large samples per site.  相似文献   

2.
Saproxylic beetles are highly sensitive to forest management practices that reduce the abundance and variety of dead wood. However, this diverse fauna continues to receive little attention in the southeastern United States even though this region supports some of the most diverse, productive and intensively managed forests in North America. In this replicated three-way factorial experiment, we investigated the habitat associations of saproxylic beetles on the coastal plain of South Carolina. The factors of interest were forest type (upland pine-dominated vs. bottomland hardwood), tree species (Quercus nigra L., Pinus taeda L. and Liquidambar styraciflua L.) and wood posture (standing and downed dead wood, i.e., snags and logs). Wood samples were taken at four positions along each log and snag (lower bole, middle bole, upper bole and crown) ∼11 months after the trees were killed and placed in rearing bags to collect emerging beetles. Overall, 33,457 specimens from 52 families and ≥250 species emerged. Based on an analysis of covariance, with surface area and bark coverage as covariates, saproxylic beetle species richness differed significantly between forest types as well as between wood postures. There were no significant interactions. Species richness was significantly higher in the upland pine-dominated stand than the bottomland hardwood forest, possibly due to higher light exposure and temperature in upland forests. Although L. styraciflua yielded more beetle species (152) than either Q. nigra (122) or P. taeda (125), there were no significant differences in species richness among tree species. There were also no relationships evident between relative tree abundance and observed or expected beetle species richness. Significantly more beetle species emerged from logs than from snags. However snags had a distinct fauna including several potential canopy specialists. Our results suggest that conservation practices that retain or create entire snags as opposed to high stumps or logs alone will most greatly benefit saproxylic beetles in southeastern forests.  相似文献   

3.
Abstract

This study evaluates how the placement and the different possible outcomes of a spruce retention tree affected species richness and assemblages of spruce-associated saproxylic beetles. In a field experiment in the boreal zone of central Norway, high stumps were created and compared with residual wood pieces (i.e. top boles with branches), in clear-cuts versus in forest edges. Flight interception traps were mounted close to the substrate. The results were analysed using rarefaction techniques, ordination (DCA) and anova. It was found that the placement of retention trees of spruce does matter: beetle assemblages were significantly different in stumps in the four treatments. For all species pooled, the species richness was higher in stumps in clear-cuts than in stumps or boles in the forest edge. Four red-listed species were more abundant near stumps than boles, and two red-listed species were more abundant in clear-cuts than forest edge. To cater for the variety of habitat preferences among forest beetles in managed forest, managers should leave both standing spruce trees (many of which will end up as windthrown, downed boles) and some high stumps (to secure some upright dead wood), in both exposed clear-cut and semi-shaded forest edge.  相似文献   

4.
To preserve biodiversity in managed forest landscapes dead and living trees are retained at final cuttings. In the present study we evaluated the effect of these practices for saproxylic (wood-dependent) beetles inhabiting dead aspen trees (Populus tremulae). For saproxylic beetles, tree retention at final cuttings can be expected to be especially valuable for species adapted to sun-exposed dead wood, a substrate that only rarely occurs in well managed forest stands. Therefore, the current evaluation was conducted as a comparison of species richness, species density (number of species per sample), assemblage composition and occurrence of individual species between clear-cuts, where aspen trees were retained, and closed forest stands with aspen trees. The study was conducted in central Sweden and the beetles were sampled by sieving of bark from CWD (coarse woody debris) of aspen. There was no significant difference in rarefied species richness between forest and clear-cut sites. Species composition differed significantly between the two stand types. Generalized linear mixed-effects models predicted the species density to be 34% lower in CWD objects in forest sites than on clear-cuts. This pattern could partly be explained by differences in CWD diameter, decay class and bark types between the two stand types (clear-cut/forest). Stand type was a significant predictor of occurrence in individual CWD objects for 30% of analysed individual beetle species. For all species except one, the variable stand type predicted higher occurrence on clear-cuts than in forest stands. To conclude, our results demonstrate that retention of aspen on clear-cuts contributes to population recruitment of a different assemblage of species than CWD within stands.  相似文献   

5.
Limited scientific information is currently available regarding saproxylic fungal communities in the boreal forest of North America. We aimed to characterize the community development, richness and activity of saproxylic fungi on fresh wood in harvested and unmanaged boreal mixedwood stands of northwestern Québec (Canada). Fresh wood blocks (n = 480) of balsam fir (Abies balsamea (L.) Mill.) and trembling aspen (Populus tremuloides Michx.) were placed on the forest floor in a range of stand conditions (n = 24). Blocks were harvested every 6 months for up to 30 months and characterized for species composition and richness (PCR–DGGE, DNA sequencing), respiration, wood density and lignin and cellulose content. Colonization by a wide range of functional groups proceeded rapidly under different stand conditions. We detected a total of 35 different fungal operational taxonomic units, with the highest species richness at the wood block level being observed within the first 12 months. No differences in community composition were found between wood host species or among stand conditions. However, the variability in fungal communities among blocks (β diversity) was lower on trembling aspen wood compared with balsam fir and decreased over time on trembling aspen wood. Also, fungal activity (respiration and wood decomposition) increased on trembling aspen wood blocks and species richness decreased on balsam fir wood over time in partial-cut sites. The overlap in tree composition among stands, the high volume of logs and the recent management history of these stands may have contributed to the similarity of the saproxylic fungal community among stand types and disturbances.  相似文献   

6.
Intensive management implies harvesting large, old trees, which reduces the old-growth attributes. This negatively affects biodiversity, especially saproxylic beetles. In managed temperate oak forests, rotation extension induced by increasing the diameter threshold of final harvest by about 10 cm compared to conventional practices (i.e. DBH around 70 cm) might mitigate this negative effect. Here, we used a gradient of the proportion of overmature trees (DBH?≥?80 cm) among mature trees (DBH?≥?70 cm) across plots of high oak French forests to test the potential effect of increasing diameter threshold on (1) structural features and (2) species composition and diversity of saproxylic beetles communities. We assessed deadwood and microhabitats availability (i.e. volume/density and diversity) and canopy openness in 81 1-ha plots across eleven French forests. Results highlighted that a larger proportion of overmature trees, for a given density of mature trees, had limited effects on structural features: only cavities density showed a significant positive response, with no cascading effect on cavicolous beetles. Moreover, the proportion of overmature trees had no significant effect on the composition of saproxylic beetles communities (and ecological variables altogether explained only 17% of the composition inertia). By contrast, mature tree density enhanced microhabitat density and indirectly increased the abundance of rare species. Thus, shifting DBH from 70 to 80 cm in high oak forest could have no or limited effect on saproxylic beetles conservation. Improved strategies might rather stem from combining (1) longer rotation extension and (2) less intensive management practices in extended rotation stands.  相似文献   

7.
Conifer dominated plantations in central and northern Europe are associated with relatively low ecological values, and in some cases, may be vulnerable to disturbances caused by anthropogenic climate change. This has prompted the consideration of alternative tree species compositions for use in production forestry in this region. Here we evaluate the likely biodiversity costs and benefits of supplanting Norway spruce (Picea abies) monocultures with polycultures of spruce and birch (Betula spp.) in southern Sweden. This polyculture alternative has previously been evaluated in terms of economic, recreational, and silvicultural benefits. By also assessing the ecological implications we fill a gap in our understanding of the range of socio-ecological benefits that can be achieved from a single polyculture alternative. We project likely broad scale changes to species richness and abundance within production stands for five taxonomic groups including ground vegetation, tree-living bryophytes, lichens, saproxylic beetles, and birds. Our research leads us to three key findings. First, the replacement of spruce monocultures with spruce–birch polycultures in the managed forest landscapes of southern Sweden can be expected to result in an increase in biological diversity for most but not all taxa assessed, but it is unlikely to improve conditions for many red-listed forest species. Second, modification of other aspects of forest management (i.e. rotation length, dead wood and green tree retention, thinning regimes) is likely to contribute to further biodiversity gains using spruce–birch polycultures than spruce monocultures. Third, the paucity of empirical research which directly compares the biodiversity of different types of managed production stands, limits the extent to which policy relevant conclusions can be extracted from the scientific literature. We discuss the wider implications of our findings, which indicate that some climate change adaptation strategies, such as risk-spreading, can be readily integrated with the economic, environmental and social goals of multi-use forestry.  相似文献   

8.
This study evaluated the importance of burned habitat characteristics as well as the likely dispersal from specific habitats in the distribution of saproxylic beetles the same year as a fire occurred, in burned black spruce stands (Picea mariana [Mill] B.S.P.) in the northern boreal forest of Québec. The distribution of early post-fire saproxylic species was mainly driven by burned habitat attributes at the plot scale (0.04 ha), especially fire severity, suggesting that the effect of environment attributes can act at a relatively fine scale. Some xylophagous and most predaceous species were more abundant in severely burned stands whereas fire severity had the opposite effect on several common mycophagous species. The amount of newly fire-killed trees that could be used as breeding substrates in the burned stands had only a weak positive influence on these functional groups. The great majority of early saproxylic species were weakly associated with the distance from unburned forests or other recently burned patches that could act as potential “source habitats”. Indeed, these variables were of lesser importance than the attributes of the burned habitat. Woody debris that were already present in plots before the fire, potentially serving as local of source-populations for early colonizers, had virtually no influence on the local abundance of species. Many saproxylic species, including some true pyrophilous, clearly showed higher abundance as distance from unburned stands increased. This unexpected relation may reflect that dispersal of insects toward the burnt landscape very shortly after fire could be driven by the higher amount of volatiles released by severely burned forests, which are more likely as distance from unburned forest increased.  相似文献   

9.

In Finland, Norway and Sweden forest management is presently changing towards a more nature-orientated management. In this study the European Forest Information SCENario (EFISCEN) model was applied to determine how this change might affect the potential for wood production in the three countries. Three different management regimes, traditional, traditional with nature conservation (''conservation''), and longer rotations with nature conservation (''conservation +''), were combined with two alternative felling levels. The results show that conserving 6.1-8.8% of the older forests in the southern regions had no limiting effects on production levels, as foreseen by the European Timber Trend Studies V by the UN-ECE for Finland and Sweden. Under the conservation + scenario, maximum sustainable felling levels decreased to 84, 79 and 72% of the present levels in Finland, Norway and Sweden, respectively. Increasing the rotation length put more pressure on the older age classes and thus did not increase the average age of the forest. If the consumption of wood increases as quickly as indicated by other studies, it will be hard to fulfil that demand and at the same time conserve considerable areas of forest in the southern regions of the countries.  相似文献   

10.
Abstract

Forestry decreases the amount of dead wood, thereby threatening the persistence of many saproxylic (wood-living) organisms. This article discusses how targets for efforts to maintain and restore dead wood in managed forest landscapes should be defined. Several studies suggest extinction thresholds for saproxylic organisms. However, because the thresholds differ among species, the relationship between species richness and habitat amount at the local scale is probably described by a smoothly increasing curve without any distinct threshold. The most demanding species require amounts of dead wood that are virtually impossible to reach in managed forests. This means that unmanaged protected forests are needed. In managed forests, conservation efforts should focus on the landscape scale and on certain types of dead wood, but it is impossible to come up with any particular amount of dead wood that is desirable at the forest stand level.  相似文献   

11.
ABSTRACT

This study examines a participatory forest management program and its impacts on forest conditions in Gebradima Forest, southwest Ethiopia. Vegetation data were collected from both participatory forest management (PFM) and nonparticipatory forest management (non-PFM) forest blocks. A total of 54 plots (27 from each forest block) measuring 20 m × 20 m were employed to collect species composition and structural data. Results indicated that a total of 51 different woody plant species (49 at PFM and 43 at non-PFM blocks), representing 31 families were recorded, with 41 species were shared for both forest sites. Species diversity and evenness were higher in the forest with PFM (H´ = 3.29, E = .85) compared to the forest without PFM (H´ = 2.97, E = .79). The overall mean values of tree/shrub and seedling density per hectare, diameter class (≤ 20 cm) were also significantly (p < .05) higher in PFM forest than non-PFM forests. However, no significant variations were observed in sapling density per hectare and basal area between the two studied forest blocks. It can be concluded that PFM had a positive effect on forest conditions compared with a similar forest without PFM. Hence, it is important to scaling up PFM in neighboring forests.  相似文献   

12.
  • ? To assess the sustainability of plantation forest management we compare two types of biodiversity indicators. We used the species richness of saproxylic beetles as a case study to test the “species” and “environmental” indicator approaches. We compared single species abundance or occurrence and deadwood volume or diversity as predictor variables.
  • ? Beetles were sampled with flight interception traps in 40 Maritime pine plantation stands. The volume and diversity of deadwood was estimated with line intersect and plot sampling in the same stands. Predictive models of species richness were built with simple linear or Partial Least Square regressions.
  • ? Deadwood variables appeared to be good predictors of saproxylic beetle richness at the stand-scale with at least 75% of variance explained. Deadwood diversity variables consistently provided better predictive models than volume variables. The best environmental indicator was the diversity of deadwood elements larger than 15 cm in diameter.
  • ? By contrast, the use of “species variables” appeared to be less relevant. To reach the quality of prediction obtained with “environmental variables”, the abundance or occurrence of 6 to 7 species — some of which are difficult to identify — had to be used to build the indicator.
  •   相似文献   

    13.
    Following disturbances, early-seral stages of forests provide a variety of structures. Whether this variety is a short-term phenomenon or influences forest succession for several decades or even longer is not known. We tested the hypotheses that after spruce dieback caused by bark beetles, a high spatial heterogeneity of stand structures will persist within stands and among stands even in advanced early-seral stages and that species taxonomical and functional diversity measures will reflect this heterogeneity. We used a chronosequence of unmanaged forests in the Berchtesgaden National Park (Germany) consisting of mature undisturbed spruce stands (control), stands belonging to an initial early-seral stage (~3 years after disturbance) and stands in an advanced early-seral stage (~20 years after disturbance). We analysed diversity and heterogeneity of these forest stands including stand structure, species density, species composition and functional–phylogenetic diversity of vascular plants, wood-inhabiting fungi and saproxylic beetles within plots, among plots of the same successional stage and among stages. Stands of the advanced early-seral stage were characterized by a high spatial heterogeneity of structural attributes, such as crown cover, regeneration density and spatial distribution of trees. Among-plot taxonomic beta diversity was highest in the advanced early-seral stage for beetles, but lowest for fungi, while beta diversity of plants among plots remained unchanged during succession. The mosaic of successional stages initiated by bark beetles increased the gamma diversity of the study area, especially for fungi and beetles. Our findings support the hypothesis that structural heterogeneity continues for at least two decades at stand and landscape scales and that species turnover among successional stages is a major mechanism for gamma diversity in forests after bark beetle disturbance.  相似文献   

    14.
    The ambrosia beetle Gnathotrichus materiarius, which originally came from North America, was discovered in southern Finland in 1996. In 1997, using Norwegian drainpipe traps baited with pheromones of Gnathotrichus retusus and G. sulcatus, we collected beetles in the region where the first specimen had been caught in order to determine whether this potential pest species had become established in the area. Samples from a total of 16 traps included 79 species of beetles and 719 individuals, but no specimens of G. materiarius. The most abundant species in the samples were the ambrosia beetles Xyleborus dispar and Trypodendron lineatum. Several predators and other associates of bark beetles were also captured. The majority of the beetles caught were saproxylic species.  相似文献   

    15.
    Abstract

    The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

    16.
    Conserving saproxylic beetles in temperate forests will require a better understanding of habitat requirements. So far, quantitative community studies have rarely considered their vertical requirements. In comparison with the tropical forest canopy, it remains to be seen whether a comparably high level of beetle diversity exists in the temperate forest canopy.We compared saproxylic beetle assemblages at two vertical levels in three temperate French forests. Two datasets originated from emergence traps of pine and oak deadwood substrates (mid-canopy and forest floor branches) in lowland forests. The third compared flying beetle fauna at mid-canopy and understory levels using pairs of flight interception traps in beech-fir mountain forests.Our study provided contrasting results regarding the contribution of each stratum to biodiversity. Whereas higher abundance and species richness were apparent in understory samples in beech-fir stands and in oak branches, no difference for richness - or even the opposite pattern for abundance - was observed in pine branches. A significant inter-strata dissimilarity was revealed in all datasets. Each stratum harbored specialist taxa. Exclusive canopy species accounted for 20-40% of all species. In accordance with dissimilarity partitioning, arboreal saproxylic beetle communities were not just nested subsets of ground assemblages.It is likely that microhabitat requirements, food availability and other non-resource-based factors (microclimate preference, species interactions) drive the stratification of beetle assemblages.Our results lend support (i) to the recommendation of a multi-strata sampling strategy for forest insects and (ii) to management practices in favour of valuable canopy micro-habitats.  相似文献   

    17.
    Abstract

    The present study was aimed to anticipate how forest composition, regeneration, biomass production, and carbon storage vary in the ridge top forests of the high mountains of Garhwal Himalaya. For this purpose five major forest types—(a) Pinus wallichiana, (b) Quercus semecarpifolia, (c) Cedrus deodara, (d) Abies spectabilis, and (e) Betula utilis mixed forests—were selected on different ridge tops in the Bhagirathi Catchment Area of the Uttarkashi District of Garhwal Himalaya. The highest species richness (10 species) and stand density (804 ± 184.5 stems ha?1) were recorded in Abies spectabilis forests, whereas lowest species richness (4 species) and species density (428 ± 144.7 stems ha?1) were found in Quercus semecarpifolia forests. The total basal cover (TBC) values were maximum (91.1 ± 24.4 m2 ha?1) in Cedrus deodara forests and minimum (26.5 ± 11.7 m2 ha?1) in Pinus wallichiana forests. The highest total biomass density (TBD) (464.2 ± 152.5 Mg ha?1) and total carbon density (TCD; 208.9 ± 68.6 Mg C ha?1) values were recorded for Cedrus deodara forests; however, lowest TBD (283.4 ± 74.8 Mg ha?1) and TCD (127.5 ± 33.7 Mg C ha?1) values for Quercus semecarpifolia forests. Our study suggests that Abies spectabilis-dominated forests should be encouraged for biodiversity enrichment and reducing carbon emissions on ridge top forests of high mountains.  相似文献   

    18.
    Gap fellings are used to promote multi-cohort structures and to restore other natural forest structures and processes in protected areas that have been altered by anthropogenic activities. Gaps and felled trees may also provide breeding material for species that in high numbers can cause significant tree mortality, growth reduction and consequent economic losses in surrounding production forests. In this study, the effect of restoration gap fellings on feeding intensity of Tomicus spp. (pine shoot beetles) was evaluated by counting fallen pine shoots at different distances from gaps in a protected area in eastern Finland. Gap fellings had a clear effect on the feeding intensity of the beetles. The average density of fallen shoots m−2 was 17 within a 10-m distance from gaps but decreased rapidly to around 4 at the distance of 50 m and beyond. The distance decay in shoot feeding is described well by the negative exponential models. Our results suggest that gap fellings have only a localized effect on shoot feeding by Tomicus in the forests surrounding the restoration gaps. In practical restoration, a buffer zone of 100–200 m around the gap fellings, as implemented here, is enough to minimize economically significant growth reduction in surrounding production forests. As shown in this study, restoration of natural forest structures and dynamics to protect biodiversity is not necessarily in conflict with forest hygiene objectives in production forests.  相似文献   

    19.
    Effects of reforestation by native tree species on species assemblages of carabid beetles were studied between 40-year-old regenerating plantations and 100-year naturally regenerated forests in Southwestern China. Two old naturally regenerated forest types (ca.100 years old) were chosen: hemlock-spruce forests (Tsuga chinensis and Picea brachytyla) and birch forests (Betula albo-sinensis). Three young regenerating forest types (ca. 40 years old), including spruce plantations (P. brachytyla), larch plantations (Larix kaempferi and Larix mastersian), and natural broad-leaved forests, were established after the logging of the old naturally regenerated forests. Using pitfall traps, we compared the distribution of carabid beetles in the five forest types. Three replicated plots for each forest type were chosen, and each plot was investigated with four trap sites twice each month during the growing season (May to October) in 2004. Our results showed that species richness and abundance were significantly higher in the young regenerating forests than in the old naturally regenerated forests. Analysis of complementarity in carabid species lists across the forest ages and types showed that the old naturally regenerated birch forests had the lowest similarity with the young regenerating larch plantations, and the highest similarity was shown between the two young regenerating plantations. Although PCoA ordination grouped the carabid assemblages according to forest type and forest age, the overall similarity among all forest types was high. Moreover, quantitative character species analysis did not detect significant species associated with forest types and ages. Based on the specificity and fidelity, most carabid species were abundant in all habitats, and only a few species were restricted in one or two forest types. Multiple linear regression between the species richness, abundance and Shannon diversity of carabids and of five environmental variables showed that the cover of canopy and herbaceous layer, and the depth of leaf litter had significant effects in determining richness, abundance and diversity of carabid beetles. Thus, the young regenerating forests at the mature stage could provide an appropriate habitat for most forest species of carabids survived in adjacent old naturally regenerated forests and might replace the role in part of the old-growth forests in sustaining the diversity of carabid assemblages. But some species are still restricted in old naturally regenerated forests, so in order to protect the diversity of carabid assemblages, it is necessary to sustain the intact old naturally regenerated forests when reforesting with some native tree species following natural succession.  相似文献   

    20.
    Plantation forests are an important part of the forest estate in many countries. In Ireland, they cover around 9% of the land area and many that are commercially mature are now being felled and reforested. The potential biodiversity value of such second rotation forests has yet to be determined, yet this may be particularly significant in Ireland where cover of semi-natural woodland is only 1%. Invertebrates are a vital component of forest biodiversity, functioning as decomposers and pollinators, herbivores, predators and prey. Spiders and Carabid beetles are often used in biodiversity assessment as they are easily captured using pitfall traps, are taxonomically well known and respond to changes in habitat structure. This study aimed to examine spider and Carabid beetle diversity in second rotation Sitka spruce (Picea sitchensis) plantations at different stages of the forest cycle (5, 8–12, 20–30, 35–50 years), and compare the spiders captured in second rotation forests with those from first rotation. Spider and beetle diversity was influenced by stand structural development in second rotation plantations with numbers of forest-associated species increasing over the forest cycle. Overall, spider richness declined over the forest cycle and this was related to decreasing cover of field layer vegetation and fewer open-associated species. In contrast, total beetle richness increased and became more specialised over the forest cycle which may be related to slower colonisation of disturbed areas by beetles in comparison with spiders, and fewer open specialists at the early stages of second rotation. Spider assemblages were distinguished between rotations. This may be related to differing habitat conditions in second rotation forests including dryer soils with lower pH, differing vegetation complexity and presence of brush piles. Few of the forest species accumulated during first rotation were retained and the early stages of second rotation forest cycle was characterised by a generalist open fauna. Nonetheless, as the forest cycle progressed the spider assemblages between rotations became more similar. Current forest policy supports retaining over-mature trees and creating a mosaic of different aged stands within a plantation. Such measures may provide refuge for forest species after clearfell. In countries where forest fragments exist in a landscape dominated by agriculture, consideration should be given to the capacity of mature forest adjacent to felled stands to support forest species, and to the configuration of over-mature areas retained after felling.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号