首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of forest stands changes through developmental phases. This study is carried out in the unmanaged, oriental beech (Fagus orientalis Lipsky) stands in the north of Iran. The aim of this research was to quantify structural characteristics of stands in the stem exclusion phase using common structural indices, which include mingling, tree–tree distance, stem diameter, and tree height differentiation. According to our measurements from three stands, naturally regenerated stands tend to be mixed in species composition have slightly heterogeneous diameter distributions and uniform tree height. The average distance between trees was 3.3 m. Stocking volume of the stands had an average of 540 m3 ha?1 and 412 stem ha?1. Dead wood volume was 24 m3 ha?1, and as a standing volume, the most frequent species in dead wood pool was oriental beech (F. orientalis) (48 %). The common form of dead trees was snag (41 %). The mean value of mingling and tree-to-tree interval indices revealed that beech was mixed intensively with hornbeam and appears to be a more successful competitor for space and light compared with hornbeam; moreover, we found relatively high evidence of inter-species competition in this phase. A better understanding of stand characteristics in the stem exclusion phase as a critical part of the natural dynamics of forest ecosystems could facilitate predictions about the future changes within the stand.  相似文献   

2.
This study examines the structural characteristics of the tree layer, dead wood, canopy openings, and regeneration patterns of a spruce old-growth forest in the Bohemian Forest, Czech Republic. An old-growth stand with minor human influence and a stand that was presumably logged about 200 years ago were analyzed and compared, as some forest managers considered the presumable human impact as a reason for salvage logging. Even though the stands differed in tree density, height and DBH structure, it was not possible to conclude whether it was due to management history or the environmental differences. The volume of dead wood also differed between the stands. There was about 142 and 83 m3 ha−1 of dead wood in the old-growth stand and presumably logged stand, respectively. The amount of dead wood found in the old-growth stand was comparable with values reported from spruce old-growth stands across Central Europe. In both stands, many canopy trees were arranged in linear patterns, which was a result of spruce regeneration on nurse logs. This suggests that the origin and development of the stands were characterized by natural processes and during the past 200 years typical old-growth structural characteristics have already evolved.  相似文献   

3.
Currently, there is much debate about what strategy is most suitable for increasing old-growth attributes in forests that have been managed intensively for wood production in the past. Passive restoration, i.e. cessation of forestry interventions, should be considered when the old-growth attributes desired can be restored within a feasible period of time.Our study focuses on standing and lying coarse dead wood (≥20 cm diameter) in beech-dominated forests in northwestern Germany. We analyzed monitoring data of 545 sample plots (sized 500-1000 m2) from 12 strict forest reserves (SFRs). The SFRs had been without forestry intervention for up to 28 years.Both, number of dead objects and volume of dead wood (m3 ha−1) increased significantly with ongoing time since abandonment from forestry interventions. The mean amount doubled from 9 to 18 m3 ha−1 within 10 years. The proportion of standing dead wood was about 40% of the total dead wood pool ≥20 cm diameter.With mixed linear modeling we showed that dead wood increased by a mean net rate of about 1 m3 ha−1 a−1. Therefore, after three decades critical values for restoring the dead wood pool could be reached. We hypothesized that the rate of dead wood input is mainly determined by disturbance driven tree mortality such as oak decline, bark beetle infestations and storms.A comparison with primeval forests or reserves abandoned more than 100 years ago showed that the SFRs studied are at the beginning of a long process of dead wood accumulation.Based on our results, the abandonment of forest activities in harvestable pure and mixed beech stands is an effective strategy for restoring the dead wood pool.  相似文献   

4.
Abstract

The rapid development in aerial digital cameras in combination with the increased availability of high-resolution Digital Elevation Models (DEMs) provides a renaissance for photogrammetry in forest management planning. Tree height, stem volume, and basal area were estimated for forest stands using canopy height, density, and texture metrics derived from photogrammetric matching of digital aerial images and a high-resolution DEM. The study was conducted at a coniferous hemi-boreal site in southern Sweden. Three different data-sets of digital aerial images were used to test the effects of flight altitude and stereo overlap on an area-based estimation of forest variables. Metrics were calculated for 344 field plots (10 m radius) from point cloud data and used in regression analysis. Stand level accuracy was evaluated using leave-one-out cross validation of 24 stands. For these stands the tree height ranged from 4.8 to 26.9 m (17.8 m mean), stem volume 13.3 to 455 m3 ha?1 (250 m3 ha?1 mean), and basal area from 4.1 to 42.9 m2 ha?1 (27.1 m2 ha?1 mean) with mean stand size of 2.8 ha. The results showed small differences in estimation accuracy of forest variables between the data-sets. The data-set of digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet), showed Root Mean Square Errors (in percent of the surveyed stand mean) of 8.8% for tree height, 13.1% for stem volume and 14.9% for basal area. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.  相似文献   

5.
Abstract

The age and spatial structure of six natural old growth Pinus sylvestris stands in Latvia were investigated, to attempt to identify retrospectively the past features of development. In each stand, one or two plots of size 200–900 m2 were established. Tree locations were mapped, stem diameter was measured, and tree age was determined from cores or by counting branch whorls. Tree distribution was assessed by Ripley's K function. A clumped spatial pattern was shown for P. sylvestris younger than 100 years. The temporal patterns of establishment could be partly linked to favourable climatic periods. The major disturbance affecting pine stands along the coast was windblown sand, which partly buried some stems and probably affected the patterns of seedling recruitment and mortality. Disturbance caused by fire had a major role in determining the past regimens of mortality and establishment in dry stands located inland. The successful invasion during the last century of spruce in more mesic plots with a pine overstorey may be due to fire suppression.  相似文献   

6.
In Indonesia, Acacia mangium plantations exceed 1.6 Mha contributing approximately 3.5% of the country’s GDP. The viability of these plantations is increasingly threatened by fungal pathogens, insect pests, squirrels, monkeys, elephants and wind damage. Studies indicate that the problem is growing and in some areas, fungal pathogens such as Ganoderma and Ceratocystis species have contributed up to 50% tree mortality by the fourth rotation. Multiple statistical procedures were employed to examine the influence of soil and topographical properties on tree survival (trees ha?1), wood production (m3 ha?1), and mortality associated with Ganoderma root rot, Ceratocystis wilt and by wind. Soil family level was found to be a good indicator of tree mortality. Plots with fine-loamy Typic Kandiudult soils had the highest tree survival and mortality associated with species of Ganoderma and Ceratocystis, but had the lowest incidence of mortality by wind. The degree of association between soil and topographic variables with tree survival, wood production and the cause of mortality were poor and inconsistent. Tree survival was slightly higher on upslope areas away from valley bottoms, and drier mid-slopes, ridges and hilltops, and very low pH (<3.3) soils. Wood production was also slightly higher in drier, elevated locations, away from valley bottoms. Mortality by wind was slightly higher in moist, poorly drained, low-lying valley bottoms and topographically flat areas. Our ability to further pinpoint the influence of topography and soil attributes on wood production and cause of mortality was greatly compromised by the lack of site-specific soil data, and potential misclassification of the cause of mortality. This study could not reliably or consistently relate tree survival, wood production or the cause of mortality to any one, or combination of, soil and topographic variables.  相似文献   

7.
Jack pine (Pinus banksiana) forests in parts of northern Lower Michigan have been managed with 30 years of extensive clearcut harvesting followed by planted stand establishment in order to maintain habitat for the endangered Kirtland's warbler (Dendroica kirtlandii). We used two, parallel chronosequences to study how this management has affected the structural development of jack pine stands relative to the historically dominant disturbance regime of stand-replacing wildfire. Each chronosequence consisted of three young stands (age range 3–6 years), three intermediate-aged stands (age range of 12–17 years) and three mature stands (age range of 39–69 years). Average stem density in young plantations (2300 stems/ha) was lower than the average for young, fire-origin stands (11,000) and varied over a much narrower range among stands (1403–2667 for plantations and 1552–24,192 in fire stands). In addition, within-stand patchiness of stem density was also much higher in the wildfire sites for young and intermediate ages. Plantation sites possessed very little dead wood at young ages (averaging 3 snags/ha and 12 m3/ha CWD) compared to young fire-origin stands (averaging 252 snags/ha and 49 m3/ha CWD). In contrast, mature plantations had similar levels of dead wood (averaging 269 snags/ha and 22 m3/ha CWD) as mature fire-origin stands (averaging 557 snags/ha and 12 m3/ha CWD). Differences between the plantation and fire-origin chronosequences were driven mainly by young- and intermediate-aged stands, whereas mature stands were typically quite similar in all structural features. Our results show clearly that forest management aimed at preserving and enhancing the population of a single endangered species results in greatly simplified habitat structure at the stand level, and suggest that this simplification is perpetuated across the landscape as well. Of particular concern are the effects of extensive harvesting and planting on the availability of snags and CWD.  相似文献   

8.
Montane Norway spruce forests of Central Europe have a very long tradition of use for timber production; however, recently there has been increasing concern for their role in maintaining biological diversity. This concern, coupled with recent severe windstorms that led to wide-spread bark beetle outbreaks, has brought the management of montane spruce forests to the forefront of public policy discussions in Central Europe. In order to shed light on the natural development and current structure of mature montane spruce forests, we established four 0.25 ha research plots in a semi-natural montane spruce forest in the Šumava Mountains (The Bohemian Forest), Czech Republic. We mapped all trees, extracted increment cores for age and growth-pattern analyses, and inventoried all current tree regeneration, including the substrates on which it was found. Stands were characterized by uni-modal tree diameter distributions and high basal areas (56.6 m2 ha−1 on average), indicating a natural transition from the stem exclusion phase towards the understory reinitiation phase. The stands showed largely single-cohort recruitment age structures, however, with recruitment spanning seven decades. Our analyses suggest that this cohort existed as advance regeneration prior to major disturbances in the late 1800s, which included post-bark beetle salvage logging. Spatial pattern analyses of living and dead stems combined, showed an increase in uniformity of living trees, pointing to the role of natural density-dependent mortality. However, past growth patterns and historical documentation suggest that low intensity canopy disturbances (wind and snow) also caused mortality and diversified canopy structure. Because the stands developed naturally over the past 120+ years and thus escaped thinning operations, high volumes of coarse woody debris (94 m3 ha−1) and snag densities (546 stems ha−1) have accrued. Advance spruce regeneration was quite abundant and existed primarily on deadwood substrates, even though these occupied only a small percent of stand area. Because of salvage logging in the late 1880s, these stands do not qualify, according to the traditional paradigm, as natural spruce forests. As a result, they are recently subject to active management practices including salvage logging that remove dead and dying trees. Given the importance of deadwood for forest regeneration and recovery from disturbance, as demonstrated in this study, we argue that dead wood removal may limit future natural regeneration in these stands. Thus, the purported benefits of removing dead and dying trees from semi-natural forests must be carefully weighed against the potential detrimental impacts on natural spruce forest regeneration and biodiversity.  相似文献   

9.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

10.
The aim of this study was to develop prediction models using laser scanning for estimation of forest variables at plot level, validate the estimations at stand level (area 0.64 ha) and test the effect of different laser measurement densities on the estimation errors. The predictions were validated using 29 forest stands (80×80 m2), each containing 16 field plots with a 10 m radius. For the best tested case, mean tree height, basal area and stem volume were predicted with a root mean square error of 0.59 m (3% of average value), 2.7 m2 ha?1 (10% of average value) and 31 m3 ha?1 (11% of average value), respectively, at stand level. There were small differences in terms of prediction errors for different measuring densities. The results indicate that mean tree height, basal area and stem volume can be estimated in small stands with low laser measurement densities producing accuracies similar to traditional field inventories.  相似文献   

11.
Fire history and stand structure was examined in twelve virgin forest stands situated within forest reserves in northern Sweden. The selected stands represented fire refuges as well as different successional stages after fire. Six of the stands were dominated by Norway spruce (Picea abies L. Karst.), three were dominated by Scots pine (Pinus sylvestris L.), and three were dominated by hairy birch (Betula pubescens Ehrh.) or aspen (Populus tremula L.). In 3 of the southernmost stands, the average fire interval was 34 to 65 years during the late 1600s to late 1800s, but since 1888 no fires had occurred in any of the stands. The absence of fire disturbance since 1888 is probably caused by the fire suppression in the overall landscape. The standing volume of living trees ranged between 87 and 511 m3 ha−1 while the volume of dead trees, including both snags and logs, ranged between 27 and 201 m3 ha−1. The volume of dead trees constituted ca. 30% of the total stem volume. In the conifer dominated stands, there was a statistically significant relationship between total stem volume, including both living and dead trees, and site productivity. A comparison between the amount of dead and living trees indicated substantial changes in tree species composition in several stands. It is suggested that data on the amount of dead trees, especially logs, and its distribution over decay classes could be used to examine the continuity of certain tree species. All stands had a multi-sized tree diameter distribution, which in most cases was similar to a reversed J-shaped distribution. In general spruce was numerous in the seedling cohort and in small diameter classes, indicating that its proportion in the stands was stable, or was increasing at the expense of pioneer tree species such as pine, aspen and silver birch (Betula pendula Roth.). The most numerous species in the seedling cohort, rowan (Sorbus aucuparia L.), was almost totally missing in the tree layer, indicating a high browsing pressure preventing rowan seedlings from growing into trees. The general increase of spruce and the sparse regeneration of pioneer species, in the stands previously affected by fire, are discussed in relation to natural disturbance regimes, biological diversity and nature conservation policies. It is proposed that reintroduction of fire disturbance is a necessity for future management plans of forest reserves. Other management practices to increase species diversity within forest reserves are also discussed.  相似文献   

12.
Analyses of land snails and habitat factors in acid beech forests were conducted in southern Germany (northern Bavaria). The objectives were to study the effects of habitat characteristics on snail density and species richness. Habitat structures were determined for 37 plots in one big forest. We found a significant relationship between the number of snail species and individuals and the following set of habitat factors coverage of herbaceous layer, growing stock, mean diameter at breast height of the three largest trees (DBHmax), stand age, total dead wood volume per ha, and advanced decomposed dead wood volume per ha. We use maximally selected rank statistics to estimate cutpoints separating stands with low densities, from stands with high snail densities. Here, we define cutpoints for a significant higher snail density at a stand age of 187 years, 57 m3/ha dead wood, 40 m3/ha advanced decomposed dead wood, 63 cm DBHmax and more than 1% herbaceous layer. For species richness, cutpoints are estimated at 338 m3/ha stand volume, 170 years stand age, 50 m3/ha total dead wood amount, 15 m3/ha advanced decomposed dead wood and 56 cm DBHmax. The microhabitat analysis shows a higher pH value and a higher Calcium content at the bottom of large snags and under large lying dead wood pieces in comparison to litter, upper mineral soil and at the bottom of vital living trees. Snail species and individual density are significantly linked to these patterns of chemical parameters. The identified cutpoints are a good base for ecological management decisions in forest management.  相似文献   

13.
Farm-level simulators such as the Agroforestry Estate Model use as inputs either yield tables or outputs from forest modeling tools. Forest models rely upon assumptions on site index, stem diameter (DBH) distribution, wood production and tree mortality, which may or may not apply to agroforestry practices. Differences may arise because of the effects on tree growth of unusual spacings and configurations, fertilizer, pruning and grazing regimes, and tree-understory relationships as well. We examined data from published or existing field trials to determine mid- and long-term trends in tree growth and understory yields in silvopastoral practices with southern pines (Pinus spp.) in the United States. Tree DBH and height were greater in practices with improved pastures than in those with spontaneous grasses. Understory affected DBH more than height and, therefore, DBH-height relationships differed among practices. Sigmoidal models predicted that tree height will peak at different age depending on tree spacing and understory type. These changes may affect the accuracy of site indices and wood yield predictions. Livestock gains decrease linearly with increasing stand basal area and stand age, although forage yields sometimes decay exponentially. In one of the experiments, livestock gains decreased to almost zero at age 19 but with stand basal areas at that age markedly differing (14 and 25 m2 ha–1) for two different spacings. Additional data would allow to generate empirical algorithms to obtain farm-level simulations of broad application, improve economic analysis and generate hypotheses to guide future experimental work. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Increasingly private landholders in Hawaii are considering native forest restoration for their lands, and some public agencies have already started such work. Initial efforts have focused on reestablishing Acacia koa to recover alien-grass-dominated sites. This study was done in Hakalau Forest National Wildlife Refuge, Island of Hawaii, to determine the efficacy of disk plowing to stimulate natural regeneration of koa from buried seeds. Sites with four different koa parent tree configurations were treated–single live overhead koa canopy, multiple live canopies, downed snags, and no parent koa tree. Tree growth and survival were assessed periodically over 21 years. Average initial stand densities ranged from 100 to 1,500 trees ha?1 of scarified land, although some open areas had as few as 20 trees ha?1. The distributions of seedlings with increasing distance from plot center were variable within and between parent tree configurations. Initial seedling density was significantly greater for the multiple-live-parent than for the no-parent configuration. Densities for the single-live and dead configurations differed from the no-parent configuration only when densities were based on the entire scarified area of each plot. Stand densities declined 10–67 % during the next 20 years. Survival was a negative, non-linear function of initial stand density. Initial stand density exerted strong control over stem diameter and crown size at age 21-years, but had little effect on the proportion of trees with single-stems. The relationships between stand basal area and density at 21 years conformed to the existing koa stocking guidelines. While moderate to high densities of natural regeneration can be expected from scarifying around live and dead koa trees, single trees or low density stands are likely in open areas.  相似文献   

15.
Windthrow is recognized as an extremely significant disturbance in many forests. Its effects are increased by stand fragmentation, which exposes the stand to strong winds. In this study, we investigated the change in tree mortality in fragmented stands with the distance from the stand edge, in a conifer–broadleaved mixed forest in northern Japan. We set out experimental plots having three stand sizes (400, 1,600, 6,400 m2) and examined the stand dynamics over 10 years. Tree mortality tended to be higher in smaller stands, although an effect of stand size was found only in the first 5 years of the study. Distance-dependent individual mortality was obvious in Abies sachalinensis, the most vulnerable major tree species, again in the first 5 years, suggesting that wind-risk management should emphasize the area within ca. 20 m from the stand edge. No distant-dependent effect was found, however, in the latter 5 years, in which there was a strong typhoon; tree deaths occurred throughout the stand (irrespective of distance within) as a result of this event. We conclude that the severity of wind can cause the features of wind-induced damage to differ; stand edge effects peculiar to a small forest are unlikely to occur with particularly strong winds, and the effect of fragmentation might therefore be clear only in weaker disturbances.  相似文献   

16.
《Southern Forests》2013,75(4):311-318
Average wood density of 38-year-old Cariniana legalis (Mart.) Kuntze, a Brazilian native forest species, was found to increase with faster growth and lower stocking, while decreasing from pith to bark. A complete randomised block design was planted with five blocks. Ten trees were harvested in each of three spacing treatments. We hypothesised that the stand stemwood production would not significantly differ depending on tree spacing. However, tree growth would be higher in the wider spacing and wood density would be higher in the narrower spacing. The diameter growth of trees was higher at 3 m × 2.5 m than at 3 m × 2 m and 3 m × 1.5 m. Nevertheless, this higher individual tree growth at 3 m × 2.5 m did not compensate for the greater tree stock density at 3 m × 1.5 m with stand stemwood production at 38 years of 530 m3 ha?1 and 649 m3 ha?1, respectively. These results suggest that C. legalis, which can produce up to 17 m3 ha?1 y?1 of medium-to high-density timber – about 800 kg m?3 – is a promising native species for forest plantations in Brazil.  相似文献   

17.

New silvicultural regimes with high within-stand competition require new functions for estimation of standing stock and growth of biomass components, since the allometry of trees is changed by light competition. This paper presents functions for estimation of the aboveground biomass dry weights for stem wood, stem bark, branches and leaves of young (diameter at breast height <10 cm) Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and birch (Betula pendula Roth. and Betula pubescens Ehrh.) trees growing in dense mixed stands. The functions were derived from a sample consisting of 84 Scots pine, 43 Norway spruce and 66 birch trees from six stands in northern Sweden with high stand densities (>10000 st ha-1). The logarithmically transformed power function displayed a good ability to stabilize the variance of dry weights and showed a good fit to the material (0.37< R 2 <0.99). A comparison with the most commonly used biomass functions in Sweden today showed that they overestimated the weight of stem wood and branches, while the weight of foliage was underestimated. The nature of these discrepancies suggested that the precision of biomass estimations might also be improved for young trees at wider spacing.  相似文献   

18.
We estimated the aboveground net primary production (ANPP) in five self-thinning jack pine (Pinus banksiana) stands in Wood Buffalo National Park, NWT, Canada. The stands (11 to ca.175 years old) were selected to examine the relationship between stand density and tree size and its effect on carbon dynamics. Aboveground litterfall was collected from each stand from 1997 to 2012. Stand biomass was estimated by measuring tree size every 5 years and estimating the individual mass using allometric relationships. ANPP was then estimated by summing the litterfall mass, dead stem mass increment and stand biomass increment. We determined the proportional contribution of each organ to the total litter and the seasonal pattern of needle litterfall. There was a lower turnover rate of aboveground biomass in older stands than younger stands. The ANPP increased in the youngest stand (<30 years old) showed a decreasing trend in stands >50 years old. The maximum ANPP was estimated to be ca. 500?g m?2 year?1 in dry matter, which was found in 30–50 year-old stands.  相似文献   

19.
The diversity, spatial patterns and temporal dynamics of dead wood were examined within the near-natural beech forests (Fagus sylvatica) of Serrahn (North-eastern Germany). Data were collected in an 8 ha sample plot and in two permanent plots (0.36 and 0.25 ha) that had been established at the end of the 1960s. The mean volume of dead wood was 94 m3 ha−1, amounting to 14% of the total volume of all trees. The dead wood displayed a large variation in dead wood type, tree size and decay class. Standing dead wood accounted for about one-third of the total dead wood volume. The densities of standing dead trees were about 10% of the densities of the living trees over a wide range of diameters. The overall spatial distribution of dead trees exhibited a random pattern. Among the different dead wood types, standing entire dead trees and uprooted trees deviated from this pattern by displaying a significantly aggregated pattern. In the permanent plots a high mortality of overstorey trees was observed (1.3% year−1) and the average amount of dead wood increased greatly from 2.9 to 111.6 m3 ha−1 over the 35-year observation period. The near-natural beech forests of Serrahn have experienced a long period of low human interference. Nevertheless, our results suggest that the structure and dynamics of dead wood are strongly affected by the last major disturbance events that took place at the end of the Middle Ages. Information about the forest history is therefore a basic requirement when interpreting the results obtained in near-natural forests.  相似文献   

20.
The availability of coarse woody debris (CWD) and distribution of dead trees into categories of mortality (dead standing, broken and uprooted) were investigated in north-temperate forests of central Europe (Lithuania). The studied area comprised 188.7 ha and included 18 different stands 40–130 years of age with a variety of tree species (spruce (Picea abies (L.) Karst.), pine (Pinus sylvestris L.), alder (Alnus glutinosa (L.) Gaertn.), birch (Betula pendula Roth and B. pubescens Ehrh.), aspen (Populus tremula L.), oak (Quercus robur L.), forest types (caricus-sphagnum, vaccinium-myrtillus, oxalis, myrtillus-oxalis, caricus-calamagrostis) and edaphic conditions (peaty, sandy, loamy soils of different moisture). The stands were excluded from wood harvesting for at least 30 years. A total of 11 365 dead trees (over 10 cm in DBH) or 6160.7 m3 of dead wood was found (60.2 trees/ha and 32.6 m3/ha). The volume of CWD per hectare was larger in older stands (rS=0.78, P<0.01). Tree mortality during the last 2 years consisted of 482 trees and 381 m3, or 1.28 trees/ha×year and 1.01 m3/ha×year. In 25–33% of cases it was wind-related. Uprooted and broken trees were of larger DBH than dead standing. The distribution into the categories of mortality was strongly dependent on tree species (chi-square test, d.f.=10,P=0). Dead standing dominated in CWD of pine and alder. Broken trees comprised almost a half in CWD of aspen, and about one-third in birch, alder and oak. Uprooting most often occurred in spruce, aspen and birch. Edaphic conditions and stand age had a pronounced impact on distribution into mortality categories for spruce (chi-square test, d.f.=20, P<0.00001) and pine (d.f.=8, P≤0.0003). On peat soil, only a minority of trees of both pine and spruce was uprooted, and standing dead prevailed. In CWD of spruce and pine, the proportions of both dead standing and broken decreased and that of uprooted trees increased on mineral soils of higher moisture and bulk density in older stands. By contrast, uprooting in birch and alder occurred less often on more wet sites, where the proportions of standing snags were higher. A total of 41 species of wood-decomposing polypores were found in the study area. Among those, 10 (24%) were of conservation value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号