首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant growth-promoting rhizobacteria (PGPR) strains CHA0 (Pseudomonas fluorescens), IE-6 S+ (Pseudomonas aeruginosa) and 569Smr (Bradyrhizobium japonicum) were tested singly and in combinations for biological control against multiple tomato pathogens (root-infecting fungi and root-knot nematodes). Strains CHA0 and IE-6S+ inhibited in vitro growth of 569Smr while IE-6S+ suppressed CHA0. The bacterial species not only inhibited the radial growth of three root-infecting fungi, Macrophomina phaseolina, Fusarium solani and Rhizoctonia solani (AG 8), but also caused substantial mortality of Meloidogyne javanica juveniles. Used as a soil drench the three bacteria not only suppressed root-infecting fungi and root-knot nematodes but also enhanced growth of tomato plants both under glasshouse and field conditions. The suppressive effect was generally more pronounced when the bacteria were employed together. Strain IE-6S+ exhibited better rhizosphere colonization than CHA0 and 569Smr. Populations of CHA0 in the rhizosphere declined when the bacterium was used with either IE-6S+ and/or 569Smr, while populations of IE-6S+ in the rhizosphere were enhanced when used in combination with CHA0 and/or 569Smr. IE-6S+ was the only bacterium that colonized inner root tissues of tomato plants. When using an iron chelator to create iron deficiency in the soil, the biocontrol efficacy of the bacteria against F. solani and R. solani was enhanced while against M. phaseolina and M. javanica this activity remained unchanged. Only strain 569Smr gave significant suppression of M. phaseolina in both iron-deficient and iron-sufficient soils.  相似文献   

2.
Our objective was to evaluate how increasing levels of N in the medium (0, 4, 8 and 16 mmol N added kg-1 soil) affect the interaction between Sinorhizobium and arbuscular mycorrhiza (AM) fungi in the tripartite symbiosis with Medicago sativa. Growth response, nutrient acquisition, protein content, and nitrate reductase (NR) activity were measured both in plant shoots and roots. Results showed that N levels in soil did not affect mycorrhizal colonization but they strongly influenced nodulation, particularly of mycorrhizal plants. Mycorrhizal colonization was required for a proper nodulation when no N was applied to soil. In contrast, the addition of 4 mmol N kg-1 soil reduced nodulation only in mycorrhizal plants and 8 mmol N added kg-1 soil allowed nodule formation only in non-mycorrhizal plants. Nodulation was totally inhibited in all treatments with the addition of 16 mmol N added kg-1 soil. N addition enhanced NR activity in all the treatments, while AM colonization increased the proportion of NR allocated to roots. This effect was more pronounced under the lowest N levels in the medium. The two AM fungal species showed different distribution pattern of enzymatic activities in plant tissues indicating specific physiological traits. Protein content as well as the relative proportion of protein in roots were greatly increased after mycorrhizal colonization. Glomus intraradices-colonized plants had the highest protein content in shoot and root. Mycorrhizal effects on growth, N acquisition and biochemical variables cannot be interpreted as an indirect P-mediated effect since P content was lower in mycorrhizal plants than in those which were P fertilized. Mycorrhizal colonization increased the N content in plants irrespective of the N level, but the effectiveness of AM fungi on plant N acquisition depended on the AM fungus involved, G. intraradices being the most effective, particularly at the highest N rate. N2 fixation, enhanced by AM colonization, contributed to N acquisition when a moderate N quantity was available in the soil. Nevertheless, under a high N amount the nodulating process and/or fixing capacity by Sinorhizobium was reduced in AM plants. In contrast, the AM fungal mycelium from a particular mycorrhizal fungus may continue to contribute efficiently to the N uptake from the soil even at high N levels. These results demonstrate the particular sensitivity of AM fungal species in terms of their growth and/or function to increasing N amounts in the medium. A selection of AM fungi used to address specific environmental conditions, such as N fertilization regimes comparable to those used in agronomic practices, is required for a better use of N applied to soil.  相似文献   

3.
Five fodder crops, Zea mays, Medicago sativa, Trifolium alexandrinum, Avena sativa, and Sorghum vulgare were inoculated with a consortia of indigenous arbuscular mycorrhizal (AM) fungi in non-sterile PO43- deficient sandy loam soil amended with organic matter under field conditions. Shoot and root dry weights and total uptake of P and N of all the test plants were significantly increased by AM inoculation. Mycorrhizal inoculation increased yield in terms of shoot dry weight by 257% in T. alexandrinum followed by 50% in A. sativa, 28% in Z. mays, 20% in M. sativa and 6% in S. vulgare. Variation in dependence on mycorrhiza was observed among the fodder crops. T. alexandrinum showed a maximum dependence of 72% in contrast to 5.7% dependency in S. vulgare. Plant species showed differences in percentage AM colonization, with a high root infection recorded in Z. mays (76%). Spore production and infectious propagules (IP) were as high as 78 spores/IP g-1 and 103 spores/IP g-1 in S. vulgare. This study clearly indicates the potential of using indigenous AM inoculations in fodder crops grown in marginal soils along with in situ large-scale production of AM inocula.  相似文献   

4.
Reproduction, intrinsic rate of natural increase and population density of naidid worms were investigated in submerged paddy fields and the laboratory. No tillage plus legume-mulching increased the population density of naidid worms. Soil treatments with neither tillage nor legume mulch, and tillage practice alone, did not increase the number of worms. Dero dorsalis Ferronnière was dominant in soil of the no-tillage treatment. In laboratory experiments, legume-mulching with the proper amount of dissolved O2 accelerated asexual reproduction of D. dorsalis through zooid budding. For the legume and aeration treatment, (Ni+1-Ni) Ni-1 values (where Ni and Ni+1 are the populations at times t=i and t=i+1) were plotted against Ni+1. Utilizing this linear relation, this data fitted the logistic curve (r2=0.885, P<0.05). Based on the linear relation, the intrinsic rate of natural increase (r), carrying capacity (K), and doubling time (T) were calculated as 0.2125 day-1, 12,666 m-2, and 3.26 days, respectively. The amounts of legumes applied were highly correlated with the population of D. dorsalis, indicating that the weight of legume is a limiting factor with respect to carrying capacity. A literature review indicated a significant correlation (P<0.01) between intrinsic rate of natural increase and maximum body length of naidids with temperature conversion of the growth rate. Sexually mature worms were rarely found in submerged paddy fields. Sexual reproduction seems to be adopted in response to soil desiccation after paddy field drainage.  相似文献   

5.
A series of inoculation experiments was conducted in glasshouses in Senegal and Kenya to evaluate inoculation procedures designed to optimise nodulation and N2 fixation of Calliandra calothyrsus Meisn. seedlings. Nodulation and plant growth were used as indices of inoculation success. In an experiment carried out in sterile peat/vermiculite mixture, it was established that inoculation of C. calothyrsus with an effective rhizobial strain at the low rate of 1᎒2 rhizobia per seedling was satisfactory for nodulation and growth, but further response occurred at rates of up to 1᎒9. A second experiment in (unsterilised) Sangalkam soil (Senegal) containing indigenous rhizobia demonstrated that the most successful form of inoculation was liquid inoculant applied around the root collar immediately after transplanting. This method was more successful than seed inoculation or application of alginate bead inoculant. A third experiment was conducted using filtermud inoculant in Leonard jars and unsterilised Muguga nursery soil from Kenya, containing a large population of indigenous rhizobia. Application of liquid inoculant to seedlings was better than seed inoculation. On the basis of our study, we recommend that C. calothyrsus seedlings raised in the nursery should be inoculated with a liquid inoculant immediately or soon after germination.  相似文献   

6.
Bioavailability of triazine herbicides in a sandy soil profile   总被引:1,自引:0,他引:1  
The bioavailability of atrazine was evaluated in a Danish soil profile (Drengsted) using a combination of soil sorption, transport and mineralisation methods as well as inoculation using Pseudomonas ADP. Sorption of atrazine decreased markedly with depth as indicated by Kd values of 5.2 l kg-1 for the upper soil and 0.1 l kg-1 for the subsoils. The transport of atrazine was evaluated using soil TLC plates and the resulting Rf values were 0.1 for the upper soil and 0.9 for the subsoil. Only a relatively small amount of atrazine leached through undisturbed soil columns taken from the upper 60 cm. Inoculating with Pseudomonas strain ADP (1᎒6 CFU g-1 dry weight soil) revealed that the degradation of 0.01 ppm atrazine was fully completed (80% mineralisation) within 10 days in the subsoil, while it reached less than 15% in the upper soil. Over a period of 500 days, a total mineralisation of 37% of added atrazine in the upper soil was found (2 mg kg-1 incubated at 20° C). However, in the subsurface soil where 0.02 mg kg-1 of atrazine was incubated at 10°C, the degradation was slower, only reaching about 12%. Terbuthylazine mineralisation was found to be temperature-dependent and low (less than 5%) in the upper soil and very much lower in the subsoil. Desethylterbuthylazine was the most frequently found metabolite. Finally, Pseudomonas strain ADP inoculated into soils from different depths increased the mineralisation of terbuthylazine dramatically. Modelling using a "two-compartment model" indicated that desorption of terbuthylazine is the limiting step for its mineralisation.  相似文献   

7.
To identify the key soil parameters influencing N2O emission from the wheat-growing season, an outdoor pot experiment with a total of 18 fertilized Chinese soils planted with wheat was conducted in Nanjing, China during the 2000/2001 wheat-growing season. Average seasonal N2O-N emission for all 18 soils was 610 mg m-2, ranging from 193 to 1,204 mg m-2, approximately a 6.2-fold difference between the maximum and the minimum. Correlation analysis indicated that the seasonal N2O emission was negatively correlated with soil organic C (r2=0.5567, P<0.001), soil total N (r2=0.4684, P<0.01) and the C:N ratio (r2=0.4530, P<0.01), respectively. A positive dependence of N2O emission on the soil pH (r2=0.3525, P<0.01) was also observed. No clear relationships existed between N2O emission and soil texture, soil trace elements of Fe, Cu and Mg, and above-ground biomass of the wheat crop at harvest. A further investigation suggested that the seasonal N2O-N emission (E, mg m-2) can be quantitatively explained by E=1005-34.2SOC+4.1Sa (R2=0.7703, n=18, P=0.0000). SOC and Sa represent the soil organic C (g kg-1) and available S (mg kg-1), respectively.  相似文献   

8.
N fixation by different faba bean (Vicia faba) cultivars was studied using the natural abundance method. The delta 15N ('15N) values of the faba beans and the reference plants differed by 4.6-7.0‰. The non-nodulating V. faba cv. F48 seems to be the best reference plant for nodulated and N2-fixing V. faba. Significant differences occurred in the quantity of N2 fixation of six V. faba cultivars. The average fraction of N derived from air (FNdfa) estimated from leaf material ranged between 69 and 80%. Shoot-based estimates of N fixation varied between 200 and 360 kg N ha-1. N fixation was affected more by differences in FNdfa than by differences in total N accumulation. Fixation data calculated with the non-nodulated reference plant V. faba cv. F48 were lower than those calculated with cabbage (Brassica oleracea) and ryegrass (Lolium perenne) as reference plants. Of all reference plants, non-N2-fixing V. faba cv. F48 has a root system and temporal pattern of N assimilation that is the one most similar to that of N2-fixing V. faba plants. Cv. F48 showed senescence as did the other V. faba cultivars after pod-fill was complete, whereas cabbage, ryegrass and camomile had a later senescence period. N fixation during pod-filling appears more important for a good yield than N2 fixation abilities in the earlier growth period. The best V. faba cultivars left about 100 kg N ha-1 in residual material on the field as fertilization for the following crops.  相似文献   

9.
Nitrification inhibitors specifically retard the oxidation of NH4+ to NO2- during the nitrification process in soil. In this study, the influence of soil properties on the nitrification-inhibiting effect of 3,4-dimethylpyrazole-phosphate (DMPP), a newly developed nitrification inhibitor, has been investigated. Based on short-term incubation experiments, where the degradation of DMPP could be largely disregarded, the oxidation of the applied NH4+ was more inhibited in sandy soils compared with loamy soils. The influence of soil parameters on the relative NO2- formation could be described by a multiple regression model including the sand fraction, soil H+ concentration and soil catalase activity (R2=0.62). Adsorption studies showed that the binding behaviour of DMPP was influenced markedly by soil textural properties, viz. the clay fraction (r2=0.61). The adsorption of DMPP was found to be an important factor for the inhibitory effect on NH4+ oxidation in a short-term incubation (r2=0.57). It is concluded that the evaluated soil properties can be used to predict the short-term inhibitory effect of DMPP in different soils. The significance of these results for long-term experiments under laboratory and field conditions needs further investigation.  相似文献   

10.
Heterotrophic N2-fixing bacteria are a potentially important source of N2 fixation in rice fields due to the moist soil conditions. This study was conducted at eight sites along a geographic gradient of the Yangtze River Plain in central China. A nitrogen-free solid malate-sucrose medium was used to isolate heterotrophic N2-fixing bacteria. Numbers of the culturable N2-fixing bacteria expressed as CFU (colony forming units) ranged between 1.41ǂ.42᎒6 and 1.24ǂ.23᎒8 in the sampled paddy field sites along the plain. Thirty strains with high ARA (acetylene reduction activity) were isolated and purified; ARA of the strains varied from 0.9 to 537.8 nmol C2H4 culture-1 h-1, and amounts of 15N fixed ranged between 0.008 and 0.4866 mg·culture-1·day-1. According to morphological and biochemical characteristics, 14 strains were identified as the genus Bacillus, 2 as Burkholderia, 1 as Agrobacterium, 4 as Pseudomonas, 2 as Derxia, 1 as Alcaligenes, 1 as Aeromonas, 2 as Citrobacter, and 3 strains belonged to the corynebacter-form group.  相似文献   

11.
The effect of a single cut (simulated grazing) and regrowth of Lolium perenne on CO2 efflux from soil (loamy Haplic Luvisol), on below-ground C translocation and on the distribution of plant C among different soil particle size fractions was investigated under controlled conditions with and without N fertilization by pulse labelling with 14C 7 times (four before and three after the cutting). The amount of 14C respired from the rhizosphere of Lolium decreased by a factor of about 3 during 1 month of growth. At the same time the amount of 14C stored in soil increased. Cut and non-fertilized plants respired less C in the rhizosphere compared to the uncut plants and cut fertilized plants. About 80% of the root-derived CO2 efflux originated from the C assimilated after defoliation, and 20% originated from the C assimilated before cutting. N fertilization decreased the below-ground C losses (root respiration and exudation) during regrowth. The shoot is the main sink of assimilated C before and after the defoliation. N fertilization led to higher C incorporation into the shoot parts growing after defoliation compared to unfertilized plants. A lower incorporation of 14C was observed in the roots of N fertilized plants. The relative growth rates (expressed as 14C specific activity) of roots and stubble were minimal and that of shoot parts growing after defoliation was maximal. Twelve percent of 14C was found in the newly grown leaves after regrowth; nevertheless, 4.7% and 2.4% of 14C in the new shoot parts were translocated from the root and shoot reserves of unfertilized and fertilized plants, respectively. Most of the C retranslocated into the new Lolium leaves originates from the stubble and not from the roots. Between 0.5% and 1.7% of 14C recovered in shoots and below-ground C pools was found in the soil microbial biomass. Cutting and fertilization did not change 14C incorporation into the microbial biomass and did not affect xylanase, invertase, and protease activities. Tracing the assimilated C in particle size fractions revealed maximal incorporation for the sand and clay fraction.  相似文献   

12.
A field study was conducted to investigate the effects of N fertilization on soil N pools and associated microbial properties in a 13-year-old hoop pine (Araucaria cunninghamii) plantation of southeast Queensland, Australia. The treatments included: (1) control (without N application); (2) 300 kg N ha-1 applied as NH4NO3; and (3) 600 kg N ha-1 as NH4NO3. The experiment employed a randomized complete block design with four replicates. Soil samples were taken approximately 5 years after the N application. The results showed that application of 600 kg N ha-1 significantly increased concentrations of NH4+-N in 0-10 cm soil compared with the control and application of 300 kg N ha-1. Concentrations of NO3--N in soil (both 0-10 cm and 10-20 cm) with an application rate of 600 kg N ha-1 were significantly higher compared with the control. Application of 600 kg N ha-1 significantly increased gross N mineralization and immobilization rates (0-10 cm soil) determined by 15N isotope dilution techniques under anaerobic incubation, compared with the control. However, N application did not significantly affect the concentrations of soil total C and total N. N application appeared to decrease microbial biomass C and N and respiration, and to increase the metabolic quotient (qCO2) in 0-10 cm soil, but these effects were not statistically significant. The lack of statistical significance in these microbial properties between the treatments might have been associated with large spatial variability between the replicate plots at this experimental site. Spatial variability in soil microbial biomass C and N was found to relate to soil moisture, total C and total N.  相似文献   

13.
Samples from topsoils (0-10 cm) of 16 Polish arable Cambisols developed from different parent materials (sand, silt, sandy gravel, loess, loam and clay), were incubated under flooded conditions with NO3-. Dehydrogenase activity, redox potential (Eh), and emissions of CO2 and N2O were measured. According to dehydrogenase activity, the soils were divided into two groups: those of low activity (I), where the final dehydrogenase activity was <0.03 nmol triphenylformazan (TPF) g-1 min-1, and those with high final dehydrogenase activity (II), >0.03 nmol TPF g-1 min-1. Generation of CO2 and of N2O under flooded conditions was shown to be significantly related to dehydrogenase activity. Soil dehydrogenase activity increased curvilinearly with organic matter content, showed a maximum at pH 7.1, and decreased curvilinearly with Eh. The final cumulative CO2 production increased linearly with soil organic matter content and curvilinearly with dehydrogenase activity and decreased linearly with Eh. The most significant relationship was found with dehydrogenase activity (R2=0.74, P<0.001). The final cumulative N2O production decreased linearly with Eh and increased curvilinearly with pH and dehydrogenase activity but linearly with organic matter content; the most significant relation being found with dehydrogenase activity (R2=0.69, P<0.001). The CO2:N2O ratio in the gases evolved increased curvilinearly with Eh and decreased with dehydrogenase activity and N2O and CO2 production.  相似文献   

14.
This study addressed differences between Diplocardia spp. (a native North American earthworm) and Octolasion tyrtaeum (an introduced European species), with respect to behavior, influence on soil microbial biomass, and plant uptake of N in tallgrass prairie soils. We manipulated earthworms in PVC-encased soil cores (20 cm diameter) over a 45-day period under field conditions. Treatments included: (1) control with no earthworms, (2) Diplocardia spp. only, and (3) O. tyrtaeum only. Prior to addition of earthworms, seedlings of Andropogon gerardii (a dominant tallgrass) were established in each core, and a dilute solution of 13C-labeled glucose and 15N-labeled (NH4)2SO4 was added to the soil to facilitate examination of earthworm/microbe/plant interactions. We found that Diplocardia spp. were significantly more active than O. tyrtaeum, and quickly assimilated 13C and 15N from the tracer. Individuals of Diplocardia spp. were present at shallower soil depths than O. tyrtaeum throughout the study. Contrary to expectation, this greater activity of Diplocardia spp. did not result in increased plant productivity. Rather, the activity of Diplocardia spp. was associated with less plant growth and smaller amounts of N acquired by A. gerardii seedlings compared to controls or O. tyrtaeum treatments. We observed few significant influences of earthworm treatments on microbial biomass C or N pool sizes, but the microbial C/N ratio was consistently greater in the presence of Diplocardia spp. relative to O. tyrtaeum. Results of this study indicate that activity of earthworms may enhance competition for N between microbes and plants during the growing season in tallgrass prairie.  相似文献   

15.
Azospirillum, a soil bacterium capable of colonizing plant roots, can reduce NO3-. In this work, a spontaneous chlorate-resistant mutant of Azospirillum brasilense Sp245, named Sp245chl1, was phenotypically characterized. The mutant is defective in both assimilatory and periplasmic dissimilatory nitrate reductase activity. Using the gusA reporter gene methodology, Sp245chl1 was found to be significantly affected in its ability to colonize roots of wheat and rice seedlings.  相似文献   

16.
Understanding the interaction mechanisms between plant growth-promoting rhizobacteria (PGPR), leguminous crops, and rhizobia is necessary to effectively use PGPR in increasing the biological nitrogen fixation of legumes. We determined the coinoculation effects of Bradyrhizobium japonicum A1017 and a gusA-marked strain of Pseudomonas fluorescens 2137, P. fluorescens WCS365, Azomonas agilis 125, and Azospirillum lipoferum 137 on soybean [Glycine max (L.) Merr] cv. Enrei grown under axenic conditions. The gusA-marked rhizobacteria effectively colonized the root tips and surfaces near the roots tips with a colonization rate ranging from 7.50 to 8.62 log colony forming units (cfu) gfw-1. P. fluorescens 2137 had the highest colonization activity on soybean roots whether inoculated alone or coinoculated with B. japonicum A1017. Coinoculation of P. fluorescens 2137 and B. japonicum A1017 increased the colonization of B. japonicum A1017 on soybean roots, nodule number, and acetylene reduction activity (ARA) at 10 and 20 days after inoculation. Moreover, the addition of sterile spent medium of P. fluorescens 2137 increased the growth of B. japonicum A1017 in yeast mannitol broth (YMB), indicating that P. fluorescens 2137 may have released substances that increased the rhizobial population. The results of this study suggest that the enhanced nodulation and ARA of soybean due to the high colonization of P. fluorescens on soybean roots could depend on the production of growth-promoting substances that stimulate the growth of B. japonicum. However, coinoculation with P. fluorescens WCS365 decreased the nodule number and ARA, despite its slight stimulation of the growth of B. japonicum on the roots, indicating that coinoculation effects are strain dependent.  相似文献   

17.
Despite growing concerns about the potential adverse effects of elevated mercury concentrations in the environment, only a few toxicity data are available for soil invertebrates. The chronic toxicity of mercury (II) was therefore assessed for Eisenia fetida, Enchytraeus albidus and Folsomia candida using standard test protocols. The 21-day EC50 (the concentration causing 50% effect) for the cocoon production of E. fetida was 9.16 mg Hg kg-1 dry wt. Based on the reproduction, a 42-day EC50 of 22.0 mg Hg kg-1 dry wt was observed for E. albidus while for F. candida the 28-day EC50 was 3.26 (2.45-4.05) mg Hg kg-1 dry wt. Although these data can be considered as a step forward in the assessment of the potential risks of mercury in terrestrial environments, further research is needed to evaluate the influence of soil parameters on the toxicity of mercury and to quantify the effect of ageing on the bioavailability.  相似文献   

18.
The mineralisation of green manure from agroforestry trees was monitored with the objective to compare the temporal dynamics of mineralisation of litter from different species. Green manures from five agroforestry tree species were used on a fallow field during the long rainy season of 1997 (March-August) and from two species in the following short rainy season (September-January) in western Kenya. Different methods, i.e. measurements of isotopic ratios of C in respired CO2 and of soil organic matter (SOM) fractions, soil inorganic N and mass loss from litterbags, were used in the field to study decomposition and C and N mineralisation. Soil respiration, with the separation of added C from old soil C by using the isotopic ratio of 13C/12C in the respired CO2, correlated well with extractable NH4+ in the soil. Mineralisation was high and very rapid from residues of Sesbania sesban of high quality [e.g. low ratio of (polyphenol+lignin)/N] and low and slow from low quality residues of Grevillea robusta. Ten days after application, 37% and 8% of the added C had been respired from Sesbania and Grevillea, respectively. Apparently, as much as 70-90% of the added C was respired in 40 days from high quality green manure. Weight losses of around 80%, from high quality residues in litterbags, also indicate substantial C losses and that a build-up of SOM is unlikely. For immediate effects on soil fertility, application of high quality green manure may, however, be a viable management option. To achieve synchrony with crop demand, caution is needed in management as large amounts of N are mineralised within a few days after application.  相似文献   

19.
Controlled-environment chambers were used to study the effects of elevated CO2 concentrations on biological N fixation, N mineralization and C decomposition in rice soil. In three chambers, CO2 concentration was maintained at 353ᆣ/396ᆫ µmol mol-1 (day/night; ambient CO2), while in another three, CO2 was maintained at 667ᆸ/700ᆽ µmol mol-1 (day/night; elevated CO2) throughout the growing season. Rice (var. Nipponbare) seedlings were grown under either ambient or elevated CO2 concentrations, and then transplanted into the soils in the corresponding chambers. At different growth stages, soil samples were taken from surface (0-1cm) and sub-surface (1-10cm) layers at the centre of four hills, then sieved (<1 mm) to remove root residues. Fresh soil was used to measure N fixation activity (using the acetylene reduction assay), NH4+ content and organic C. Separate sets of soil samples were transferred to serum bottles and anaerobically incubated at 30°C for 30 days to measure potential rates of N mineralization and C decomposition. Under an elevated atmospheric CO2 concentration, acetylene reduction activity significantly increased in the surface soil layer during the early cultivation stages and in the sub-surface soil layer during the latter part of cultivation. There was no difference in the amount of NH4+ in fresh soils between elevated and ambient CO2 chambers, while the rate of N mineralization was increased by elevated CO2 during the latter part of cultivation. Soils from the elevated CO2 chambers had obviously higher rate of C decomposition than that from the ambient CO2 chambers. CH4 production gradually increased with the growth of rice plants. These results suggest that elevated CO2 affected biological N fixation, N mineralization and C decomposition in submerged rice soil during the different growth stages of rice.  相似文献   

20.
Net N mineralization was studied in three different forest sites (Belgium): a mixed deciduous forest with oak (Quercus robur L. and Quercus rubra L.) and birch (Betula pendula Roth) as dominant species, a deciduous stand of silver birch (Betula pendula) and a coniferous stand of Corsican pine (Pinus nigra ssp. Laricio). The organic (F + H) layer and mineral soil at different depths (0-10, 10-20 and 20-30 cm) were sampled at three locations in the mixed deciduous forest (GE, GF1, GF2), at one location in the silver birch stand (SB) and one in the Corsican pine stand (CP). All samples were incubated over 10 weeks under controlled temperature and moisture conditions. The net N mineralization rates in the organic and upper mineral layer (0-10 cm) were found to be significantly different from the other layers and accounted for 66-95% of the total mineralization over the first 30 cm. Net N mineralization rates in the organic layer ranged from 4.2 to 27.3 mg N m-2 day-1. Net N mineralization and nitrification rates were positively correlated. For the mineral soil, net N mineralization rates decreased with depth and the upper 10 cm showed significantly higher rates, ranging from 8.9 to 33.5 mg N m-2 day-1. The rates of the 10-20 cm and 20-30 cm sublayers were similar, ranging from 1.2 to 7.4 mg N m-2 day-1. The net N mineralization rates for the total mineral layer (0-30 cm) ranged from 17.4 mg N m-2 day-1 (SB) to 36.1 mg N m-2 day-1 (CP). Both from PCA and multiple regression analysis, we could conclude that net N mineralization rates were closely related to the initial mineral N content (Ninitial). Furthermore, significant correlations were observed between the net N mineralization rate, the total carbon (TC) and NH4+-N content for the mineral layers and between net N mineralization rate, total nitrogen (TN), hemicellulose content and C/N for the organic layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号