首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为了提高林分尺度下单木参数的识别精度,研究了基于三维激光扫描的单木胸径和树高的辨识方法。在东北林业大学实验林场,采用Trimble S60三维激光扫描仪,对104株蒙古栎进行多测站扫描,获得样本树的点云数据。在对点云数据进行配准、去噪、地形数据提取、切片栅格化等一系列处理基础上,基于霍夫变换和连续生长法分别构建了胸径和树高的提取方法,对林分尺度下单木定位识别、胸径和树高提取精度进行了对比分析。研究结果表明:所构建方法单木定位识别精度均值为87.50%,胸径和树高提取的均方根误差分别为2.88 cm、2.61 m。  相似文献   

2.
Norway spruce structural timber is one of the most important products of the Norwegian sawmilling industry, and a high grade-yield of structural timber is therefore important for the economic yield. Presorting of logs suited for production of structural timber might be one option to increase the grade yield. In this study, dynamic modulus of elasticity (Edyn) of structural timber was predicted based on forest inventory data at site level and single-tree data from airborne laser scanning (ALS) and harvester. The models were based on 611 boards from 4 sites in southeastern Norway. Important variables at site level were elevation, site index (SI), and mean stand age. However, when combining data from all information sources, mean stand age and site index were the only significant variables at site level. Tree height and variables describing the crown, like crown length and crown volume, were important vaiables extracted from ALS data. Stem diameter measures and tapering were important variables measured by the harvester. The combined model with variables from all three information sources reduced the variance the most, especially when using individual tree age instead of average stand age. However, combining all these data requires accurate positioning of the trees by the harvester.  相似文献   

3.
Developments in the field of remote sensing have led to various cost-efficient forest inventory methods at different levels of detail. Remote-sensing techniques such as airborne laser scanning (ALS) and digital photogrammetry are becoming feasible alternatives for providing data for forest planning. Forest-planning systems are used to determine the future harvests and silvicultural operations. Input data errors affect the forest growth projections and these effects are dependent on the magnitude of the error. Our objective in this study was to determine how the errors typical to different inventory methods affect forest growth projections at individual stand level during a planning period of 30 years. Another objective was to examine how the errors in input data behave when different types of growth simulators are used. The inventory methods we compared in this study were stand-wise field inventory and single-tree ALS. To study the differences between growth models, we compared two forest simulators consisting of either distance-independent tree-level models or stand-level models. The data in this study covered a 2,000-ha forest area in southern Finland, including 240 sample plots with individually measured trees. The analysis was conducted with Monte Carlo simulations. The results show that the tree-level simulator is less sensitive to errors in the input data and that by using single-tree ALS data, more precise growth projections can be obtained than using stand-wise field inventory data.  相似文献   

4.
Development in height, diameter and basal area was studied for beeted and for originally planted Norway spruce (Picea abies (L.) Karst.) seedlings. The study was carried out as a survey in three unthinned stands in southern Sweden. Beeted seedlings were separated from those originally planted by differences observed in the number of annual rings at stump height. In all stands height and diameter were smaller and growth rates in height and basal area were lower for beeted than for originally planted seedlings. The lower growth rates for beeted seedlings may be explained as effects of inter‐tree competition. The oldest stand was thinned at the time of inventory. 40% of the thinned trees were beeted representing 18% of the thinned volume.  相似文献   

5.
We present a decision support tool for guiding the selection of marked stands based on airborne laser scanning (ALS) data. We describe three stages, namely (1) wall-to-wall mapping of the stands matured for cutting using low-density ALS data; (2) tree-level inventory of these stands using high-density ALS data and (3) theoretical bucking of the imputed tree stems to produce detailed information on their characteristics. We tested them in a Scots pine dominated boreal forest area in Eastern Finland, where 79 sample plots were measured in the field. The detection of the stands matured for cutting had a success rate of 95% and our results demonstrated a further potential to limit the result towards stands dominated by certain species by means of intensity values derived from the low-density ALS data. The applied single-tree detection and estimation chain produced detailed tree-level information and realistic diameter distributions, yet the detection was highly emphasised on the dominant tree layer. The error levels in the estimates were generally less than standard deviations of the field attributes. Finally, plot-level accumulations of saw-log volumes were found rather similar, whether the input was based on the imputed tree data or trees measured in the field. The results are considered useful for ranking the stands based on their properties, whether the aim in the wood procurement is to focus on certain species or to select stands suitable for production needs.  相似文献   

6.
Assessing the need for and timing of tending in seedling stands is based on the stem numbers and heights of crop trees and competing broadleaves, as well as the expected forthcoming development of stand. The assessment is partly an outcome of field worker’s opinion and experience. The tending need of Norway spruce- and Scots pine-dominated seedling stands was modeled using the National Forest Inventory (NFI) data from southern Finland. The models predict the probabilities that the NFI field team leader’s proposal falls in the following four categories: tending is late, during the first or second 5-year period or no need for tending. The predictors such as stem numbers, tree heights, site fertility, regeneration method and accomplished tending logically explained the tending need. The overall accuracy of the models was only fair: 54% (kappa 0.27) for spruce and 55% (kappa 0.33) for pine. However, about 95% of the stands needing immediate tending were classified as stands needing immediate or first 5-year period tending. The surveyor-specific random effects were statistically significant, and the surveyors were likely to propose tending similarly in spruce and pine stands. The models can be utilized in forest planning systems and practical forest inventory.  相似文献   

7.
Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.  相似文献   

8.
Airborne laser scanner (ALS)-based forest inventory method usuallyadopt a laser canopy height distribution approach in which forestcharacteristics are predicted using measures such as percentilesof the distribution of laser canopy heights across a fixed area.The method requires a ground-truth sample of accurately measuredfield plots. One possibility for reducing the costs lies inthe use of existing field plots for ground-truth purposes. Themost obvious alternative in Finland would be to use truncatedangle count sample plots of the National Forest Inventory ormore locally data of checking of inventory by compartments.Due to the lack of suitable angle count ground-truth data andcorresponding laser data, we tested this possibility using dataon fixed-area sample plots, in which tree locations were simulated.The trees for a truncated angle count sample plot were thenchosen and the resulting data together with the characteristicsof an ALS-based canopy height distribution were used to constructregression models to predict stem volume, basal area, stem number,basal area median diameter and height. The accuracy of the standattributes was found to be almost as good as in the case ofmodels of fixed-area plots.  相似文献   

9.
Forest inventories based on airborne laser scanning (ALS) have already become common practice in the Nordic countries. One possibility for improving their cost effectiveness is to use existing field data sets as training data. One alternative in Finland would be the use of National Forest Inventory (NFI) sample plots, which are truncated angle count (relascope) plots. This possibility is tested here by using a training data set based on measurements similar to the Finnish NFI. Tree species-specific stand attributes were predicted by the non-parametric k most similar neighbour (k-MSN) approach, utilising both ALS and aerial photograph data. The stand attributes considered were volume, basal area, stem number, mean age of the tree stock, diameter and height of the basal area median tree, determined separately for Scots pine, Norway spruce and deciduous trees. The results obtained were compared with those obtained when using training data based on observations from fixed area plots with the same centre point location as the NFI plots. The results indicated that the accuracy of the estimates of stand attributes derived by using NFI training data was close to that of the fixed area plot training data but that the NFI sampling scheme and the georeferencing of the plots can cause problems in practical applications.  相似文献   

10.

The main objective of this case study was to explore the possible influence of forest management on the levels and distribution of biomass and carbon (C) in even-aged stands of Norway spruce [Picea abies (L.) Karst.] in Denmark. Data originated from a long-term thinning experiment and an adjacent spacing experiment at stand ages of 58 and 41 years, respectively. Biomass of 16 trees from different thinning and spacing treatments was measured or partly estimated, and soils were sampled for determination of C stocks. All trees in each plot were measured for stem diameter and some for total height, to allow for scaling-up results to stand-level estimates. For trees of similar size, foliage biomass tended to be higher in the spacing experiment, which was located on slightly more fertile land. Foliage biomass increased with increasing thinning grade, but the effect could not be separated from that of tree size. At stand level, foliage biomass tended to increase with increasing spacing as well as with increasing thinning grade. For branchwood, stems and roots (including below-ground stump), the biomass increased with increasing tree size and stand volume at tree and stand level, respectively, but no differences between stands, spacings or thinning grades were observed, apart from that expressed by tree size or stand volume. At stand level, C stocks of all biomass compartments decreased with increasing thinning grade, while the distribution between compartments was hardly influenced. The ratio between above-ground and stem biomass was about 1.21 at stand level, while the ratio between below- and above-ground biomass was about 0.17. Thinning influenced the C stock of the forest floor and mineral soil oppositely, resulting in no effect of thinning on total soil C.  相似文献   

11.
The aim of this study was to develop prediction models using laser scanning for estimation of forest variables at plot level, validate the estimations at stand level (area 0.64 ha) and test the effect of different laser measurement densities on the estimation errors. The predictions were validated using 29 forest stands (80×80 m2), each containing 16 field plots with a 10 m radius. For the best tested case, mean tree height, basal area and stem volume were predicted with a root mean square error of 0.59 m (3% of average value), 2.7 m2 ha?1 (10% of average value) and 31 m3 ha?1 (11% of average value), respectively, at stand level. There were small differences in terms of prediction errors for different measuring densities. The results indicate that mean tree height, basal area and stem volume can be estimated in small stands with low laser measurement densities producing accuracies similar to traditional field inventories.  相似文献   

12.
We examined the regeneration and structure of mixed conifer forests under single-tree harvest management in western Bhutan. Sixteen 900 m2 (30 m × 30 m) plots were sampled at four Forest Management Units (FMUs; Chamgang, Gidakom, Paro-Zonglela, and Haa-East) representing the forest type, including half the plots in single-tree harvest stands and half in unlogged stands. In addition, we solicited information on traditional forest management practices from informants using survey questionnaires and collected tree species data from felling records from respective local forest offices. Rural timber demand is concentrated on the removal of straight and well-formed bluepine trees for beams, planks, and scaffolding. Single-tree harvest, however, has not significantly altered stand structures from unlogged stands. Similarly, tree regeneration is not different when comparing single-tree harvest and unlogged stands, except at Chamgang FMU, where seedling densities were generally higher in harvested stands than in unlogged stands. These results indicate that single-tree harvest is not detrimental to regeneration and utilization of mixed conifer forests in western Bhutan.  相似文献   

13.
A method and algorithm for reconstructing the three-dimensional (3D) surface of stems based on terrestrial laser scanner data from standing trees is presented. Laser scanning delivers a dense cloud of points, and this raw point data are filtered for deriving a digital terrain model and subsequent fitting of a parametric stem model. The stem model is made up of a sequence of successive cylinders that overlap in space; each cylinder is parameterized by its orientation and radius. The model is estimated iteratively from a given starting point and by adding cylinder segments. Successive segments are added whenever criteria on deviation in orientation and radius relative to the previous cylinder and a fit statistic to the point data are met. The method has proven applicable when applied to a European beech tree and a wild cherry tree from dense forest stands. The use of the resulting 3D reconstruction of tree stems in respect to diameter in breast height and height of crown base calculation, as well as taper, sweep and lean assessment of standing trees, is described. Finally, desirable future improvements to the basic algorithm are discussed.  相似文献   

14.
The study developed models for predicting the post-fire tree survival in Catalonia. The models are appropriate for forest planning purposes. Two types of models were developed: a stand-level model to predict the degree of damage caused by a forest fire, and tree-level models to predict the probability of a tree to survive a forest fire. The models were based on forest inventory and fire data. The inventory data on forest stands were obtained from the second (1989–1990) and third (2000–2001) Spanish national forest inventories, and the fire data consisted of the perimeters of forest fires larger than 20 ha that occurred in Catalonia between the 2nd and 3rd measurement of the inventory plots. The models were based on easily measurable forest characteristics, and they permit the forest manager to predict the effect of stand structure and species composition on the expected damage. According to the stand level fire damage model, the relative damage decreases when the stand basal area or mean tree diameter increases. Conversely, the relative stand damage increases when there is a large variation in tree size, when the stand is located on a steep slope, and when it is dominated by pine. According to the tree level survival models, trees in stands with a high basal area, a large mean tree size and a small variability in tree diameters have a high survival probability. Large trees in dominant positions have the highest probability of surviving a fire. Another result of the study is the exceptionally good post-fire survival ability of Pinus pinea and Quercus suber.  相似文献   

15.
《林业研究》2020,31(5)
Individual tree models(ITMs) are classified as growth and production models for projecting current and future forest stands. ITMs are more complex than other growth and production models, show a higher level of detail and, consequently, produce a better modeling resolution. However, the accuracy and efficiency of ITMs have not been properly assessed to date. In this study, we estimated the growth in height, diameter, and individual tree volume of a Eucalyptus urophylla plantation by applying an ITM. We used a continuing forest inventory dataset in which 1554 individual trees within 29 permanent plots were measured in the field over a 6-year period(24 to 72 months). Each individual tree volume was estimated for future tree age. To achieve this, we adjusted the model to predict the height and diameter growth, and the probability of mortality as a function of the competition index. The ITM accuracy was assessed based on the analysis of variance results and, subsequently, the multiple mean comparison test at the 5% significance level. The tree volumes predicted by the ITM for the forest stand aged 72 months,beginning at ages 24, 36, 48, and 60 months, were compared to the field measured tree volume acquired from the 72-month forest inventory that was used as the reference age. Estimated and observed tree volumes were similar when the estimation was based on the 48-month forest plots. These results might help to reduce financial costs of forest inventory because the ITM produces accurate future predictions of forest stand stocks. Our estimated ITM for Eucalyptus plantations using measurement intervals up to 2 years is recommended because it significantly reduced the projected volume discrepancy compared to the field measurements.  相似文献   

16.
Fire history and stand structure was examined in twelve virgin forest stands situated within forest reserves in northern Sweden. The selected stands represented fire refuges as well as different successional stages after fire. Six of the stands were dominated by Norway spruce (Picea abies L. Karst.), three were dominated by Scots pine (Pinus sylvestris L.), and three were dominated by hairy birch (Betula pubescens Ehrh.) or aspen (Populus tremula L.). In 3 of the southernmost stands, the average fire interval was 34 to 65 years during the late 1600s to late 1800s, but since 1888 no fires had occurred in any of the stands. The absence of fire disturbance since 1888 is probably caused by the fire suppression in the overall landscape. The standing volume of living trees ranged between 87 and 511 m3 ha−1 while the volume of dead trees, including both snags and logs, ranged between 27 and 201 m3 ha−1. The volume of dead trees constituted ca. 30% of the total stem volume. In the conifer dominated stands, there was a statistically significant relationship between total stem volume, including both living and dead trees, and site productivity. A comparison between the amount of dead and living trees indicated substantial changes in tree species composition in several stands. It is suggested that data on the amount of dead trees, especially logs, and its distribution over decay classes could be used to examine the continuity of certain tree species. All stands had a multi-sized tree diameter distribution, which in most cases was similar to a reversed J-shaped distribution. In general spruce was numerous in the seedling cohort and in small diameter classes, indicating that its proportion in the stands was stable, or was increasing at the expense of pioneer tree species such as pine, aspen and silver birch (Betula pendula Roth.). The most numerous species in the seedling cohort, rowan (Sorbus aucuparia L.), was almost totally missing in the tree layer, indicating a high browsing pressure preventing rowan seedlings from growing into trees. The general increase of spruce and the sparse regeneration of pioneer species, in the stands previously affected by fire, are discussed in relation to natural disturbance regimes, biological diversity and nature conservation policies. It is proposed that reintroduction of fire disturbance is a necessity for future management plans of forest reserves. Other management practices to increase species diversity within forest reserves are also discussed.  相似文献   

17.
The structure of forest stands changes through developmental phases. This study is carried out in the unmanaged, oriental beech (Fagus orientalis Lipsky) stands in the north of Iran. The aim of this research was to quantify structural characteristics of stands in the stem exclusion phase using common structural indices, which include mingling, tree–tree distance, stem diameter, and tree height differentiation. According to our measurements from three stands, naturally regenerated stands tend to be mixed in species composition have slightly heterogeneous diameter distributions and uniform tree height. The average distance between trees was 3.3 m. Stocking volume of the stands had an average of 540 m3 ha?1 and 412 stem ha?1. Dead wood volume was 24 m3 ha?1, and as a standing volume, the most frequent species in dead wood pool was oriental beech (F. orientalis) (48 %). The common form of dead trees was snag (41 %). The mean value of mingling and tree-to-tree interval indices revealed that beech was mixed intensively with hornbeam and appears to be a more successful competitor for space and light compared with hornbeam; moreover, we found relatively high evidence of inter-species competition in this phase. A better understanding of stand characteristics in the stem exclusion phase as a critical part of the natural dynamics of forest ecosystems could facilitate predictions about the future changes within the stand.  相似文献   

18.
Abstract

This study focused on the amount of sapwood and its variation by means of computed tomographic (CT) imaging. Twenty-four trees were selected from four Norway spruce [Picea abies (L.) Karst.] stands in north-eastern France, varying in age, density and fertility. In each stand, sampled trees represented the dominant, co-dominant and suppressed strata. The heartwood/sapwood boundary was detected from the CT images, and the heartwood and sapwood amount and their variations were then evaluated. At the within-tree level sapwood width was relatively constant along the tree stem above the butt swelling and below the living crown. The between-tree sapwood width variations were partially explained by the total cross-sectional area of living branches. This result opens up the possibility of investigating within-tree allometric relationships. Sapwood width was found to be highly correlated with tree slendemess (tree height/breast height diameter) and with the relative height of the crown. This suggests that sapwood width could be readily predicted from conventional forest inventory measurements. The number of sapwood rings within the stem was largely dependent on cambial age, and could be determined dynamically using the concept of mean lifetime of sapwood rings.  相似文献   

19.
Properties of individual trees can be estimated from airborne laser scanning (ALS) data provided that the scanning is dense enough and the positions of field-measured trees are available as training data. However, such detailed manual field measurements are laborious. This paper presents new methods to use terrestrial laser scanning (TLS) for automatic measurements of tree stems and to further link these ground measurements to ALS data analyzed at the single tree level. The methods have been validated in six 80 × 80 m field plots in spruce-dominated forest (lat. 58°N, long. 13°E). In a first step, individual tree stems were automatically detected from TLS data. The root mean square error (RMSE) for DBH was 38.0 mm (13.1 %), and the bias was 1.6 mm (0.5 %). In a second step, trees detected from the TLS data were automatically co-registered and linked with the corresponding trees detected from the ALS data. In a third step, tree level regression models were created for stem attributes derived from the TLS data using independent variables derived from trees detected from the ALS data. Leave-one-out cross-validation for one field plot at a time provided an RMSE for tree level ALS estimates trained with TLS data of 46.0 mm (15.4 %) for DBH, 9.4 dm (3.7 %) for tree height, and 197.4 dm3 (34.0 %) for stem volume, which was nearly as accurate as when data from manual field inventory were used for training.  相似文献   

20.
The occurrence of Heterobasidion annosum in stumps and growing trees was investigated on 15 forest sites in southern Finland where the previous tree stand had been Norway spruce (Picea abies) infected by H. annosum, and the present stand was either Scots pine (Pinus sylvestris), lodgepole pine (Pinus contorta), Siberian larch (Larix siberica), silver birch (Betula pendula) or Norway spruce 8–53 years old. Out of 712 spruce stumps investigated of the previous tree stand, 26.3% were infected by the S group and 0.3% by the P group of H. annosum. The fungus was alive and the fruit bodies were active even in stumps cut 46 years ago. In the subsequent stand, the proportion of trees with root rot increased in spruce stands and decreased in stands of other tree species. On average, one S type genet spreading from an old spruce stump had infected 3.0 trees in the following spruce stand, 0.5 trees in lodgepole pine, 0.3 trees in Siberian larch, 0.05 trees in Scots pine and 0.03 trees in silver birch stand. Although silver birch generally was highly resistant to the S type of H. annosum, infected trees were found on one site that was planted with birch of a very northern provenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号