首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
基于红边参数的植被叶绿素含量高光谱估算模型   总被引:11,自引:2,他引:9  
利用ASD便携式野外光谱仪和SPAD-502叶绿素计实测了落叶阔叶树法国梧桐、毛白杨叶片的高光谱反射率与叶片绿度,并对原始光谱反射率及一阶导数光谱与叶片绿度进行了相关分析,建立了基于红边位置、峰度系数、偏度系数的叶片叶绿素含量的高光谱估算模型,最后采用红边位置、峰度、偏度作为BP人工神经网络的输入变量进行了叶绿素含量的估算。结果表明:基于红边位置的法国梧桐、毛白杨叶绿素估算模型的决定系数达到0.7366、0.7289;基于峰度、偏度建立的估算模型可以有效提高估算精度,模型的决定系数均达0.8341以上;法国梧桐和毛白杨人工神经网络模型的确定系数决定系数分别达到0.9574和0.9523。与单变量模型相比人工神经网络模型反演精度明显提高,是一种良好的植被叶绿素含量高光谱反演模式。  相似文献   

2.
红边参数在作物营养诊断和品质预报上的应用   总被引:6,自引:3,他引:6  
通过对红边参数与反映作物碳氮代谢典型的生物化学参数叶片全氮和叶片可溶性糖进行相关分析,结果表明,可运用红边位置来反演叶片可溶性糖含量,归一化最小振幅来反演叶片全氮含量。并建立了基于红边参数的生化组分统计回归模型和基于叶片全氮与可溶解性糖比值与籽粒蛋白品质指标间的回归方程,并对建模试验所建立方程进行了检验。表明利用运用红边参数反演叶片全氮和可溶性糖含量进而预测小麦蛋白品质是可行的。为生产上利用遥感手段大面积、无破坏、及时评价冬小麦生长状态和在开花期进行小麦品质的预测预报研究提供重要依据。  相似文献   

3.
蔡庆空  李二俊  陶亮亮  潘洁晨  陈超  王果 《土壤》2020,52(4):846-852
本文提出一种改进作物散射模型反演麦田土壤水分,该模型根据冬小麦等低矮植被的散射特性,在原模型的基础上保留植被层直接散射部分以及植被与地表相互耦合作用的信息,同时加入裸土地表的直接散射部分,并根据经验权重将两部分信息分离开,构建出适用于冬小麦等低矮植被的后向散射模型,并结合RADARSAT-2雷达数据以及陕西杨凌农田试验区的地面实测数据,计算得到改进模型的经验参数,进而对模型进行验证分析。研究结果表明:改进作物散射模型的模拟精度相对于未改进的作物散射模型有显著的提高,R2在HH和VV极化下都达到80%以上。为了验证改进的作物散射模型算法及土壤水分反演的有效性,本研究将改进作物散射模型与TVDI光学指数模型、简化的MIMICS模型的土壤水分反演结果进行对比分析,改进的作物散射模型反演精度比TVDI和简化的MIMICS模型要好,R2达到84.3%,均方根误差为0.028 cm3/cm3,简化的MIMICS模型反演结果比TVDI要好,但是精度不高,R2为66.9%,均方根误差为0.043 cm3/cm3。改进的作物散射模型对地表植被比较敏感,可以有效的将冬小麦对雷达信号散射影响和裸土层散射贡献区分开,为植被覆盖下地表土壤水分的反演创造条件,给大面积大范围的地表土壤水分反演提供强有力的技术支撑。  相似文献   

4.
采用不同红边位置提取技术估测蔬菜叶绿素含量的比较研究   总被引:13,自引:3,他引:10  
红边位置常被用来估测植被的叶绿素/氮素含量、叶面积以及探测植被胁迫,其精确计算十分重要.目前其计算主要是基于导数光谱或曲线拟合技术,但哪种方法能更有效地探测植被的叶绿素/氮素含量,还没有一个定论.本研究以菠菜的叶片高光谱为例,详细比较了目前常用的6种红边位置提取方法与叶片叶绿素之间的关系,并从其对叶绿素含量预测的准确度、计算的难易程度、所需数据的精度及适用范围等几个方面进行了讨论.结果表明,叶片红边位置的计算结果对选择方法的依赖性很大,几种计算方法提取的红边位置与叶绿素含量的相关性均较好.四点线性内插法计算的红边位置往往偏大,最大一阶导数法与叶绿素含量的关系存在着明显的不连续性,拉格朗日内插法、倒高斯模犁法在一定程度上存在着对高叶绿素含量的饱和现象,多项式拟合法对拟合波段区间、最高项次及光谱分辨率等比较灵敏而导致结果不够稳定,而线性外推法计算出的红边位置对叶绿素含量最为敏感,预测的准确度最高,且计算相对比较简单,并能适用于较宽波段的遥感数据.在实际应用时还应根据具体情况而选择合适的红边位置提取方法.  相似文献   

5.
植被叶片光谱及红边特征与叶片生化组分关系的分析   总被引:14,自引:1,他引:13  
以LOPEX’93数据集为基础, 利用最新的叶片光学模型——PROSPECT5模型模拟了不同生化组分(叶肉结构参数、等效水厚、叶绿素、类胡萝卜素和干物质)含量叶片的反射率、透射率和吸收率光谱, 并在此基础上提取植被红边特征, 系统分析光谱和叶片生化组分的关系, 建立光谱特征与叶片生化组分的关系模型, 为生化组分反演提供一定的理论基础。结果表明, 在可见光部分, 叶片的光谱主要取决于叶肉结构参数和色素(叶绿素和类胡萝卜素); 在红外波段, 叶片的光谱主要受水分、叶肉结构参数和干物质含量的影响。不同的波段范围内, 光谱对生化组分的敏感度不同。叶片的红边特征不受水分和类胡萝卜素的影响, 但红边位置随叶绿素的增加向长波方向移动(红移)。红边斜率随内部结构参数的增加而增加, 两者之间的关系可用二次方程描述, 这为叶肉结构参数的求解提供了一个方向。  相似文献   

6.
利用日光诱导叶绿素荧光监测水稻叶片叶绿素含量   总被引:2,自引:1,他引:1  
快速准确地监测作物叶片叶绿素含量对于研究作物光合作用、氮素营养以及胁迫状况至关重要。该研究基于不同品种、不同密度、不同氮素水平的水稻田间小区试验,分别获取冠层和单叶的辐亮度光谱、反射率光谱及生理生态指标等,计算日光诱导叶绿素荧光(Sun-Induced Chlorophyll Fluorescence,SIF)指数和植被指数,进一步基于线性回归和辐射传输模型2种方法来建立叶绿素含量监测模型,评估多个叶绿素监测模型的精度及适用性。结果表明,1)在冠层尺度,冠层761 nm处SIF强度(F761)与冠层叶绿素含量相关性最高,决定系数(Determination coefficient,R2)为0.72,略高于表现最好的红边叶绿素指数(Red edge Chlorophyll index,CIred edge)(R2=0.63);2)在单叶尺度,归一化下行SIF指数(↓FY NDFI)与单叶叶绿素含量相关性最高,R2为0.77,比表现最好的上行荧光产量双峰比值指数(↑FY687/↑FY741)R2高出0.10,与表现最好的植被指数CIred edge效果相当(R2=0.81);3)基于SCOPE(Soil Canopy Observation, Photochemistry and Energy fluxes )模型反演水稻冠层叶绿素含量的验证R2为0.57,均方根误差(Root Mean Squared Error,RMSE)为56.54 μg·cm-2,效果差于PROSAIL模型(模型检验的R2为0.91,RMSE为22.59 μg·cm-2);4)单叶Fluspect-B模型反演水稻单叶叶绿素含量的验证R2为0.55,均方根误差RMSE为19.45 μg·cm-2,效果差于PROCWT模型反演结果(R2为0.72,RMSE为6.42 μg·cm-2)。综上,SIF指数在监测冠层和单叶叶绿素含量时效果较好,基于SIF的辐射传输模型也可以用来反演水稻冠层和单叶的叶绿素含量。研究结果可为SIF监测作物叶绿素含量提供理论依据,并对未来利用SIF进行植物光合作用研究提供理论支持。  相似文献   

7.
冬小麦红边参数各向异性特征分析   总被引:1,自引:1,他引:1  
基于冬小麦冠层高光谱二向性反射波谱数据及其配套的非波谱参数,对可见光至近红外波段二向性反射特性和红边参数随观测角度的变化情况进行了分析。结果表明:冬小麦在太阳主平面呈现出强烈的各向异性反射特性。不同叶面积指数下,由于作物冠层的结构特征和其他组分参数发生较大变化,其二向性反射特性在强度和趋势上也有一定的变化。红边幅值及红边峰值面积随观测角度的变化而发生了变化,呈现为各向异性特征,而红边位置几乎不发生变化。鉴于以往采用垂直观测时的红边参数推算植物生化组分含量,该文指出应选取合理观测角度下的红边参数来精确反演其他相关参数。另外为了定量描述红边幅值随观测角度而变化,提出了红边幅值各向异性指数和红边幅值各向异性因子。  相似文献   

8.
基于无人机数码影像的冬小麦氮含量反演   总被引:9,自引:7,他引:2  
准确、快速地获取关键生育期冬小麦氮素含量,对农业管理者进行田间氮素施肥有重要的决策作用。利用无人机(unmannedaerialvehicle,UAV)搭载数码相机,可以短时间内获取冬小麦长势信息,实现对冬小麦氮素含量动态监测。该研究利用2015年北京市小汤山冬小麦无人机数码影像,采用3种阈值分割方法,将田间植株作物与土壤背景分离。对比影像分割方法的时效性与准确性,最终确定可见光波段差异植被指数VDVI(visible-band difference vegetation index)提取植被信息。按照试验方案要求,在不同的氮肥与水分胁迫管理下,将冬小麦3次重复试验分成48个试验小区,依据小区边界提取小区的红、绿和蓝通道的平均DN(digitalnumber)值,选取25个植被指数,同时与各个试验小区冬小麦不同器官氮含量进行相关性分析,筛选数码影像变量。由于植被指数之间耦合度较高,因此采用主成分分析对原始数据进行成分提取,提取特征向量参与建模,最后利用多元线性回归分析建立氮素反演模型,通过决定系数(R2)、均方根误差(RMSE)和归一化的均方根误差(nRMSE)3个指标筛选出最佳模型,探究各器官氮素含量与数码变量的相关性。结果表明,实验室实测氮素含量与UAV数码影像氮素反演结果及基本一致。在反演模型构建精度方面,3种数据处理结果整体部分植被指数,反演效果叶氮植株氮茎氮。以冬小麦挑旗期为例,叶片氮含量整体信息提取验证模型的R2、RMSE和nRMSE分别为0.85、0.235和6.10%,比部分信息提取验证模型的R2高0.14,RMSE和nRMSE分别降低0.068和1.77个百分点;比植被指数信息提取验证模型的R2高0.43,RMSE和nRMSE分别降低0.141和3.67个百分点。研究表明,基于UAV数码影像利用多元线性回归构建冬小麦氮素含量反演模型,对试验小区整体提取作物信息的方式反演冬小麦叶氮含量效果最好,相比传统反演方法,模型稳定性更高,可为冬小麦田间水肥决策管理提供参考。  相似文献   

9.
为了提高无人机遥感对冬小麦叶面积指数(leaf area index,LAI)反演模型的精度与泛化能力,该研究利用无人机搭载多光谱相机获取不同氮素处理和不同复种方式的冬小麦生长实测数据,结合PROSAIL辐射传输模型生成包含机理信息的模拟数据,基于不同组合方式建立了5种LAI反演混合数据集,结合多种机器学习方法,以期构建经验与机理相结合的LAI高精度反演模型。由于LAI反演受NIR波段反射率影响大,该研究筛选7种与NIR波段相关的植被指数提取冬小麦光谱特征,构建与混合数据集LAI的相关系数矩阵,进一步探究不同光谱特征对冬小麦LAI的影响程度。在此基础上,采用具有代表性和普适性的4种机器学习方法,即贝叶斯岭回归模型、线性回归模型、弹性网络模型和支持向量回归模型,构建不同冬小麦LAI反演模型,用以评估基于半经验半机理数据反演冬小麦LAI的可行性,进一步探索其对不同氮素水平和复种方式的冬小麦长势评估能力。结果表明:1)筛选的与NIR波段相关的植被指数与冬小麦LAI之间存在较强的相关性,其中归一化差异植被指数、增强植被指数、归一化差异红边指数、比值植被指数、红边叶绿素植被指数、土壤调节植被指数与LAI呈正相关,结构不敏感色素植被指数与LAI呈负相关;2)辐射传输模型中体现了冬小麦LAI影响太阳光线传播的机理,结果表明,与实测数据混合建立的模型,具有较强的鲁棒性和泛化能力。相比于其他3种模型,支持向量回归模型在各种数据组合下均取得了较好的LAI预测性能,在C1、C2、C3、C4这4种训练-测试组合的训练集中R2依次为0.86、0.87、0.88、0.91,RMSE依次为0.47、0.45、0.45、0.41;在测试集的R2依次为0.85、0.19、0.89、0.87,RMSE依次为0.45、1.31、0.49、0.50;3)使用支持向量机生成试验区LAI反演图,对4种氮素水平和2种复种方式的冬小麦长势评估,结果表明,适当的施加氮素处理能提高冬小麦LAI值,麦-豆复种方式下的冬小麦LAI值普遍高于麦-玉复种的LAI值。该研究为冬小麦LAI的反演提供了一种有效的方法,并为高效评估冬小麦长势研究提供了参考。  相似文献   

10.
采用RNCA-PSO-ELM的水稻叶绿素光谱特征分析与反演   总被引:1,自引:1,他引:0  
为探索有效的水稻叶绿素光谱特征选择方法与含量反演建模,解决东北粳稻叶绿素含量无人机遥感监测等问题,该研究利用沈阳农业大学卡力玛水稻实验站2018-2020年无人机(Unmanned Aerial Vehicle,UAV)水稻冠层高光谱数据及地面样本数据,设计了基于正则近邻成分分析的光谱特征选择方法,优化了其损失函数与正则化参数,获得水稻叶绿素不同含量的特征波段,并以此为输入,构建粒子群优化极限学习机叶绿素含量反演模型。结果表明:正则近邻成分分析算法具有较好的特征选择能力,其损失函数为均方误差损失函数、正则化参数值为0.306时,特征选择效果最佳,初选出权重非零的16个特征波段;进一步以叶绿素极限学习机反演精度为判据,优选出权重最高的6个特征波段:710、716、508、798、532和708 nm;应用粒子群优化算法优化了极限学习机模型的输入权值和阈值偏差,粒子群算法正交试验种群规模(POP)、惯性权重(IW)、学习因子(C1,C2)和速度位置相关系数(MC)的优选结果分别为50、1.5、1.3、3.5和0.6;基于正则近邻成分分析-粒子群优化极限学习机叶绿素含量反演结果的RMSE和R2分别为9.549 mg/L、0.891。研究结果可为基于无人机平台的高通量作物监测提供理论依据,并为筛选无人机高光谱波段实现作物长势参数快速估测提供参考。  相似文献   

11.
基于SVR算法的小麦冠层叶绿素含量高光谱反演   总被引:21,自引:14,他引:7  
为给小麦的长势监测与农艺决策提供科学依据,利用高光谱技术实现了小麦冠层叶绿素含量的估测。通过分析18种高光谱指数对叶绿素的估测能力,筛选出可敏感表征叶绿素含量的指数REP,利用地面光谱数据为样本集,以最小二乘支持向量回归(least squares support vector regression,LS-SVR)算法建立了小麦冠层叶绿素含量反演模型,其校正决定系数C-R2与预测决定系数P-R2分别为0.751与0.722,在各指数中反演精度最高。进一步分析表明,REP对叶绿素含量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对叶绿素含量估测的影响。利用LS-SVR反演模型完成了OMIS影像叶绿素含量的遥感填图,并以地面实测值进行检验,其拟合模型R2与RMSE值分别为0.676与1.715。结果表明,高光谱指数REP所建立的LS-SVR模型实现了叶绿素含量的准确估测,可用于小麦叶绿素含量信息的快速、无损获取。  相似文献   

12.
  【目的】  叶绿素含量高低反映植被的健康状况与光合能力。研究准确、有效地将冠层影像反演为叶绿素含量的技术参数,以便经济快速、实时地监测作物生长状况。  【方法】  田间试验于2018—2020年在内蒙古阴山北麓马铃薯主产区进行,设置氮肥梯度处理,在马铃薯块茎膨大期和淀粉积累期,测定试验地马铃薯植株SPAD值,通过线性关系将其转化成叶绿素含量。利用无人机为平台搭载S185成像光谱仪获取马铃薯试验区高光谱影像,并从中提取马铃薯冠层光谱反射率。将3年田间试验所获取的125个样本点数据按80%、20%的比例随机划分为训练集与验证集。用训练集数据建立了8个比率、归一化光谱指数,通过波段优化算法建立优化光谱指数和马铃薯关键生育期叶绿素含量的相关性与估测模型,并用验证集数据检验所建立模型的精度,最后利用所构建的估测模型制作马铃薯叶绿素含量分布图。  【结果】  根据训练集数据,马铃薯植株叶绿素含量分布范围在10.58~23.14 mg/g,平均叶绿素含量为19.80 mg/g,变异系数为14.9%;根据验证集数据,马铃薯植株叶绿素含量分布范围在12.80~23.73 mg/g,平均为19.59 mg/g,变异系数为17.0%。基于绿光波段建立的叶绿素光谱指数(CIgreen)和归一化光谱指数550 (ND550)均与马铃薯叶绿素含量具有较好相关性(R2分别为0.48、0.61),但作物种类及生育时期的影响降低了估测的准确性。通过优化波段586、462 nm和586、498 nm计算的优化比率光谱指数(RSI)和优化归一化光谱指数(NDSI)能够明显提高模型准确性,具备良好的线性拟合效果,决定系数R2分别由0.48和0.61提高到0.82和0.83。经验证后,估测模型预测值与实测值接近1∶1线,决定系数R2分别为0.77和0.79,均方根误差RMSE较低。通过反演马铃薯叶绿素含量分布图可知,优化光谱指数(NDSI)模型反演效果较好,叶绿素含量分布范围为18~21 mg/g,与实测值相符合。  【结论】  本研究优化光谱指数RSI和NDSI最佳敏感波段分别为586、462和586、498 nm,此波段范围内RSI和NDSI与马铃薯关键生育期叶绿素含量相关性最优,通过波段优化算法重新构建的优化光谱指数预测模型可靠性及精度显著高于已有光谱指数,决定系数分别为0.82和0.83,且验证效果较好。应用两种光谱指数对研究区高光谱影像进行叶绿素反演估测,生成的田间马铃薯叶绿素含量分布图显示优化光谱指数NDSI估测效果最好,为光谱指数估测马铃薯关键生育期叶绿素含量提供了理论支持。  相似文献   

13.
In order to investigate the visible-NIR spectral features of the leaves of a sugarcane variety(ROC 22),the spectral reflectance and the chlorophyll content were measured in the laboratory,and their correlations were analyzed.Prediction models were built eventually.Results showed that the negative correlations with r greater than 0.8 was found in 527-578 nm and 701-731nm between spectral reflectance and chlorophyll content.And the red edge position(REP)was also found having high correlation with chlorophyll content,with the highest r of 0.8442.In order to explore the most sensitive bands for normalized difference vegetation index(NDVI),48471 NDVI values were computed with different wavebands for each sample and their correlations with chlorophyll were also analyzed.The distribution maps of NDVI and its correlations in a two-spectral-dimension space both indicated that the red bands had significant influence than the NIR bands.The suggested sensitive red range was 710-735 nm,especially720-725 nm;and the sensitive NIR range was from 780-850 nm,which had the higher robustness.The chlorophyll predication model with NDVI(725 and 840 nm)in tillering stage had determination coefficients of 0.7386,and was recommended for guiding the subsequent ridging fertilization.  相似文献   

14.
In order to investigate the visible-NIR spectral features of the leaves of a sugarcane variety(ROC 22), the spectral reflectance and the chlorophyll content were measured in the laboratory, and their correlations were analyzed.Prediction models were built eventually.Results showed that the negative correlations with r greater than 0.8 was found in 527-578 nm and 701-731 nm between spectral reflectance and chlorophyll content.And the red edge position(REP) was also found having high correlation with chlorophyll content, with the highest r of 0.8442.In order to explore the most sensitive bands for normalized difference vegetation index(NDVI), 48471 NDVI values were computed with different wavebands for each sample and their correlations with chlorophyll were also analyzed.The distribution maps of NDVI and its correlations in a two-spectral-dimension space both indicated that the red bands had significant influence than the NIR bands.The suggested sensitive red range was 710-735 nm, especially 720-725 nm; and the sensitive NIR range was from 780-850 nm, which had the higher robustness.The chlorophyll predication model with NDVI(725 and 840 nm) in tillering stage had determination coefficients of 0.7386, and was recommended for guiding the subsequent ridging fertilization.  相似文献   

15.
光谱变换方法对黑土养分含量高光谱遥感反演精度的影响   总被引:3,自引:1,他引:2  
高光谱遥感反演黑土养分含量时,光谱变换方法对提取精度具有显著影响,为明确二者响应关系,提高反演精度和稳定度,该文以黑龙江建三江地区为研究区,引入航空高光谱成像系统CASI-1500,获取380~1 050 nm数据进行分析。均匀采样60个样品,化验获得其有机质、全氮、全磷和全钾含量数据,利用神经网络方法对有机质含量、支持向量机对氮、磷、钾含量进行建模。对比研究了重采样(RE)、对数倒数(LR)、一阶微分(FD)、包络线去除(CR)和多元散射校正(MSC)变换5种光谱变换后的提取精度。结果表明:MSC、MSC、LR和RE光谱变换方法分别应用到有机质、氮、磷和钾特征波段的组合运算中,得出黑土养分含量的空间分布精度相对最高,预测样本的决定系数分别为0.748、0.673、0.631和0.420。  相似文献   

16.
基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算   总被引:8,自引:4,他引:4  
叶绿素含量是影响作物生长及产量的主要因素。该研究以2017年6月小型试验田获取的抽穗期春小麦叶绿素含量及其对应的光谱反射率为数据源,对红边(627~780 nm)、黄边(566~589 nm)、蓝边(436~495 nm)、绿边(495~566 nm)、吸收谷和反射峰的最大反射率及反射率总和等16个高光谱特征参数与叶绿素含量之间的相关性进行了分析,并结合偏最小二乘回归法(partial least-squares regression,PLSR)对叶绿素含量进行高光谱建模及验证。结果表明:1)对特定的16个光谱特征参数而言,光谱特征参数绿边最大反射率与春小麦叶绿素质量分数之间的决定系数最低(R~20.5);决定系数较高(R~2≥0.5)的光谱特征参数包括蓝边最大反射率、蓝边反射率总和、黄边最大反射率、黄边反射率总和、红边最大反射率、红边反射率总和、绿边反射率总和、820~940 nm反射率总和及最大反射率、500~670 nm归一化吸收深度和560~760 nm归一化吸收深度,其中820~940 nm反射率总和决定系数达到最高(R~2为0.8);2)利用16个特征参量进行PLSR建模后,发现波段范围在820~940 nm的最大反射率及反射率总和所建立的PLSR估算模型为最优模型,其精度参数R~2p=0.8、RMSEp=2.0 mg/g、RPD=3.2。因此,该模型具有极好的预测能力。该研究为相关研究及当地精准农业提供科学支持和应用参考。  相似文献   

17.
基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算   总被引:15,自引:4,他引:11  
为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与 SPAD的相关关系,构建了基于一阶微分光谱、高光谱特征参数和 BP 神经网络的 SPAD 估算模型,并对模型进行验证;再结合主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)以及传统回归模型与 BP 神经网络模型进行比较。结果表明:SPAD 值与一阶微分光谱在763nm 处具有最大相关系数(R=0.901);以763 nm 处的一阶微分值、蓝边内最大一阶微分为自变量建立的传统回归模型可用于玉米叶片 SPAD 估算;将构建传统回归模型时筛选到的光谱参数作为输入,实测 SPAD 值作为输出,构建 BP 神经网络模型,其建模与验模 R2分别为0.887和0.896,RMSE 为2.782,RE 为4.59%,与其他回归模型相比,BP 神经网络模型预测精度最高,研究表明 BP 神经网络对叶绿素具有较好的预测能力,是估算玉米叶片 SPAD 值的一种实时高效的方法。  相似文献   

18.
基于叶绿素荧光光谱的生菜硝酸盐含量检测   总被引:3,自引:3,他引:0  
为了寻求生菜叶片硝酸盐含量的快速无损检测方法,该文利用叶绿素荧光光谱分析技术对生菜(Lactuca sativa L.)叶片硝酸盐含量进行检测研究。对比及分析500~550、650~715和715~800 nm 3个波段的叶绿素荧光光谱特征参数与生菜叶片硝酸盐含量的关系,得出650~715 nm波段的叶绿素荧光光谱特征参数与生菜叶片硝酸盐含量之间线性关系显著,决定系数R2为0.816,标准误差为0.147,以此建立的回归模型能够很好地反映生菜叶片硝酸盐含量与叶绿素荧光光谱特征参数的关系;将同批进行试验的30个样本作为回归方程的校验集,进行模型验证,预测值与实测值之间决定系数R2为0.752,表明回归模型对生菜叶片硝酸盐含量有良好的预测效果。研究结果为生菜叶片硝酸盐含量的快速无损检测提供参考。  相似文献   

19.
采用灰板校正的计算机视觉预测棉花叶绿素含量   总被引:4,自引:1,他引:3  
为了提高计算机视觉技术对棉花叶绿素含量的预测精度,该文应用计算机视觉识别方法,采用灰板校正图像亮度差异,对不同水分背景下棉花叶片叶绿素含量进行预测。结果表明,光谱特征参数DGCI (dark green color index)、R-B与叶绿素含量之间存在极显著线性关系,未使用灰板校正图像的DGCI、R-B与叶绿素含量的相关系数分别为0.8857和-0.8726,使用灰板校正归一化处理后的相关系数分别为0.9073和-0.9016,灰板校正后提高了参数与叶绿素含量的相关性。比较参数DGCI、R-B在校正前后对叶绿素含量的预测精度,结果显示校正后的DGCI、R-B建立的模型预测精度高于校正前,校正后参数DGCI的预测精度大于R-B。采用校正后参数DGCI建立的Chl. a+b预测方程,其预测值与叶绿素实测值间均方根误差和相对误差分别为0.1200和5.28%,决定系数为0.8812,预测精度较高。应用计算机视觉技术预测不同水分处理下棉花叶绿素含量具有可行性,使用灰板校正后参数DGCI可以作为快速无损预测棉花叶绿素含量的最佳参数。  相似文献   

20.
高光谱图像检测马铃薯植株叶绿素含量垂直分布   总被引:11,自引:6,他引:5  
为了检测马铃薯作物叶绿素含量,该文按照叶片垂直分布位置采集马铃薯叶片样本的成像高光谱数据,提取并计算了400个划分区域的平均光谱,使用手持式SPAD-502叶绿素仪测定了相应位置的SPAD(soil plant analysis development)值。采用标准正态变量校正(standard normal variate,SNV)方法对光谱数据进行预处理,分析了开花期植株自下而上垂直叶位间光谱和叶绿素分布关系,其光谱反射率在382~700 nm区间随叶位的升高反射率增加(上中下),在700~1 019 nm范围下叶位反射率高于上部和中部叶位(下上中),且SPAD均值依次为36.41、43.11、47.04。分别采用相关系数分析法和随机蛙跳(random frog,RF)算法筛选叶绿素含量敏感波长,并建立偏最小二乘回归(partial least squares regression,PLSR)模型。结果如下:基于相关系数分析法筛选的12个敏感波长主要位于530~550和706~708nm范围,建模精度RC2为0.7 588,验证精度RV2为0.5 773;基于random frog算法筛选的11个敏感波长(554.62、560.26、575.04、576.35、595.09、604.7、649.44、731.8、752.78、786.38、789.97 nm),建模精度RC2为0.8 423,验证精度RV2为0.7 676。选取RF-PLS模型计算马铃薯叶片每个像素点的叶绿素含量,绘制不同叶位马铃薯叶片叶绿素含量可视化分布图,结果可反映马铃薯在开花期植株上叶片叶绿素动态响应关系,实现了不同叶位马铃薯叶片叶绿素含量无损检测以及分布可视化表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号